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Abstract—Although the rate region for the lossless many-
help-one problem with independently degraded helpers is al-
ready “solved”, its solution is given in terms of a convex
closure over a set of auxiliary random variables. Thus, for
any such a problem in particular, an optimization over the
set of auxiliary random variables is required to truly solve the
rate region. Providing the solution is surprisingly difficult even
for an example as basic as binary sources. In this work, we
derive a simple and tight inner bound on the rate region’s
lower boundary for the lossless many-help-one problem with
independently degraded helpers when specialized to sources
that are binary, uniformly distributed, and interrelated through
symmetric channels. This scenario finds important applications
in emerging cooperative communication schemes in which the
direct-link transmission is assisted via multiple lossy relaying
links. Numerical results indicate that the derived inner bound
proves increasingly tight as the helpers become more degraded.

I. INTRODUCTION

The idea that a decoder wishes to reproduce a primary
source (X0) with the help of an auxiliary source (X1),
introduced by Wyner [1], Ahlswede, and Körner [2], can
be intuitively extended to an arbitrary number of auxiliary
sources (X1, ..., XL) a.k.a. helpers. Finding the rate region of
such a system defines the so-called many-help-one problem.
This problem has been recognized as a highly challeng-
ing one, and only a few particular solutions are known
to date. Körner and Marton [3] addressed a two-help-one
problem where the primary source is a modulo-two sum
of correlated binary auxiliary sources. Gelfand and Pinsker
[4] determined the rate region when the auxiliary sources
are discrete and conditionally independent if the primary
source is given. Motivated by the Gelfand-Pinsker result,
Oohama [5] determined the rate-distortion region for the
same setup but Gaussian sources. Tavildar [6] derived the
rate-distortion region for Gaussian sources with a correlation
model following a tree-like structure. For other works on the
many-help-one problem, see [7] and the references therein.

While the characterization given by Gelfand and Pinsker
[4] is elegant and quite general, it presents a practical
disadvantage: the solution relies on auxiliary random vari-
ables (RVs) whose statistics are unknown in advance. Thus,
the numerical characterization of the region of achievable

rates for any particular joint distribution of (X0, X1, ..., XL)
requires an optimization over all admissible conditional dis-
tributions for the auxiliary RVs (U1, ..., UL). Gelfand and
Pinsker [4] showed that the rate region remains unchanged
if the alphabet size of the auxiliary RVs is bounded by
|Ul| ≤ |Xl|+ (L+ 1)2L−1 + 1. However, with an increasing
number of helpers the bound on the alphabet size increases,
and so does the complexity of the optimization problem.
Jana [8] showed that the cardinality of the auxiliary RVs
can be tightly bounded by |Ul| ≤ |Xl| for a broad class of
multiterminal source coding problems, including the many-
help-one problem. But still, the optimization problem remains
surprisingly challenging, even for binary sources.

In [9], the one-help-one problem (a.k.a. source coding with
coded side information) was considered with binary sources
which are related through a binary symmetric channel (BSC).
It was then shown that the rate region is achieved if and only
if the auxiliary RV and the helper are related through a BSC
as well.

In this work, we investigate the many-help-one problem
when specialized to source and helpers that are binary, uni-
formly distributed, and interrelated through BSCs. Motivated
by the results in [9], we assume the helpers and auxiliary RVs
are also interrelated through BSCs, thereby deriving a simple
and tight inner bound on the rate region’s lower boundary
for the investigated problem. The more degraded the helpers,
the tighter the inner bound, as indicated from our numerical
examples.

II. BACKGROUND

A. Notation

Random variables and their realizations are denoted in
capital (e.g., X) and lowercase (e.g., x) letters, respectively.
All sets (e.g., alphabets of random variables) are denoted
in calligraphic letter (e.g., X ). Also, Xn := (X1, . . . , Xn)
denotes a random vector of length n.

Given any two integers a, b ∈ N, we use [a : b] to denote
the inclusive collection of all integers between a and b, i.e.,
[a : b] := {c : c ∈ N , a ≤ c ≤ b}. Furthermore, we use [a]
as a compact notation to [1 : a], for any integer a.
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Fig. 1: System model for the lossless many-help-one problem with two
independently degraded helpers (i.e., L = 2). We are interested in the rate
region for sources that are binary, uniformly distributed, and interrelated
through symmetric channels.

