
Fakultät Informatik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211X

TUD-Fl16-04 November 2016

Norman A. Rink, Jeronimo Castrillon
Professur für Compilerbau

Comprehensive Backend Support for Local 
Memory Fault Tolerance

Technische Universität Dresden 
Fakultät Informatik 
01062 Dresden 
Germany 
https://tu-dresden.de/ing/informatik



Comprehensive Backend Support
for Local Memory Fault Tolerance

Norman A. Rink Jeronimo Castrillon

Center for Advancing Electronics Dresden
Technische Universität Dresden, Germany

Abstract

Technological advances drive hardware to ever smaller feature
sizes, causing devices to become more vulnerable to transient
faults. Applications can be protected against faults by adding er-
ror detection and recovery measures in software. This is popularly
achieved by applying automatic program transformations. How-
ever, transformations applied to program representations at ab-
straction levels higher than machine instructions are fundamentally
incapable of protecting against vulnerabilities that are introduced
during compilation. In particular, a large proportion of a program’s
memory accesses are introduced by the compiler backend. This re-
port presents a backend that protects these accesses against faults in
the memory system. It is demonstrated that the presented backend
can detect all single bit flips in memory that would be missed by
an error detection scheme that operates on the LLVM intermediate
representation of programs. The presented compiler backend is ob-
tained by modifying the LLVM backend for the x86 architecture.
On a subset of SPEC CINT2006 the runtime overhead incurred by
the backend modifications amounts to 1.50x for the 32-bit proces-
sor architecture i386, and 1.13x for the 64-bit architecture x86 64.
To achieve comprehensive detection of memory faults, the modi-
fied backend implements an adjusted calling convention that leaves
library function calls transparent and intact.

Keywords transient hardware faults, soft errors, memory faults,
error detection, fault tolerance, resilience, compiler backend, code
generation, intermediate representation (IR), LLVM

1. Introduction

As a result of aggressive technology scaling, transient hardware
faults occur at increasing rates [3, 5, 9, 45]. Systematic studies have
found that faults lead to erroneous application behavior with non-
negligible probabilities [23, 34, 43], and it is known that transient
faults can have consequences that are as dramatic as entire sys-
tem outages [1]. Although transient hardware faults, also known as
soft errors, are most commonly attributed to charge generation by
cosmic radiation [3], shrinking feature sizes increase the vulnera-
bility of devices to general variations in the operating environment,
such as variations in supply voltage and temperature [9, 44]. More-
over, tightening temperature budgets may force devices to oper-
ate at near-threshold voltage, which reduces reliability [15, 44, 48].
Similarly, to reduce the energy consumption of memory modules,
operating voltages can be lowered for SRAM [16] and refresh cy-
cles can be extended for DRAM [31, 50], both of which negatively
affect the reliability of data retention.

Although fault rates in individual devices are low, the possi-
bility of faults poses serious problems for small-scale and large-
scale computing applications alike. Undetected faults in embedded-
devices, as used in safety-critical applications in the automotive or

Fig. 1: Dynamic load operations present in intermediate
representation (IR) or inserted by the compiler backend.

aerospace domain, can pose a danger to human life. At the other
end of the spectrum, large-scale services, like those provided by
data centers, suffer noticeably from hardware faults since faulting
probabilities compound across the large numbers of computers in
data centers [1, 23, 34, 43]. Therefore, software that is designed
for applications with strict safety and reliability requirements must
incorporate measures to tolerate transient hardware faults.

Software can be made fault-tolerant by adding integrity checks
to program code. When a check fails, an error has been detected
and suitable measures can be taken to recover from it. To enable
checks, and hence error detection, some form of redundancy must
be added to programs. This can be done conveniently by applying
automatic program transformations, such as source-to-source trans-
formations, cf. [28, 38]. With the rising popularity of the LLVM
framework and intermediate representation (IR) [30], many fault
tolerance schemes have appeared that are implemented as IR trans-
formations, e.g. [12, 17–19, 29, 40, 42, 52]. Operating on IR has
the advantages of target-independence and increased productivity
compared with operating on machine instructions. However, when
transformations are applied to programs at an abstraction level
above machine instructions, the compiler backend may introduce
new vulnerabilities to faults. Specifically, the backend introduces
numerous additional memory accesses. Figure 1 shows the per-
centages of dynamic load operations that originate from load in-
structions present in the IR of twelve test programs, labeled A–L1:
there is always some proportion of loads that are inserted by the
backend, and in extreme situations (H, L) none or hardly any of the
loads appear in the IR. As a consequence, comprehensive detection
of memory faults cannot be achieved by fault tolerance schemes
that are implemented at the IR level.

1 The test programs are introduced in Section 4, cf. Table 1.

1



This report presents a compiler backend for the C programming
language that supports IR-based fault tolerance schemes in detect-
ing all errors that result from faults in the memory system. The
backend implements error detection by dual modular redundancy
(DMR), i.e. by duplicating memory accesses. Since the backend
only inserts accesses to local memory, almost exclusively to the lo-
cal program stack, duplication poses no issues for multi-threaded
programs. It is demonstrated that the presented backend can in-
deed support an IR-based error detection mechanism in detecting
all memory faults that result in single bit flips. In fact, the pre-
sented backend’s capability to detect errors goes beyond single bit
flips since DMR can generally detect any number of corrupted bits
in a single data word. Moreover, when multiple bit flips affect more
than one data word, there is still a high probability that this can be
detected, especially if the redundant copies of the same data word
are not stored at adjacent positions in memory. The modifications
required to implement DMR for memory accesses have been added
to the LLVM backend for the x86 architecture [30]. It should be
stressed that the modified compiler backend can be combined with
arbitrary error detection schemes at the IR level.

Previous work has implemented entire fault tolerance schemes
by modifying compiler backends [14, 33, 37, 39, 51], but it is usu-
ally assumed that memory is protected by hardware measures, such
as ECC. The present report does not make this assumption since
cost considerations may rule out using ECC memory at all lev-
els in the memory hierarchy. Specifically, ECC memory introduces
an area overhead that may be unacceptable for on-chip compo-
nents of the memory system, such as low cache levels or load-store
queues [14]. For a system to be vulnerable to memory faults, it suf-
fices that there is a single unprotected component in the memory
hierarchy. On such vulnerable systems, comprehensive error de-
tection can still be implemented in software, e.g. by the methods
presented in this report. This is particularly useful when the safety
and reliability requirements change during the lifetime of a sys-
tem. Moreover, the presented approach to error detection combines
backend modifications with an IR-based mechanism, which is more
flexible and less target-dependent than fault tolerance schemes that
are implemented entirely in a compiler backend.

This report is structured as follows. Section 2 introduces mem-
ory faults and identifies the vulnerable memory accesses that are
inserted by the compiler backend. Section 3 explains in detail how
our backend modifications are implemented. Section 4 introduces
the suite of test programs that are used to demonstrate the effective-
ness of our error detection scheme. Results are presented in Sec-
tion 5. Section 6 discusses related work, and Section 7 summarizes
and discusses the findings of this report.

