
Brief Announcement:
Fast Travellers: Infrastructure-Independent
Deadlock Resolution in Resource-restricted

Distributed Systems

Sebastian Ertel1, Christof Fetzer1, and Michael J. Beckerle2

1 Technische Universität Dresden
Dresden, Germany

firstname.lastname@tu-dresden.de
2 Waltham, MA, USA

michael.beckerle@alum.mit.edu

Introduction. In the area of data integration and middleware, distributed
data processing systems create directed workflows to perform data cleansing,
consolidation and calculations before emitting results to targets such as data
warehouses. To provide fault tolerance, expensive system-wide checkpoints of
distributed workflows want to be performed on the level of seconds while com-
mits to transactional target resources must happen much more frequently to
satisfy near real-time result latency [1] and small transaction size requirements.
When there exists non-determinism in the workflow, the commit against a trans-
actional target is allowed to be issued only when the determinants were saved to
stable storage and deterministic replay can assure exactly-once result delivery.
That is, there exists a dependency: the process q (a.k.a. operator or component in
the context of data integration) executing the transaction is not allowed to make
forward progress unless it has received the notification of the non-deterministic
process p stating that the results to be committed can be replayed determinis-
tically in the event of a crash.

The Deadlock Problem. Two challenges exist: 1) the limited system view
of the processes and 2) their resource limitations. The first challenge requires a
process to have no knowledge about the workflow it is contained in; a common
distributed system model aspect [2]. Therewith, creating new connections espe-
cially for the above dependency is neither favourable nor possible. A solution
based on already existing FIFO channels defined and maintained by the system
is desirable. Respectively, the distributed algorithm to coordinate the commits,
sends the notification, a marker m, in-order with the data. But in between p and
q, the data stream can be enriched with a theoretically unbounded number of
new messages. In contrast to that, the second challenge refers to the fact that
a transaction at q is restricted to a maximum size, modelled by input buffer Iq,
while process p only has a limited output buffer Qp to fulfil latency requirements.
Hence, it can not be assured that m arrives at q in the interval |Iq|.

Fast Travellers. We solve the above Deadlock Problem by extending our
system model such that a channel supports out-of-band message transmission,

2 Sebastian Ertel, Christof Fetzer, and Michael J. Beckerle

as known from TCP out-of-band. Respectively, we classify markers with respect
to their channel transmission characteristics.

– Slow Travellers (ST) are markers in the classical sense that travel through
the channels in-order with all other messages (as described in the distributed
snapshot algorithm [3]).

– Fast Travellers (FT) are markers that are transmitted out-of-band with re-
spect to all messages among a channel.

To always enable the receipt of a Fast Traveller, we state that every process leaves
one spot available in its input buffer at any time. The solution for our deadlock
problem obviously suggests that the marker m has to be a Fast Traveller.

Assuring Correctness. But as a matter of fact, it is essential to the cor-
rectness of most marker-based algorithms that the marker actually travels in-
order with the data/messages. For example, the deterministic replay algorithm
requires that no messages that can not be replayed deterministically are com-
mitted to the transactional resource. This reasoning is based on the ”happened
before” relationship of message arrivals in the distributed snapshot algorithm
[3]. There, the receipt of a Slow Traveller at any two processes p and q with
state sp and sq marks these states as computationally equivalent; sp ≡ sq. We
also define the state sq of process q when the marker was not received yet as
computationally before (sq < sp) A distributed algorithm is correct iff the deliv-
ery of a message, sent by p after the m was sent in state sp, is disabled at state
sq, where sq 5 sp.

Marker Pairs. Therefore, we combine the two traveller types such that the
creation of a marker at process p produces two messages: 1) a Fast Traveller ft to
resolve deadlocks and optimize the resource usage among a target process q and
2) a Slow Traveller st to preserve the correctness of the algorithms. Whenever
process q receives ft and adds it to Iq, it holds that q’s current state sq < sp due
to transmission of the messages among channel c. Furthermore, it holds that q’s
subsequent states up until the arrival of st are computationally in the past of
sp and therewith actions in q depending on ft are enabled. The receipt of st,
where sp ≡ sq, only evicts ft from Iq in order to disable actions depending on
ft again and assure correctness of the marker algorithm.

We used our Marker Pair Algorithm to efficiently solve the above deadlock
problem in our data integration system3 and are convinced that there exist many
more use cases for Fast Travellers in a variety of different distributed algorithms.

References

1. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Supporting
streaming updates in an active data warehouse. In: ICDE. (2007)

2. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3 (February 1985) 63–75

3 http://ohua.sourceforge.net