Finally, we denote the probability of an event E as Pr{E},
the mutual information as I(·; ·), the entropy as H(·), the
binary logarithm as ld(·), the binary entropy function as
h(p) = −p ld(p)− (1− p) ld(1− p), the binary convolution
as a1 ∗ a2 = a1(1 − a2) + (1 − a1)a2, and the multivariate
binary convolution as a1∗...∗aN = a1∗(...∗(aN−1∗aN )...),
which is a cascaded binary convolution.

B. Multiterminal Source Coding and Rate Region

Assume that we are given (L + 1) memoryless sources,
where one of these sources is the primary source, while
the L remaining ones are helpers. The primary source is
generated i.i.d. according to a distribution defined on the
finite alphabet X0 of size |X0| < ∞. The helpers are
conditionally independent given the primary source on the
finite alphabet Xl of size |Xl| <∞ for l ∈ [L]. Hereafter, this
case is referred to as the CI condition. The joint probability
mass function (pmf) of {Xl}l∈[0:L] satisfies

pX0X1...XL
(x0, x1, ..., xL)

= pX0(x0)
∏
l∈[L]

pXl|X0
(xl|x0). (1)

Fig. 1 illustrates the lossless many-help-one system model.

Definition 1. An (n,M0,M1, ...,ML)-code consists of
• (L+ 1) encoders

fl : Xnl → [Ml], ∀ l ∈ [0 : L], and (2)

• a decoder

φ :
∏

l∈[0:L]

[Ml]→ Xn0 . (3)

Given an (n,M0,M1, ...,ML)-code, the primary source
estimate can be expressed as

X̂n
0 = φ({fl(Xn

l )}l∈[0:L]) (4)

and, as criterion of fidelity of reproduction of sequence
Xn

0 , we will use the maximum error probability per source
symbol:

pmax := max
i∈[n]

Pr{X0,i 6= X̂0,i}. (5)

The (L + 1)-tuple {Rl}l∈[0:L] will be called an admissible
combination of coding rates for {Xl}l∈[0:L] if, for ε→ 0 and
sufficiently large n, there exists a (n,M0,M1, ...,ML)-code
for which Ml ≤ 2n(Rl+ε),∀l ∈ [0 : L], and pmax < ε. The
rate region, hereafter denoted asR, is the set of all admissible
combinations of rates {Rl}l∈[0:L].

Gelfand and Pinsker derived the rate region for the discrete
lossless CEO problem under the CI condition [4]1. Below we
summarize the Gelfand-Pinsker theorem when specialized to
the lossless many-help-one problem.

Theorem 1. (Gelfand and Pinsker [4]) The rate region is the
convex closure of the set of all rates {Rl}l∈[0:L] satisfying
the following conditions:

1) There exists an L-tuple {Ul}l∈[L] of discrete RVs taking
values in U1×...×UL such that {X0, Xl, Ul}l∈[L] satifies
the Markov chains U1...UL → X1...XL → X0 and
Ul → Xl → Xl̄ → Ul̄,∀l ∈ [L], l 6= l̄.

2) |Ul| ≤ |Xl|+ (L+ 1)2L−1 + 1,∀l ∈ [L].
3) R0 ≥ H(X0|U1, ..., UL) and∑

l∈S Rl ≥ I ({Xl}l∈S ; {Ul}l∈S |{Ul}l∈Sc) , where
∀S ⊆ [L] and Sc = [L]\S .

In [8, Lemma 2.2], Jana showed that the computational
complexity of Theorem 1 can be reduced, i.e., the car-
dinality of the auxiliary RVs can be tightly bounded by
|Ul| ≤ |Xl|,∀l ∈ [L], for a broad class of multiterminal
source coding problems, including the lossless many-help-
one problem2.

Even after the above reduction of cardinality, the optimiza-
tion problem at hand remains highly complicated. Take, for
instance, the case of L = 2. To compute the lower convex
boundary ofR, we need to minimize the Lagrangian function

H(X0|U1, U2)+µ1I(X1;U1|U2) + µ2I(X2;U2|U1)

+µ3I(X1, X2;U1, U2), (6)

with µ1, µ2, µ3 > 0, over pU1|X1
(u1|x1) and pU2|X2

(u2|x2).
Yet, the function in (6) is in general neither convex nor con-
cave over pU1|X1

(u1|x1) and pU2|X2
(u2|x2). For example,

H(X0|U1, U2) is concave while I(X1;U1|U2) is convex over
pU1|X1

(u1|x1). Therefore, the optimization is surprisingly
difficult even in the simplest case where all the sources are
binary RVs.