2. Background and Motivation

Many fault tolerance schemes have been implemented at the
level of LLVM IR, e.g. [12, 17–19, 29, 40, 42, 52]. These ap-
proaches accept the fact that the convenience of operating on target-
independent IR comes at the price of losing some amount of control
over the generated machine code and its vulnerability to faults. It is
indeed known that compiler optimizations can affect fault tolerance
levels [13, 18]. Sometimes relaxed error detection rates are even
desirable if this leads to reduced runtime overheads [17, 28, 40].
However, whenever trade-offs between fault tolerance and over-
heads are exploited, developers may not want to be at the whim
of the compiler backend. Instead, when error detection or recov-
ery mechanisms are implemented at a certain level of abstraction,
developers should be guaranteed that subsequent steps in the com-
pilation process will not introduce new vulnerabilities to faults that
have already been addressed by the implemented mechanism. This
report presents a compiler backend that meets this requirement for

st *p ld *pst *q ld *q................. ..............

lifetime of data at p

... ...

instruction stream:

data at q

time

Fig. 2: Liveness of data in memory, with pointers p and q, p ̸= q.

schemes that detect faults in the memory system, including the
load-store queue, caches, and communication buses.

2.1 Memory faults

Typical faults in memory cells are bit flips caused by energetic
particles that originate from cosmic radiation [3]. However, moti-
vated by the current trend toward reducing power consumption,
it has been suggested that the operating voltage of SRAM be
lowered [16], and that refresh cycles of DRAM modules be ex-
tended [31, 50]. Both suggestions reduce the capability to retain
data and hence increase the probability of memory faults.

The probability that a data word is corrupted by a fault increases
with the time that the data word spends in memory. Figure 2 shows
two pairs of store and load operations in a program’s instruction
stream. Memory is accessed at addresses p and q, p ̸= q, and
it is assumed that there are no other accesses at these addresses.
The data word at p has a much longer lifetime and hence is more
likely to become corrupted than the data word at q. Therefore,
when considering fault tolerance measures for the memory system,
it is reasonable to target main memory first since this is where the
lifetimes of data will generally be the longest. This also means that
when, say, ECC are implemented in hardware, on-chip memories,
such as low cache levels or load-store queues, may not be protected.
In fact, the need to protect load-store queues has recently been
stressed [14].

The backend presented in this report is intended not to leave
any memory accesses that it inserts vulnerable to faults. Therefore,
error detection must be applied to all memory accesses, regardless
of the lifetimes of data in memory. In particular, this comprehensive
error detection strategy also serves to protect data that never leaves
on-chip memories, which, according to the previous paragraph, are
less likely to be protected against faults by hardware measures.

2.2 Approaches to error detection

Error detection schemes work by maintaining redundant informa-
tion that is used to check the integrity of data. This is most evident
in DMR-based error detection schemes, where two copies are kept
of each data word. Errors can then be detected by comparing these
copies. If the two copies disagree, an error must have occurred in
at least one of them. In this way, all single bit flips can be detected.
Multiple bit flips can also be detected, provided they do not affect
the two copies in identical ways. In particular, multiple bit flips can
always be detected if they occur in only one of the copies.

Protecting data in memory by DMR can be problematic in the
context of multi-threaded applications since care must be taken
to avoid race conditions when different threads access redundant
copies of data. In this report, DMR-based error detection is applied
selectively only to those memory accesses that are introduced by
the compiler backend. Since these accesses are local, no race con-
ditions can result in multi-threaded applications.

An alternative approach to error detection is based on encoding
data: if the set of valid code words is a small subset of all possible
data words, a hardware fault is likely to produce a data word that
is not also a valid code word. Hence, errors can be detected by
checking whether data words are also valid code words. When data
is encoded, additional bits are typically required to represent code

2



words. Although these bits contain redundant information, no data
is duplicated explicitly. Therefore, encoding-based schemes can
immediately be applied to multi-threaded applications.

A simple, yet effective, encoding-based error detection scheme
for integer values can be defined by decreeing that the valid code
words are precisely the multiples of a fixed integer constant A.
This is known as AN encoding [10, 20]. To enable the detection
of errors specifically in the memory system, an integer value m
must be encoded before being stored:

mencoded = m ·A.

Consequently, whenever a value mencoded is loaded from memory, it
must be decoded before further processing takes place:

m = mencoded/A.

Errors can be detected by evaluating the following boolean expres-
sion for a value n that has been loaded from memory:

n modA = 0. (1)

In the absence of memory faults, the value n is a valid code word.
Hence, if expression (1) evaluates to FALSE, a fault must have
occurred.

2.3 AN encoding at the level of intermediate representation

We have implemented the AN encoding scheme from Section 2.2
as a program transformation that operates on LLVM IR. The trans-
formation instruments store and load instructions with multiplica-
tion and division respectively, as shown in Listing 1, to facilitate
encoding and decoding. Checking is performed immediately after
load instructions. If the check fails, the program exits with the spe-
cial exit code ENCODING, which indicates that an error has been
detected by the AN encoding scheme.

Listing 1: Store and load instructions
with encoding and decoding.

some bb :
. . .

%1 = mul i 6 4 %0, %A ; encode
s t o r e i 6 4 %1, i 6 4 ∗ %p

. . .
%2 = load i 6 4 ∗ %p
%3 = srem i 6 4 %2, %A
%4 = icmp eq i 6 4 %3, 0 ; check
br i 1 %4, l a b e l %next bb ,

l a b e l %e x i t b b

n e x t b b :
%5 = s d i v i 6 4 %2, %A ; decode

. . .

e x i t b b :
c a l l void @exit ( i 3 2 ENCODING )

As evidenced by Figure 1, one cannot expect that all errors
resulting from memory faults are detected if the AN encoding
scheme is applied at the IR level. The IR is lowered to machine
instructions by the LLVM compiler backend, and in the process of
lowering the IR, additional memory accesses will be introduced,
e.g. to handle callee-saved registers or register spills. Naturally,
errors in these accesses cannot be detected by IR-based schemes.
Hence, the compiler backend must be responsible for detecting
errors in the memory accesses it inserts.

2.4 Backend support for error detection

Compiler backends for the C programming language insert addi-
tional memory accesses for the following purposes: to handle reg-

ister spills; to save and restore callee-saved registers, the frame
pointer, and the return address; to pass function arguments; to ac-
cess jump tables. To be able to detect all faults in memory, these
accesses must be equipped with error detection measures. Since all
of the listed accesses, apart from accesses of jump tables, operate
on the local program stack, they can safely be duplicated for the
purpose of error detection, even in the context of multi-threaded
applications. This is also true of the jump table accesses since they
are read-only. Therefore, this report presents a modified compiler
backend for the C language that relies on DMR to detect errors in
memory. It is shown that, in conjunction with the IR-based imple-
mentation of AN encoding from Section 2.3, all single bit flips in
memory can be detected. Of course, the presented backend modifi-
cations can be combined with arbitrary fault tolerance schemes that
operate at the IR level.

The details of the implemented backend modifications are ex-
plained in Section 3. While the wide-spread x86 architecture is used
as the demonstrator platform in this report, compiler backends that
target other processor architectures must also introduce memory
accesses to handle register spills, callee-saved registers etc. There-
fore, all backends that aim to detect faults in memory by DMR must
implement measures analogous to the ones presented in Section 3.

3. Backend Implementation Details

We have modified the LLVM backend [30] for the x86 architecture
to implement DMR-based error detection for the memory accesses
listed at the beginning of Section 2.4. This means that whenever
a data word is written to memory, a second copy of the same data
word is also stored. When the data word is re-loaded, the two copies
are compared. Disagreement between the two copies indicates the
presence of an error caused by a fault in the memory system.