III. BINARY SYMMETRIC CASE

In this section, we consider the case where the source X0

is binary and uniformly distributed, i.e., pX0
(0) = pX0

(1) =

1The system model for the many-help-one problem is a special case
of the system model for the lossless CEO problem investigated in [4] by
Gelfand and Pinsker. In the CEO problem, the primary source is not encoded
but rather observed from multiple helpers. Clearly, Gelfand and Pinsker’s
rate region is non-empty if and only if H(X0|X1, . . . , XL) = 0 (this
condition was referred to therein as “completeness of observations”). From
[4], the rate region can be given by taking into account the “completeness
of observations” for the encoding of the primary source [7].

2The framework provided by Jana includes the lossless many-help-one
problem, when (M,J, L) = (any, 1, 0) and S is deterministic. In [8], M is
the number of sources, J is the number of sources which are reconstructed
lossless, L is the number of sources which are reconstructed within some
distortion constraint, and S is some side information.
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Fig. 2: The binary symmetric case for L = 2: the primary source and helpers
are related via BSCs and the helpers and auxiliary RVs are related via BACs.

1/2, and related to the helpers Xl, l ∈ [L], via BSCs, i.e.,
εl , pXl|X0

(0|1) = pXl|X0
(1|0). Let us define the binary

asymmetric channel (BAC) between the helpers and auxiliary
RVs by the crossover probabilities αl , pXl|Ul

(1|0) and βl ,
pUl|Xl

(0|1) for l ∈ [L]. Fig. 2 shows a schematic diagram
of all RVs and the respective crossover probabilities for L =
2. The optimization problem can be formulated as follows:
for fixed εl, determine all sets of {αl, βl}l∈[L] which are on
the lower convex boundary of the (optimal) rate region in
Theorem 1. This optimization problem cannot be solved in
closed form. Instead, a solution can be given within a target
precision by means of an exhaustive numerical search.

Alternatively, driven by the results in [9], we derive an
inner bound on the rate region’s lower boundary based on the
assumption of BSCs between the helpers and the auxiliary
RVs, i.e., γl = αl = βl for l ∈ [L]. Importantly, later on
we show by numerical examples that the proposed inner
bound can be tight, mainly as the helpers turn out to be more
degraded. In the following, we first examine the special case
with two helpers and then extend our results to an arbitrary
number of helpers.

A. Two Helpers

Theorem 2. If (X0, X1, X2) is a 3-tuple of binary RVs
and their joint pmf satisfies (1), with pX0(0) = pX0(1) =
1/2, pXl|X0

(0|1) = pXl|X0
(1|0) = εl, and pUl|Xl

(0|1) =
pUl|Xl

(1|0) = γl for some 0 ≤ εl ≤ 1/2, l ∈ [2], then an
inner bound on the rate region’s lower boundary is given by

{(R0, R1, R2) :

R0 =h(ε1 ∗ γ1) + h(ε2 ∗ γ2)− h(ε1 ∗ γ1 ∗ ε2 ∗ γ2),

R1 =h(ε1 ∗ γ1 ∗ ε2 ∗ γ2)− h(γ1),

R2 =h(ε1 ∗ γ1 ∗ ε2 ∗ γ2)− h(γ2),

R1 +R2 =1 + h(ε1 ∗ γ1 ∗ ε2 ∗ γ2)− h(γ1)− h(γ2),

(γ1, γ2) ∈ [0, 0.5]2}. (7)

Proof. Given symmetric channels and uniformly distributed
source symbols, the following holds:

H(X0) =H(Xl) = H(Ul) = 1, (8)
H(Ul|X0) =H(X0|Ul), (9)
H(U1|U2) =H(U2|U1), (10)

for l ∈ [2]. The information measures in (6) can be reformu-
lated as

H(X0|U1, U2) = H(X0) +H(U1|X0) +H(U2|X0, U1)

−H(U1)−H(U2|U1) (11)
= H(U1|X0) +H(U2|X0)−H(U2|U1), (12)

I(Xl;Ul|Ul̄) = H(Ul|Ul̄)−H(Ul|Xl, Ul̄) (13)
= H(Ul|Ul̄)−H(Ul|Xl), (14)

I(X1, X2;U1, U2) = H(U1, U2)−H(U1, U2|X1, X2)
(15)

= H(U1) +H(U2|U1)−H(U1|X1, X2, U2)

−H(U2|X1, X2) (16)
= H(U1) +H(U2|U1)−H(U1|X1)−H(U2|X2),

(17)

where l, l̄ ∈ [2], l 6= l̄. The steps can be justified as
follows: in (11) and (16) we used the chain rule of entropy;
(12), (14), and (17) follow from from the Markov chain,
i.e., Ul → Xl → X0 → Xl̄ → Ul̄, and the properties
given in (8). As shown by Wyner in [10], the conditional
entropy of two binary RVs A and B related by a BSC with
crossover probability δ is given by H(A|B) = h(δ). For
Ul → Xl → X0 and U1 → X1 → X0 → X2 → U2, the
end-to-end crossover probabilities are given by εl ∗ γl and
ε1 ∗ γ1 ∗ ε2 ∗ γ2, respectively. Using this along with (9) and
(10), the conditional entropies in (12), (14), and (17) can be
given by

H(U1|X0) +H(U2|X0)−H(U2|U1)

= h(ε1 ∗ γ1) + h(ε2 ∗ γ2)− h(ε1 ∗ γ1 ∗ ε2 ∗ γ2),
(18)

H(Ul|Ul̄)−H(Ul|Xl) = h(ε1 ∗ γ1 ∗ ε2 ∗ γ2)− h(γl),
(19)

H(U2|U1)−H(U1|X1)−H(U2|X2)

= h(ε1 ∗ γ1 ∗ ε2 ∗ γ2)− h(γ1)− h(γ2). (20)

The inner bound is then generated as the auxiliary parameters
are ranged over (γ1, γ2) ∈ [0, 0.5]2. This completes the proof.

B. Extension to an Arbitrary Number of Helpers

Theorem 3. If (X0, X1, ..., XL) is an (L+1)-tuple of binary
RVs and their joint pmf satisfies (1), with pX0

(0) = pX0
(1) =

1/2, pXl|X0
(0|1) = pXl|X0

(1|0) = εl, and pUl|Xl
(0|1) =

pUl|Xl
(1|0) = γl for some 0 ≤ εl ≤ 1/2, l ∈ [L], then an

inner bound on the rate region’s lower boundary is given by

{(R0, R1, ..., RL) :

R0 =
∑
l∈[L]

h (εl ∗ γl)− η({εl ∗ γl}l∈[L]}),



∑
l∈S

Rl =η({εl ∗ γl}l∈[L])− η({εl ∗ γl}l∈Sc)−
∑
l∈S

h(γl),

∀S ⊂ [L] and Sc = [L]\S,∑
l∈[L]

Rl =1 + η({εl ∗ γl}l∈[L])−
∑
l∈[L]

h(γl),

{γl}l∈[L] ∈ [0, 0.5]L}, (21)

where η({·}) is defined in (27). In particular, for L = 2,
η({ε1 ∗ γ1, ε2 ∗ γ2}) = h(ε1 ∗ γ1 ∗ ε2 ∗ γ2).

Proof. The conditional entropy in Theorem 1 can be given
by

H
(
X0|{Ul}l∈[L]

)
= H

(
X0, {Ul}l∈[L]

)
−H

(
{Ul}l∈[L]

)
(22)

=
∑
l∈[L]

H(Ul|X0)−H
(
{Ul}l∈[2:L]|U1

)
(23)

=
∑
l∈[L]

h (εl ∗ γl)− η({εl ∗ γl}l∈[L]) (24)

for L ≥ 2. The steps are justified as follows: (22) is the chain
rule of entropy; for (23), the entropy of the primary source
and the auxiliary RVs can be partitioned by the chain rule and
simplified by the fact that (U1, ..., UL) are conditionally inde-
pendent given X0, i.e., H(Ul|X0, U1, ..., Ul−1) = H(Ul|X0),
and the entropy of the auxiliary RVs can be reformulated
by the chain rule; and (24) follows from the properties in
(8)-(10) for l ∈ [L], the Markov chain, i.e., H(Ul|X0) =
h(εl ∗ γl), and

H
(
{Ul}l∈[2:L]|U1

)
= −

∑
u1∈{0,1}

pU1
(u1)

∑
{ul}l∈[2:L]∈{0,1}L−1

pU2...UL|U1
(u2, ..., ul|u1)

× ld pU2...UL|U1
(u2, ..., ul|u1) (25)

= −
∑

{ul}l∈[2:L]∈{0,1}L−1

×
( ∑
x0∈{0,1}

pU2...UL|X0
(u2, ..., ul|x0)pX0|U1

(x0|0)
)

× ld
( ∑
x0∈{0,1}

pU2...UL|X0
(u2, ..., ul|x0)pX0|U1

(x0|0)
)

(26)

, η({εl ∗ γl}l∈[L]) (27)

for L ≥ 2, with

pU2...UL|X0
(u2, ..., ul|x0) =

∏
l∈[2:L]

pUl|X0
(ul|x0) (28)