Following the detection of an error, suitable recovery measures
can be taken. This report concentrates on error detection only.
Hence, upon detecting an error in a memory access that has been
inserted by the backend, the executing program is terminated with
the special exit code BACKEND.

In the following, 32-bit machine code is used to illustrate im-
plementation details. The corresponding 64-bit machine code uses
64-bit registers but is otherwise identical to the 32-bit code.

Listing 2: CJE instruction.

. . .
mov −0x30 ( ebp ) , ecx
CJE −0x34 ( ebp ) , ecx
add ecx , e s i

. . .

Listing 3: CJE expansion.

. . .
mov −0x30 ( ebp ) , ecx
cmp −0x34 ( ebp ) , ecx
jn e <e x i t >
add ecx , e s i

. . .

Listing 4: Live flags register.

. . .
mov −0x30 ( ebp ) , ecx
l a h f
cmp −0x34 ( ebp ) , ecx
jn e <e x i t >
sah f
add ecx , e s i

. . .

Listing 5: Live flags and eax.

. . .
mov −0x30 ( ebp ) , eax
xchg eax , ebx
l a h f
xchg eax , ebx
cmp −0x34 ( ebp ) , eax
jn e <e x i t >
xchg eax , ebx
sah f
xchg eax , ebx
add eax , e s i

. . .

3



3.1 The CJE pseudo-instruction

To facilitate error detection, the pseudo-instruction CJE (compare
and jump to exit) has been introduced. After loading a value into
a register, the CJE instruction is used to compare the register with
the second copy of the value in memory. If the comparison fails,
a jump to an exit sequence is performed. The CJE instruction is
expanded into native machine instructions at the very end of the
compilation process, immediately before the emission of machine
code. A typical occurrence and the expansion of the CJE instruction
are shown in Listings 2 and 3 respectively, where it is assumed that
two copies of the same value are stored at offsets –0x30 and –0x34
from the frame pointer (in the ebp register).

Expanding CJE introduces a cmp instruction, which means that
the flags register is overwritten. Therefore, if the flags register is
live at the CJE instruction, its contents must be saved. Since CJE
expansion happens late in the compilation process, registers have
been allocated and the liveness of the flags register can easily be
determined. To save the contents of the flags register, it is preferable
not to write to memory as this would introduce a new vulnerability.
The only x86 instructions that transfer the flags register to and
from a general purpose register are the lahf and sahf instructions
respectively, which use the ah register. Listing 4 shows the resulting
expansion of CJE if the flags register is live. Finally, if the eax
register is also live at the CJE instruction, as in Listing 5, its
contents too must be saved and restored around the lahf and
sahf instructions. For this purpose we reserve the ebx register.
In between the lahf and sahf instructions in Listing 5, the ebx
register contains the saved value of the flags register.

It may seem like a drastic step to reserve a register solely for
handling CJE expansion, especially on the 32-bit x86 architecture,
which has only eight general purpose registers. However, it is
explained in Section 3.5 that the ebx register must be reserved to
pass the return address to called functions. This register can then
also be used for handling the CJE expansion in Listing 5, which
therefore creates no additional register pressure.

3.2 Register spills (spill)

Memory faults can be detected in spilled values by spilling reg-
isters to two memory locations. Therefore, whenever the register
allocator introduces a spill, a pair of spill slots is allocated on the
stack, and the spilled value is stored to both slots. When the value
is restored from the first spill slot to a register, a CJE instruction is
inserted before the next use of the register. Listing 6 shows a typ-
ical register spill and subsequent restore without error detection.
Listing 7 shows the spill and restore code with DMR-based error
detection.

Listing 6: Spill and restore.

. . .
mov eax ,−0 x30 ( ebp )

. . .
mov −0x30 ( ebp ) , eax
add eax , e s i

. . .

Listing 7: Duplicated spill and
CJE instruction.

. . .
mov eax ,−0 x34 ( ebp )
mov eax ,−0 x30 ( ebp )

. . .
mov −0x30 ( ebp ) , eax
CJE −0x34 ( ebp ) , eax
add eax , e s i

. . .

3.3 Callee-saved registers (csr)

Callee-saved registers are pushed onto the stack immediately after
function entry, and are popped off the stack immediately before the
function returns. Typical instruction sequences for this are shown
in Listing 8, with the callee-saved registers edi and esi.

To detect faults that affect the values of callee-saved registers
while they reside on the stack, one could of course push every reg-
ister onto the stack twice. However, this would require individual
CJE instructions for each register when values are restored from the
stack. Instead, we compute the running sum of the values in callee-
saved registers as they are being pushed onto the stack. When all
callee-saved registers have been processed, the final sum is also
pushed onto the stack. The top half of Listing 9 illustrates this,
where the sum is computed in edi. Before the callee-saved regis-
ters are restored, their sum is first popped off the stack; values that
are subsequently restored to registers are then subtracted from the
sum. When it comes to popping the final callee-saved register off
the stack, the sum has been reduced to the remaining value on the
stack. A single CJE instruction checks that this is indeed the case,
as shown in the bottom half of Listing 9. After a successful check,
the final register need not be popped of the stack: after the CJE in-
struction in Listing 9, the register edi already contains the value
to which it must be restored. Therefore, all that is left to do is to
increment the stack pointer. In fact, if instead of incrementing the
stack pointer, another pop instruction were performed, this would
constitute another memory access, and hence a vulnerability.

Note that the CJE instruction that is inserted after popping
callee-saved registers off the stack is placed in the function return
sequence. Since the flags register is not live at this point, the CJE
expansion from Listing 3 can always be applied.

Listing 8: Callee-saved
registers.

push e d i
push e s i

. . .
pop e s i
pop e d i
r e t

Listing 9: Protection of
callee-saved registers.

push e d i
push e s i
add e s i , e d i
push e d i

. . .
pop e d i
pop e s i
sub e s i , e d i
CJE ( esp ) , e d i
add 0x4 , esp
r e t

3.4 Frame pointer (fptr)

When a function uses the frame pointer, the value of the frame
pointer of the enclosing function (in the ebp register) is pushed
onto the stack at function entry. The frame pointer is restored to its
old value by popping it off the stack immediately before returning.
This is illustrated in Listing 10.

Detection of errors that affect the frame pointer is completely
analogous to callee-saved registers: a second copy of the old frame
pointer is pushed onto the stack at function entry, and when the old
frame pointer is restored, the two copies are compared by means of
a CJE instruction, as in Listing 11. Again, the flags register is not
live at the CJE instruction.

Listing 10: Standard handling
of the frame pointer.

push ebp
mov esp , ebp

. . .
pop ebp
r e t

Listing 11: Duplication
of the frame pointer.

push ebp
push ebp
mov esp , ebp

. . .
pop ebp
CJE ( esp ) , ebp
add 0x4 , esp
r e t

4



3.5 Return address (return)

On the x86 architecture, the return address is always passed on
the stack. Thus, given the possibility of memory faults, it can
never be assumed that the return address is correct. To obtain a
copy of the return address that is guaranteed to be correct, even
in the presence of memory faults, the calling convention must be
modified so that the return address is passed in a register. We
reserve register ebx for this purpose. In principle, one could use
one of the caller-saved registers ecx, edx, or even eax. However,
the fastcc calling convention allows that function arguments be
passed in these registers, and since the fastcc convention is used
frequently, we prefer to leave fastcc unmodified.