=
∏

l∈[2:L]

[(1− εl ∗ γl)1(ul = x0) + (εl ∗ γl)1(ul 6= x0)] ,

(29)

and

pX0|U1
(x0|0) =

[
(1− ε1 ∗ γ1)1(x0 = 0)

+ (ε1 ∗ γ1)1(x0 6= 0)
]
. (30)
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Fig. 3: Rate region R: (a) symmetric rates R1 = R2 ∈ [0, 1] with
(ε1, ε2) ∈ {(0.01, 0.02), (0.01, 0.2), (0.1, 0.2)}, and (b) (R1, R2) ∈
[0, 1]2 with (ε1, ε2) ∈ {(0.1, 0.2)}.

For L < 2 we have η({εl ∗ γl}l∈[L]) = 0. In (29) and
(30), 1(·) is the indicator function. The steps are justified
as follows: (26) follows from the law of total probability, the
Markov chain U1 → X0 → U2...UL, and the symmetric
properties of the primary source and channels; and (28)
follows from the Markov chain Ul → X0 → Ul̄, for l, l̄ ∈ [L]
and l 6= l̄.

The conditional mutual information in Theorem 1 can be
given by

I ({Xl}l∈S ; {Ul}l∈S |{Ul}l∈Sc)

= H ({Ul}l∈S |{Ul}l∈Sc)−H ({Ul}l∈S |{Xl}l∈S) (31)

= H
(
{Ul}l∈[L]

)
−H ({Ul}l∈Sc)−

∑
l∈S

H(Ul|Xl) (32)

= η({εl ∗ γl}l∈[L])− η({εl ∗ γl}l∈Sc)−
∑
l∈S

h(γl), (33)



∀S ⊂ [L] and Sc = [L]\S . The steps can be justified
similarly as (22)-(24). In particular, for S = [L], we have

I
(
{Xl}l∈[L]; {Ul}l∈[L]

)
= H

(
{Ul}l∈[L]

)
−H

(
{Ul}l∈[L]|{Xl}l∈[L]

)
(34)

= 1 + η({εl ∗ γl}l∈[L])−
∑
l∈[L]

h(γl). (35)

The inner bound is then generated as the auxiliary parameters
are ranged over {γl}l∈[L] ∈ [0, 0.5]L. This completes the
proof.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we illustrate our inner bounds in Theorem 2
and Theorem 3 by numerical examples. We show results for
L ∈ {2, 3} with different values of εl, l ∈ [L]. We check these
analytical bounds by performing an exhaustive numerical
search (under the assumption that the auxiliary RVs are
connected to the helpers through symmetric channels). Also,
for comparison, we assess the exact rate region’s lower
boundary by performing an exhaustive search without any
restriction on the symmetry, i.e., the helpers and auxiliary
RVs being related via BACs with {αl, βl}l∈[L] ∈ [0, 0.5]2L.

In Fig. 3a we show our results in Theorem 2 (blue line),
numerical-search results for a symmetric channel between Xl

and Ul (green dots), and the rate region’s lower boundary
(black dashed line). We show results for L = 2 with
(ε1, ε2) = {(0.01, 0.02), (0.01, 0.2), (0.1, 0.2)} and sym-
metric auxiliary rates R1 = R2 = R, i.e., (R0, R,R).
The following can be observed: i) Theorem 2 matches the
simulation results for symmetric channels, and (ii) Theorem 2
gives a tight inner bound on the rate region’s lower boundary,
especially for large values of εl, i.e., as the helpers turn
out to be more degraded versions of the primary source.
Fig. 3b shows the rate 3-tuples (R0, R1, R2) for L = 2 and
(ε1, ε2) = {(0.1, 0.2)}. We show results of Theorem 2 (blue
plane) and the rate region’s lower boundary (black dots).
The same conclusions as in Fig. 3a can be made by careful
evaluation of a variety of setups.

In Fig. 4 we show our results in Theorem 3 (blue
line), numerical-search results for a symmetric channel be-
tween Xl and Ul (green dots), and the rate region’s lower
boundary (black dashed line). We show results for L =
3 with (ε1, ε2, ε3) ∈ {(0.01, 0.02, 0.03), (0.01, 0.02, 0.3),
(0.01, 0.2, 0.3), (0.1, 0.2, 0.3)} and symmetric auxiliary rates
R1 = R2 = R3 = R, i.e., (R0, R,R,R). The same
conclusions as for L = 2 can be drawn.
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