A further complication on the x86 architecture is that the return
address is not immediately accessible outside of the called function.
Therefore, to pass the return address in ebx, the compiler backend
must generate code as in Listing 12, where the address of the in-
struction following the function call appears explicitly as an imme-
diate value.

Listing 12: Passing the return address in ebx.

. . .
0 x804a99e : mov 0 x804a9a8 , ebx
0 x804a9a3 : c a l l <p r i n t f >
0 x804a9a8 : mov eax ,−0 x2c ( ebp )

. . .

The first instruction in the called function pushes ebx onto
the stack, as done in Listing 13. This means that the two copies
of the return address now reside side-by-side on the stack. When
the called function returns, error checking of the return address is
carried out completely analogously to callee-saved registers. The
only subtlety is that the final ret instruction must not be executed
since it reads the return address from the stack, which constitutes
a vulnerability. Instead, an indirect jump to the checked return
address is performed, cf. Listing 13. Once again the flags register
is not live during a function’s return sequence, allowing the CJE
expansion from Listing 3 to be used. This is particularly fortunate
given that the eax register is live during the return sequence if the
function returns a value.

Listing 13: Protected function
return sequence.

push ebx
. . .

pop ebx
CJE ( esp ) , ebx
add 0x4 , esp
jmp ∗ebx

A few things concerning the reserved ebx register are worth
pointing out. First, since the called function immediately pushes
ebx onto the stack, it can safely be used inside the function to pass
return addresses in nested function calls. Moreover, for the same
reason, the ebx register can be used as in Listing 5 to store the
flags register when both the flags register and eax are live during
a CJE instruction. Lastly, on architectures with a designated return
register, e.g. on ARM or MIPS processors, protecting the return
address against memory faults does not require that an additional
register be reserved or that the calling convention be modified.

3.6 Function arguments (arg)

When function arguments are passed on the stack, they are, of
course, vulnerable to faults in memory. To detect errors in func-
tion arguments, the calling convention has been modified so that a

stack:

original
argument sequence

duplicated
argument sequence

Fig. 3: Original and duplicated function arguments on the stack.

duplicated copy of the sequence of arguments is put on the stack
immediately after the original sequence. Whenever one of the orig-
inal arguments is loaded into a register inside the callee, a CJE in-
struction compares the value in the register with the corresponding
argument in the duplicated sequence of arguments, cf. Figure 3.
This is completely analogous to the bottom half of Listing 7, except
that offsets relative to the frame pointer are positive for function ar-
guments.

Note that, since function arguments may be loaded from the
stack at any point during execution of the callee, the flags register
and eax may generally be live at CJE instructions that check for
errors in function arguments.

3.7 Calling conventions and library functions

The standard calling convention on x86 has been modified in two
ways. First, the return address is passed in the register ebx, in ad-
dition to being put on the stack by the call instruction. Second, a
duplicated sequence of stack arguments resides on the stack im-
mediately above the original sequence of stack arguments. Note
that the obligation to implement this calling convention rests en-
tirely with the caller. This means that, if a callee chooses not to
perform error detection on the return address or on its arguments
passed on the stack, this does not break function calls. In partic-
ular, library functions can still be called fully transparently from
within protected functions. However, calls in the opposite direction
do not work: when a protected function is called from an unpro-
tected environment, neither the ebx register nor the stack will be
set up according to our modified calling convention. Hence the ex-
ecution of the unprotected function will lead to premature program
termination with exit code BACKEND.

3.8 Jump tables (jt)

Jump tables are an efficient way of implementing switch state-
ments [27]. A jump table is an array of addresses of basic blocks.
Unlike all the previously discussed vulnerabilities, jump tables do
not reside on the stack, but in the code segment. In Listing 14 an in-
dex into a jump table has been calculated in register edi. The jump
table itself resides at address 0x8048b84.

To protect jump tables against errors, the compiler backend
duplicates each jump table in the code segment. The example from
Listing 14 is then replaced with the code in Listing 15, where the
duplicated jump table is placed at address 0x8048b9c. Note that,
instead of jumping directly to the address stored at the given index
in the jump table, an indirect jump is used in Listing 15 to avoid
another vulnerable memory access. Also note again that the flags
register and eax may generally be live at CJE instructions that
protect jumps to addresses kept in jump tables.

3.9 Final notes on implementation details

Implementing the backend modifications that have been discussed
in this section required approximately 1500 additional lines of code
relative to LLVM 3.5. The 1500 lines of code are distributed across
30 source files. Given that error detection is clearly a cross-cutting
concern [6, 26], the use of aspects [47] would be warranted to

5



Listing 14: Jump to table entry.

. . .
jmp 0 x8048b84 ( , edi , 4 )

. . .

Listing 15: Jump table protection.

. . .
mov 0 x8048b84 ( , edi , 4 ) , ecx
CJE 0 x8048b9c ( , edi , 4 ) , ecx
jmp ∗ ecx

. . .

improve software design. However, the source code of the LLVM
framework relies heavily on C++ templates, which are not handled
by current aspect compilers [46].

4. Test Programs and Code Generation

To demonstrate that combining AN encoding at the IR level with
the presented backend modifications succeeds at detecting all sin-
gle bit flips in memory, the test programs in Table 1 have been
subjected to faults. Due to simple combinatorics, the spaces of all
possible faults that can affect a program are quite large. Therefore,
conducting exhaustive fault experiments is a processor-bound task,
which, for the relatively small programs in Table 1, can still be car-
ried out in reasonable time.

Some of the test programs (C, E, K) appear in the MiBench
suite [24], and similar programs are often used to evaluate fault
tolerance schemes [14, 18, 36–38, 40]. The programs represent
typical algorithmic tasks, such as sorting, tree and graph traversal,
manipulation of bit patterns, and linear algebra. Test program L
consists of a switch statement that selects one of many arguments
of the enclosing function. The reason for including this test is that
it is the only one that passes function arguments on the stack for
the 64-bit calling convention on x86.

The test programs have been evaluated on the i386 architecture
(the 32-bit version of x86) and on x86 64 (the 64-bit version of
x86). Properties of the binaries generated for these architectures
are listed in Tables 2 and 3. The listed properties are: dynamically
executed instructions (instr.), dynamically executed load operations
(ld.), and the number of load operations that are present at the level
of LLVM IR (IR). The blocks labeled plain in Tables 2 and 3 refer
to the binaries without any error detection measures. The encoded
blocks refer to the binaries protected with the AN encoding scheme
from Section 2.3. Subsequent blocks correspond to the combination
of AN encoding with the individual backend modifications from
Sections 3.2–3.6 and 3.8. Finally, all refers to the combination of
AN encoding with all backend modifications.

The LLVM IR of the test programs is the same for all blocks
in Tables 2 and 3. Therefore, the number of load operations that
are present in the IR is not repeated for the blocks encoded, fptr
etc. Since i386 has fewer registers than x86 64 and also passes all
function arguments on the stack, the ratio of load operations in the
IR to all load operations is generally lower for i386 binaries. Note
that Figure 1 is based on the plain block of Table 3. All binaries are
generated at optimization level -O3. The chosen encoding constant
is A = 58659, one of the super-As from [25].

On the i386 architecture, the implementation of AN encoding
from Section 2.3 may generate incorrect code. This is because
pointers to addresses on the stack generally use all available 32
bits, and when such a pointer is stored to memory, and hence en-
coded by multiplying with A, overflow occurs. When this value is
loaded again, a non-multiple of A is detected, and thus the program

description

A array reduction
B bubblesort
C cyclic redundancy checker (CRC-32)
D DES encryption algorithm
E Dijkstra’s algorithm

arithmetic expression interpreter
F recursive expression tree evaluation
G token lexer for arithmetic expressions
H arithmetic expression parser
I matrix multiplication
J array copy
K quicksort
L switch

Table 1: Suite of test programs.

exits prematurely, with exit code ENCODING. For this reason not all
of the test programs appear in Table 2, which only includes those
programs that execute correctly after AN encoding has been ap-
plied. On the x86 64 architecture this problem does not occur since
pointers are only 48 bits wide, and the chosen A fits into 16 bits.

The runtime overheads introduced by the backend modifica-
tions from Section 3 have been assessed on the test programs
from Table 1, and also on a subset of SPEC CINT2006. Since
the modified backend protects programs written in the C language,
the following benchmarks, written in C++, were not used for as-
sessment: 471.omnetpp, 473.astar, and 483.xalancbmk. The
benchmarks 403.gcc, 456.hmmer, and 464.h264ref break the
modified calling convention and can therefore not be used in as-
sessing runtime overheads. For example, 464.h264ref uses the
qsort library function, to which it passes a comparator function.
When the comparator is called from within the library, our modified
calling convention is not observed. Hence this benchmark always
exits prematurely, with exit code BACKEND. In summary, runtime
overheads have been measured for the following six benchmarks
from the SPEC CINT2006 suite: 400.perlbench, 401.bzip2,
429.mcf, 445.gobmk, 458.sjeng, 462.libquantum.

5. Evaluation

Faults occur rarely in individual devices. Therefore, one must ac-
tively inject faults into systems or programs to evaluate the ef-
fectiveness of fault tolerance schemes. The error detection mech-
anisms introduced in this report have been evaluated by symptom-
based fault injection [4, 28, 41]. This means that, instead of sim-
ulating a fault at the circuit level, the resulting symptom, as seen
by the executing program, is modeled. A fault in the memory sys-
tem results in the corruption of the data word returned by a load
operation. This symptom has been injected into executions of the
test programs from Table 1, the detailed procedure for which is de-
scribed in the next section.

5.1 Fault injection experiments

It is common to evaluate error detection schemes by injecting single
bit flips, cf. [14, 17, 51]. Therefore, in this report, the symptom of
a memory fault is modeled by flipping a single bit in the result of a
load operation. To inject this symptom into an executing program,
the Intel Pin tool [32] for dynamic program instrumentation has
been used. In a first golden run, the targeted binary is executed
under the control of the Pin tool, and all dynamic load operations
are recorded. Based on this, all possible symptoms are determined.
For a 32-bit binary the number of symptoms is equal to 32 times the
number of dynamic loads, and for a 64-bit binary it is, of course,
64 times the number of loads. Subsequently, the targeted binary is

6



plain encoded fptr csr jt return arg spill all
test instr. ld. IR instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld.
A 112 40 8 329 87 333 88 336 88 343 102 356 103 387 106 655 158 829 191
B 1186 362 35 1930 452 1934 453 1938 453 2016 517 2056 518 2138 566 3732 982 4151 1055
C 243 76 25 684 142 688 143 692 143 690 157 720 158 808 173 1058 231 1332 285
D 2160 296 32 2800 392 2960 432 3072 432 2792 408 3040 448 3304 592 3144 496 4560 848
I 682 263 36 1465 364 1469 365 1473 365 1498 448 1539 449 1678 424 3084 824 3281 765
J 122 41 8 210 63 214 64 218 64 240 70 253 71 287 76 336 86 490 127
L 27 8 0 27 8 31 9 31 9 30 9 32 9 78 36 27 8 103 41

Table 2: Dynamic instructions and load operations for the test programs on i386 (32 bits).

plain encoded fptr csr jt return arg spill all
test instr. ld. IR instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld.
A 34 10 8 100 10 106 11 100 10 100 10 107 11 100 10 100 10 109 12
B 432 58 35 624 39 630 40 632 40 624 39 631 40 624 39 624 39 641 42
C 112 27 25 268 29 274 30 276 30 268 29 275 30 268 29 268 29 285 32
D 1816 136 32 2056 136 2232 176 2104 144 2056 136 2288 176 2056 136 2056 136 2480 224
E 1926 500 484 5312 508 5336 512 5360 512 5312 508 5340 512 5312 508 5312 508 5396 520
F 454 157 77 1018 171 1046 185 1102 185 1090 195 1073 185 1018 171 1018 171 1313 237
G 597 146 96 1279 146 1399 165 1279 146 1315 158 1418 165 1279 146 1279 146 1492 196
H 813 224 2 1343 226 1455 251 1497 250 1343 226 1523 251 1343 226 1343 226 1765 300
I 198 54 36 451 43 453 44 461 44 450 46 455 47 450 46 463 50 482 53
J 43 10 8 98 10 104 11 98 10 98 10 105 11 98 10 98 10 107 12
K 413 93 87 1104 136 1136 144 1200 144 1104 135 1151 143 1104 135 1247 177 1406 201
L 15 5 0 15 5 19 6 15 5 20 7 20 6 19 7 15 5 37 12

Table 3: Dynamic instructions and load operations for the test programs on x86 64 (64 bits).

executed once for each symptom, and the program’s response to
the injected symptom is recorded. A fault injection experiment is a
single execution of the targeted binary with an injected symptom.

The outcome of a fault injection experiment is determined by
the program’s response to the injected fault, and responses are
classified into the following categories:

1. correct: Despite the fault, the program has terminated normally
and produced correct output.

2. hang: If the program runs for longer than 10x its normal execu-
tion time, it is deemed to hang and hence is terminated. In prac-
tice, e.g. in safety-critical embedded applications, a hardware
watchdog may terminate and restart long-running programs.

3. crash: The program has terminated abnormally. Either the oper-
ating system has terminated the program, e.g. due to a segmen-
tation fault, or the program itself has exited prematurely due to
an error condition caused by invalid data.

4. sdc: Silent data corruption occurs when the program has termi-
nated normally but has produced incorrect output.

5. encoding: The fault has been detected by AN encoding and
hence the program has exited with code ENCODING.

6. backend: The fault has been detected by one of the DMR-based
measures introduced by the backend. Hence the program has
exited with code BACKEND.

Of course, the responses encoding and backend only occur if AN
encoding has been applied to the targeted binary and if the backend
modifications from Section 3 have been used respectively.

5.2 No error detection

Figure 4 details how the test programs respond to single bit flips
in memory when no error detection measures are applied. While
abnormal program termination indicates that something has gone
wrong, when sdc occurs in practice, one has no reason to believe
that the computed output is incorrect. Therefore, one is often par-
ticularly interested in the proportion of sdc [14, 28, 42]. For the
32-bit binaries the proportion of sdc is generally larger than for the
64-bit binaries. This is to be expected given the lower number of
registers in the 32-bit i386 architecture: more data words that are

relevant for the program output will, at least temporarily, reside in
memory and hence be vulnerable to faults.

5.3 AN encoding

When AN encoding is applied, the total number of load operations
generally increases (cf. the blocks labeled encoded in Tables 2 and
3). However, symptoms that manifest themselves in load operations
that are already present in the IR will be detected by the AN encod-
ing scheme from Section 2.3. Figure 5 summarizes the program re-
sponses to faults in memory when AN encoding is applied at the IR
level. Noticeable proportions of sdc remain for the 32-bit binaries,
but hardly any sdc occurs for 64 bits.

Generally, the effectiveness of AN encoding is much higher for
the 64-bit binaries. This can again be explained by the larger num-
ber of registers in the x86 64 architecture and the usage of registers
for argument passing. Because of this there is lower register pres-
sure, and hence there will be fewer occasions where the backend
has to insert additional memory accesses. In other words, a higher
proportion of the executed load operations are already present in
the IR, and hence can be protected against faults by the AN encod-
ing scheme from Section 2.3.

5.4 AN encoding with backend support

When AN encoding at the IR level is combined with the error detec-
tion measures inserted by our backend, all single bit flips in mem-
ory are detected, as evidenced by Figure 6. Note that for the 64-bit
binaries F and H there are a number of correct responses, which,
technically, means that the injected fault is not detected. However,
the correct responses occur when faults affect load operations that
are part of a call to the memcpy library function. Although this func-
tion call is present in the IR, it is not protected by the AN encoding
scheme from Section 2.3 since no data is actually loaded into the
program. The response correct ensues since the injected faults af-
fect only those portions of the copied data that are subsequently not
used and hence not loaded into the program.

It is interesting to compare the total numbers of fault injection
experiments with those for AN encoding only. Figure 6a, for the
32-bit binaries, is dominated by backend responses. Moreover, the
total numbers of fault injection experiments in Figure 6a are nearly

7



twice as high as in Figure 5a since the modified backend from Sec-
tion 3 duplicates the vast majority of load operations. For the 64-
bit binaries, on the other hand, backend responses do not dominate
Figure 6b as clearly. This is, once again, in agreement with the
fact that there is lower register pressure on the x86 64 architecture,
causing the backend to insert fewer additional memory accesses.

5.5 Runtime overheads

Fault tolerance measures come at the price of performance penal-
ties since some form of redundancy is required. The runtimes for
the test programs from Table 1 are depicted in Figure 7, where ge-
ometric means across all test programs are shown. Since runtimes
are normalized to the plain binaries, overheads due to AN encoding
and the backend modifications can be read off immediately.

Figure 7 shows that the largest fraction of runtime overhead is
due to AN encoding. This is plausible since the fundamental oper-
ations of encoding and decoding are implemented using expensive
integer multiplication and division. AN encoding is known to intro-
duce large overheads [19, 26, 40, 42]. As for the overheads due to
backend modifications, the duplication of register spills is the most
expensive modification for 32-bit binaries, followed by the duplica-
tion of function arguments. This is in agreement with the fact that
i386 has relatively few registers and uses a calling convention by
which all arguments are passed on the stack. Neither of these obser-
vations apply to the x86 64 architecture, and hence the overheads
introduced by the backend modifications are considerably lower.

Runtime overheads of the backend modifications have also been
evaluated on a subset of the SPEC CINT2006 suite. Figure 8 shows
the geometric means of the runtimes of the six benchmark tests
listed at the end of Section 4. Again, runtimes are normalized to
the plain binaries, to which no backend modifications have been ap-
plied. Note that the overhead introduced by duplicating arguments
is lower in Figure 8a than in Figure 7a. An explanation for this
is that functions in the SPEC benchmarks have larger bodies, and
hence longer execution times, than in the test programs from Ta-
ble 1. Therefore, the overhead introduced by duplicated function
arguments carries less weight. When all backend modifications are
applied, the resulting mean overhead is 1.50x for 32-bit binaries
and 1.13x for 64-bit binaries.

As noted in Section 4, AN encoding may not produce correct
programs if the values to be encoded take up too many bits. There-
fore, AN encoding has not been applied to the SPEC benchmark
tests. For better comparison between the test programs from Ta-
ble 1 and the SPEC benchmarks, Table 4 lists the overheads for the
test programs normalized to the binaries with AN encoding. The
numbers roughly reflect the heights of bars in Figure 8. Note that

(a) 32-bit binaries. (b) 64-bit binaries.

Fig. 4: No error detection.

(a) 32-bit binaries. (b) 64-bit binaries.

Fig. 5: AN encoding applied to LLVM IR.

(a) 32-bits binaries. (b) 64-bit binaries.

Fig. 6: AN encoding with backend support.

multiplying the overheads listed in Table 4 for the individual back-
end modifications leads to a larger number than the overhead of all
modifications. This is caused by reserving the register ebx (rbx re-
spectively), which is required for the modifications return, arg, jt,
spill. The overhead due to reserving this register appears for each
of these modifications. Thus, when multiplying these overheads,
the reserved register is accounted for four times, while the combi-
nation of all modifications only pays for this once. Note also that
the penalty for reserving registers ebx and rbx respectively is very
low, as evidenced by the runtime overheads of the jt and return
modifications. This is particularly remarkable given that i386 has
only eight general purpose registers.

All runtime measurements were conducted on an Intel Core i7-
4790 CPU running at 3.6GHz. Total system memory is 32GB. The
operating system is Ubuntu 16.04.1 LTS, with a 4.4.0 Linux kernel.

6. Related work

Fault tolerance schemes that are applied by program source trans-
formation appeared early [38]. Although such schemes have very
limited control over the code generation process in the compiler,
low rates of silent data corruption can be achieved. However, a
considerable proportion of faults still lead to program crashes [28].
With the advent of super-scalar processors it became viable to
implement DMR-based error detection schemes by duplicating
machine instructions [37]. Subsequently proposed fault tolerance
schemes were also implemented by modifying compiler backends,
e.g. [14, 33, 39, 51]. Unlike in this report, these schemes usually

8



(a) 32-bit binaries. (b) 64-bit binaries.

Fig. 7: Mean overheads for test programs.

(a) 32-bit binaries. (b) 64-bit binaries.

Fig. 8: Mean overheads for SPEC benchmarks.

assume that memory is protected by hardware measures, e.g. ECC,
and hence memory operations are not accompanied by error de-
tection. The only exception to this is the nZDC scheme [14],
where memory accesses are duplicated since the processor’s load-
store queue is assumed to be vulnerable to faults. Since the nZDC
scheme duplicates all load operations, and not just those that access
local memory, it is limited in handling multi-threaded applications
correctly, as already noted in [14].

The popularity of the LLVM compiler framework and IR [30]
has led to many IR-based fault tolerance schemes [12, 17–19, 29,
40, 42, 52]. Although it is known that compiler optimizations can
influence fault tolerance [13, 18], to the best of our knowledge there
is no detailed understanding of how optimization-specific program
transformations interact with fault tolerance and vulnerability. If
one thinks of register allocation as an optimization, this report takes
a first step toward this understanding.

Certain fault tolerance schemes are specifically aimed at detect-
ing errors in control-flow [36, 49]. These schemes statically assign
signatures to basic blocks, which are then checked at program run-
time. The presented backend modification that detects errors in the
return address can be thought of as a control-flow protection mech-

overhead
32 bits 64 bits

fptr 1.003 1.020
csr 1.011 1.009
jt 1.012 1.013
return 1.036 1.027
arg 1.139 1.005
spill 1.345 1.012
all 1.584 1.073

Table 4: Mean runtime overheads
normalized to the encoded binaries.

anism. The advantage of the presented mechanism is that it checks
for errors before a function returns, i.e. before control is transferred.
Hence, when an error is detected in the return address, control need
not be rewound.

That return addresses and frame pointers need protection was
already observed in the context of protecting an operating system
against hardware faults [8]. In the same context, it was also noted
that the pointer to an object’s virtual function table must be pro-
tected against memory faults [7]. This applies to object-oriented
languages, such as C++, and thus goes beyond the scope of this
report, where the sole focus was on a C language backend. The
fault tolerance schemes in [7, 8] were implemented based on as-
pects [47]. Conceptually, aspects operate on program source code,
but their implementation requires interaction with the compiler,
over which the user has no detailed control. This, again, opens up
the possibility that the implementation of aspects introduces new
vulnerabilities.

Recently, an aspect-based implementation of AN encoding has
appeared [26]. AN encoding was originally introduced in [10]
and studied in detail, among other arithmetic error codes, by [2,
21]. Protecting processors by AN encoding was suggested in [20],
where the ANB and ANBD schemes were also introduced. IR-
based implementations of AN encoding appeared in [19, 40]. Other
fault tolerance schemes combine encoding with DMR [11, 28, 35],
as was done in this report. However, a key motivation for this report
was that, when DMR is applied to memory operations selectively,
i.e. only to local memory accesses inserted by the compiler back-
end, duplication is safe also for multi-threaded programs.

7. Summary and Discussion

Fault tolerance schemes that are applied to programs at the level
of intermediate representation (IR) cannot address vulnerabilities
resulting from later stages of the code generation process. Specif-
ically, it has been shown that an error detection scheme that op-
erates on LLVM IR fails to protect significant numbers of mem-
ory accesses against faults. This is because the compiler backend
may introduce additional, unprotected memory accesses to imple-
ment, e.g., register spilling or function argument passing. This re-
port has presented backend modifications that add error detection
to previously unprotected memory accesses by dual modular re-
dundancy (DMR). These modifications, in conjunction with an IR-
based scheme, succeed at detecting all errors resulting from single
bit flips in memory.

Implementing fault tolerance schemes at the level of IR, or at
even higher abstraction levels, ensures target-independence and en-
hances productivity. The latter is particularly important for relaxed
fault tolerance schemes, where some amount of vulnerability is ac-
cepted in exchange for reduced overhead [17, 28, 40]. In quantify-
ing the vulnerability level of a relaxed scheme, meaningful results
can only be obtained if one is guaranteed that the code generation
process following the application of the fault tolerance scheme does
not introduce new vulnerabilities. The backend modifications pre-
sented in this report give this guarantee, and they can be coupled
with arbitrary IR-based schemes.

Approaches to error detection based on DMR can detect all
faults that lead to single bit flips. If more than one bit is corrupted
by a fault and if the redundant copies of a data word are affected
by the corruption in the same way, this cannot be detected. The
probability that multiple bit flips result in an undetectable error
may be low, and it certainly depends on how far apart in memory
redundant data words are stored. This suggests that there may be an
interesting trade-off between data locality, which is beneficial for
cache performance, and vulnerability. Triple modular redundancy
(TMR) enables recovery from single bit flips by majority voting,

9



cf. [11, 22], but can also guarantee that all double bit flips are
detected.

Runtime measurements have shown that the overhead due to the
presented backend modifications is, on average, 1.50x for binaries
from SPEC CINT2006 running on i386, and 1.13x for the corre-
sponding binaries running on x86 64. This is in agreement with the
naive expectation that there is less need to protect against faults in
the memory system on machines with more registers. The reported
runtime overheads are noticeably lower than for the nZDC scheme,
which also duplicates memory accesses [14]. This is unsurprising
since, in this report, error detection is applied to memory accesses
more selectively.

Some of the presented backend modifications required that the
register ebx (rbx respectively) be reserved for temporary storage of
the flags register. Although the resulting runtime overhead is very
low, eliminating the need to reserve registers would be an interest-
ing project from a software engineering point of view since this
would likely require tighter coupling of the presented implementa-
tion with register allocation. To achieve this in a clean and flexible
way, one may want to consider using aspects [47]. Another inter-
esting extension of the work presented in this report would be to
add error detection measures to memory accesses inserted by com-
piler backends for the C++ programming language. It is known that,
due to object-oriented concepts, additional memory accesses are re-
quired [7], giving rise to new vulnerabilities.

Acknowledgments

This work was funded by the German Research Council (DFG)
through the Cluster of Excellence ‘Center for Advancing Electron-
ics Dresden’ (cfaed). The authors acknowledge useful discussions
with Sven Karol and Tobias Stumpf. The authors would also like to
thank Sven Karol for comments on draft versions of this report and
Julia Bolotina for proof-reading and editing.

References
[1] Amazon S3 availability event: July 20, 2008. URL http://status.

aws.amazon.com/s3-20080720.html.

[2] A. Avizienis. Arithmetic error codes: Cost and effectiveness studies
for application in digital system design. IEEE Trans. on Computers,
C-20(11):1322–1331, 1971.

[3] R. Baumann. Soft errors in advanced computer systems. IEEE Design
& Test of Computers, 22(3):258–266, 2005.

[4] D. Behrens, M. Serafini, S. Arnautov, F. P. Junqueira, and C. Fet-
zer. Scalable error isolation for distributed systems. In Proc.
12th USENIX Conf. Networked Systems Design and Implementation,
NSDI’15, pages 605–620, 2015.

[5] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke. Cost-efficient soft error
protection for embedded microprocessors. In Proc. Int’l Conf. Com-
pilers, Architecture and Synthesis for Embedded Systems, CASES’06,
pages 421–431, 2006.

[6] C. Borchert and O. Spinczyk. Hardening an L4 microkernel against
soft errors by aspect-oriented programming and whole-program anal-
ysis. ACM SIGOPS Operating Systems Review, 49(2):37–43, 2015.

[7] C. Borchert, H. Schirmeier, and O. Spinczyk. Protecting the dynamic
dispatch in C++ by dependability aspects. In Proc. 1st Workshop
Software-Based Methods for Robust Embedded Systems, SOBRES’12,
2012.

[8] C. Borchert, H. Schirmeier, and O. Spinczyk. Return-address protec-
tion in C/C++ code by dependability aspects. In Proc. 2nd Workshop
Software-Based Methods for Robust Embedded Systems, SOBRES’13,
2013.

[9] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro,
25(6):10–16, 2005.

[10] D. T. Brown. Error detecting and correcting binary codes for arith-
metic operations. IRE Trans. Electronic Computers, pages 333–337,
1960.

[11] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-
level software-only recovery. In Int’l Conf. Dependable Systems and
Networks, DSN’06, pages 83–92, 2006.

[12] Z. Chen, A. Nicolau, and A. V. Veidenbaum. SIMD-based soft error
detection. In Proc. ACM Int’l Conf. Computing Frontiers, CF’16,
pages 45–54, 2016.

[13] M. Demertzi, M. Annavaram, and M. Hall. Analyzing the effects of
compiler optimizations on application reliability. In IEEE Int’l Symp.
Workload Characterization, IISWC’11, pages 184–193. IEEE, 2011.

[14] M. Didehban and A. Shrivastava. nZDC: A compiler technique for
near zero silent data corruption. In Proc. Design Automation Conf.,
DAC’16, 2016.

[15] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In Proc.
38th Ann. Int’l Symp. Computer Architecture, ISCA’11, pages 365–
376, 2011.

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In Proc. 17th
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, ASPLOS’12, pages 301–312, 2012.

[17] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Probabilistic
soft error reliability on the cheap. In Proc. 15th Int’l Conf. Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS’10, pages 385–396, 2010.

[18] R. R. Ferreira, R. B. Parizi, L. Carro, and A. F. Moreira. Compiler
optimizations impact the reliability of the control-flow of radiation
hardened software. J. Aerosp. Technol. Manag., 5(3):323–334, 2013.

[19] C. Fetzer, U. Schiffel, and M. Süßkraut. AN-encoding compiler:
Building safety-critical systems with commodity hardware. In Proc.
28th Int’l Conf. Computer Safety, Reliability, and Security, SAFE-
COMP’09, pages 283–296, 2009.

[20] P. Forin. Vital coded microprocessor principles and applications for
various transit systems. In Control, Computers, Communications in
Transportation: Selected Papers from the IFAC/IFIP/IFORS Sympo-
sium, pages 79–84, 1989.

[21] H. L. Garner. Error codes for arithmetic operations. IEEE Trans.
Electronic Computers, EC-15(5):763–770, 1966.

[22] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante.
Software-Implemented Hardware Fault Tolerance. Springer, 2006.

[23] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria. What bugs live in the cloud? A study of 3000+ issues
in cloud systems. In Proc. ACM Symp. Cloud Computing, SOCC’14,
2014.

[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In Proc. IEEE Int’l Symp. Workload
Characterization, IISWC’01, pages 3–14, 2001.

[25] M. Hoffmann, P. Ulbrich, C. Dietrich, H. Schirmeier, D. Lohmann,
and W. Schröder-Preikschat. A practitioner’s guide to software-based
soft-error mitigation using AN-codes. In Proc. 15th Int’l Symp. High-
Assurance Systems Engineering, 2014.

[26] S. Karol, N. A. Rink, B. Gyapjas, and J. Castrillon. Fault tolerance
with aspects: A feasibility study. In Proc. 15th Int’l Conf. Modularity,
2016.

[27] A. Korobeynikov. Improving switch lowering for the LLVM compiler
system. In Proc. Spring Young Researchers Colloq. Software Engi-
neering, SYRCOSE’07, 2007.

[28] D. Kuvaiskii and C. Fetzer. ∆-encoding: Practical encoded process-
ing. In Proc. 45th Ann. Int’l Conf. Dependable Systems and Networks,
DSN’15, 2015.

[29] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer.
Elzar: triple modular redundancy unsing Intel AVX. In Proc. Int’l
Conf. Dependable Systems and Networks, DSN’16, 2016.

10



[30] C. Lattner and V. Adve. LLVM: a compilation framework for life-
long program analysis & transformation. In Proc. Int’l Symp. Code
Generation and Optimization, CGO’04, page 75, 2004.

[31] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: sav-
ing DRAM refresh-power through critical data partitioning. In Proc.
16th Int’l Conf. on Architectural Support for Programming Languages
and Operating systems, ASPLOS’11, pages 213–224, 2011.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. S. Wallace, V. J. Reddi, and K. Hazelwood. PIN: Building cus-
tomized program analysis tools with dynamic instrumentation. In
Proc. Conf. Programming Language Design and Implementation,
PLDI’05, pages 190–200, 2005.

[33] K. Mitropoulou, V. Porpodas, and M. Cintra. DRIFT: Decou-
pled compiler-based instruction-level fault-tolerance. In Proc. 26th
Int’l Workshop Languages and Compilers for Parallel Computing,
LCPC’13, pages 217–233, 2014.

[34] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells
and platters: An empirical analysis of hardware failures on a million
consumer PCs. In Proc. 6th Conf. on Computer Systems, EuroSys’11,
pages 343–356, 2011.

[35] N. Oh, S. Mitra, and E. J. McCluskey. ED4I: Error detection by diverse
data and duplicated instructions. IEEE Trans. Computers, 51(2):180–
199, 2002.

[36] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow checking by
software signatures. IEEE Trans. on Reliability, 51(2):111–122, 2002.

[37] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by dupli-
cated instructions in super-scalar processors. IEEE Trans. Reliability,
51(1):63–75, 2002.

[38] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante. Soft-
error detection through software fault-tolerance techniques. In Int’l
Symp. Defect and Fault Tolerance in VLSI Systems, DFT’99, pages
210–218, 1999.

[39] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software implemented fault tolerance. In Int’l Symp. Code
Generation and Optimization, CGO ’05, pages 243–254, 2005.

[40] N. A. Rink, D. Kuvaiskii, J. Castrillon, and C. Fetzer. Compiling for
resilience: The performance gap. In Proc. Mini-Symp. Energy and
Resilience in Parallel Programming, ERPP’15, 2015.

[41] U. Schiffel. Hardware Error Detection Using AN-Codes. PhD thesis,
Technische Universität Dresden, 2011.

[42] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer. ANB- and
ANBDmem-encoding: Detecting hardware errors in software. In Proc.
29th Int’l Conf. Computer Safety, Reliability, and Security, SAFE-
COMP’10, pages 169–182, 2010.

[43] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
A large-scale field study. In Proc. 11th Int’l joint Conf. Measurement
and Modeling of Computer Systems, SIGMETRICS’09, pages 193–
204, 2009.

[44] M. Shafique, S. Garg, J. Henkel, and D. Marculescu. The EDA chal-
lenges in the dark silicon era: Temperature, reliability, and variability
perspectives. In Proc. 51st Ann. Design Automation Conf., DAC’14,
pages 1–6, 2014.

[45] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. In Proc. Int’l Conf. Dependable Systems and
Networks, DSN’02, pages 389–398, 2002.

[46] O. Spinczyk. Documentation: AC++ Compiler Manual, Version 2.1,
2016. URL http://www.aspectc.org/doc/ac-compilerman.
pdf.

[47] O. Spinczyk, A. Gal, and W. Schröder-Preischkat. AspectC++: An
aspect-oriented extension to the C++ programming language. In
Proc. 40th Int’l Conf. Tools Pacific: Objects for internet, mobile and
embedded applications, CRPIT’02, pages 53–60, 2002.

[48] M. B. Taylor. Is dark silicon useful? Harnessing the four horsemen
of the coming dark silicon apocalypse. In Proce. 49th Ann. Design
Automation Conf., DAC’12, pages 1131–1136, 2012.

[49] R. Vermu, S. Gurumurthy, and J. A. Abraham. ACCE: Automatic
correction of control-flow errors. In Proc. IEEE Int’l Test Conf., page
1010, 2007.

[50] C. Weis, M. Jung, P. Ehses, C. Santos, P. Vivet, S. Goossens,
M. Koedam, and N. Wehn. Retention time measurements and mod-
elling of bit error rates of WIDE I/O DRAM in MPSoCs. In Proc.
Design, Automation & Test in Europe Conf. & Exhibition, DATE’15,
pages 495–500, 2015.

[51] J. Yu, M. J. Garzarán, and M. Snir. ESoftCheck: Removal of non-
vital checks for fault tolerance. In Proc. 7th Ann. Int’l Symp. Code
Generation and Optimization, CGO’09, pages 35–46, 2009.

[52] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August. DAFT: Decou-
pled acyclic fault tolerance. In Proc. 19th Int’l Conf. Parallel Archi-
tectures and Compilation Techniques, PACT’10, pages 87–98, 2010.

11


