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ABSTRACT
As the demand for communication systems with high data
rates is increasing, large bandwidths, and thus high sampling
rates, are required. As a consequence, the energy consump-
tion of conventional high resolution analog-to-digital convert-
ers increases drastically. On the contrary, high resolution in
time domain is less difficult to achieve than high resolution in
amplitude domain. This motivates the design of communica-
tion systems with 1-bit quantization and oversampling. It has
been shown that utilizing run-length limited sequences and
faster-than-Nyquist signaling is beneficial in terms of achiev-
able rate. However, it is an open question how receiver syn-
chronization can be performed in such systems.

In this work we assume perfect frame, frequency and
phase synchronization and investigate the effect of a fixed but
unknown time shift. Due to 1-bit quantization, standard tim-
ing estimation and interpolation cannot be applied. We show
that oversampling w.r.t. the signaling rate compensates for the
error introduced by the time shift. If the oversampling factor
is an integer value, estimating the time shift becomes obso-
lete if the oversampling rate is sufficiently high.

1. INTRODUCTION
The continued demand for faster communication systems re-
quires data rates of multiple gigabit per second. Such high
data rates imply high bandwidths and thus impose challeng-
ing requirements on the analog-to-digital converter (ADC). In
particular in wireless short range scenarios, e.g., communica-
tion between computer boards [1,2] an ADC with multiple gi-
gasamples per second has a major impact on the overall power
consumption of the wireless link. Surveys show that power
limited high sampling rates come at the price of coarse quan-
tization [3]. Considering this, using an ADC with 1-bit quan-
tization can be beneficial as the low resolution can be com-
pensated by higher sampling rates. Since 1-bit quantization
does neither need an automatic gain control, nor linear ampli-
fication, it is expected that this is still more energy efficient.

In [4], numerical studies have shown that sequence design
and faster-than-Nyquist (FTN) signaling is beneficial in terms
of achievable rate. Especially the utilization of run-length
limited (RLL) sequences is an appropriate choice in terms of
spectral efficiency. The results were extended to strictly ban-
dlimited channels in [5]. A lower bound on the achievable
rate of the continuous time (i.e., infinite oversampling) addi-
tive white Gaussian noise (AWGN) channel with 1-bit output
quantization and strict bandlimitation was derived in [6].

Results on signal parameter estimation under 1-bit quan-
tization can be found in [7–10]. The problem of channel state
estimation with low precision quantization (1-3 bits) is inves-
tigated in [11]. Joint phase and frequency synchronization of
a QPSK and Nyquist rate based communication system with
coarse phase quantization was considered in [12]. The phase
quantization can be implemented by passing linear combina-
tions of the in-phase and quadrature components through 1-bit
ADCs. Quantization into 2n phase bins requires n such lin-
ear combinations, and thus n 1-bit ADCs. Hence, the energy
consumption is n

2 times higher compared to conventional 1-
bit quantization with one 1-bit ADC in I and Q, respectively.

However, the design of timing synchronization algorithms
with 1-bit quantization at the receiver is still open. Thus, in
the present paper we will study the timing synchronization
of a bandlimited communication system based on RLL se-
quences, FTN signaling and 1-bit quantization at the receiver.
Here we assume perfect frame, phase and frequency synchro-
nization. In conventional receivers with high resolution quan-
tization, a timing error can be handled fully digitally via in-
terpolation [13, Chapter 4]. We show that oversampling w.r.t.
the signaling rate compensates for the errors introduced by a
time shift. Thus, like in a conventional digital receiver, a volt-
age controlled oscillator (VCO) for sampling time adaptation
is not required.

2. SYSTEM MODEL
The system model is depicted in Fig. 1. Since a receiver that
relies on 1-bit quantization can only distinguish if the input
signal is smaller or larger than zero, all information is con-
veyed in the temporal distances of the zero crossings of the
signal. Therefore, we encode the information in run-length
limited (RLL) sequences x = [x1, x2, . . . xK ]

T . The ele-
ments of x are called transmit symbols. Furthermore, we de-
fine the vector l = [l1, l2, . . . , lM ] that consists of the run-
lengths in the RLL sequence x. Thus, the position of the mth
level change in x is defined as Tm =

∑m
i=1 li. The digital

to analog converter (DAC) maps the RLL sequences into an
ideal rectangular analog signal

x(t) = 1(t) + 2

M∑
m=1

(−1)m1
(
t− β

MTx
Tm

)
, (1)

where 1(t) is the Heaviside step function, β is the time of
a Nyquist interval corresponding to the single sided channel
bandwidth W and MTx is the FTN signaling factor, i.e., the
number of symbols that are transmitted within one Nyquist
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Fig. 2: State machine of a d contrained sequence

interval. The transmit filter g(t) is a root raised cosine (RRC)
filter with roll-off factor α and cut-off frequency fc = W =
1
2β , i.e., the channel bandwidth is defined in terms of the cut-
off frequency and is independent of the roll-off factor. The
transmit signal is defined as

u(t) = x(t)∗g(t) = gs(t)+2

M∑
m=1

(−1)mgs
(
t− β

MTx
Tm

)
,

(2)
where gs(t) =

∫ t
−∞ g(τ)dτ is the step response of the trans-

mit filter. The receive filter f(t) is equal to the transmit filter.
With h(t) = g(t) ∗ f(t) and hs(t) =

∫ t
−∞ h(τ)dτ the output

of the receive filter is given by

r(t) = hs(t) + 2

M∑
m=1

(−1)mhs(t−
β

MTx
Tm) + η(t)

= s(t) + η(t)

, (3)

where η(t) = f(t) ∗ n(t) with the white Gaussian noise n(t).
The samples of r(t) are defined as

rn = r

(
nTs +

Ts
2

+ εTs

)
, ε ∈ [−0.5, 0.5] , (4)

where Ts = β
MTxMRx

is the time between two samples, ε is a
fixed time shift and MRx is an additional oversampling factor
w.r.t. the signaling rate that is required to cope with ε. Con-
sider for now that MRx is an integer value. The output of the
1-bit ADC is given by

yk = sign (rk)

= sign ([rkMRx+1, rkMRx+2, . . . , rkMRx+MRx ])
, (5)

where sign (·) is the signum function. That implies that for
every transmit symbol xk there is a vector yk of length MRx.
Note that the noise samples η(nTs+ Ts

2 + εTs) are correlated
due to oversampling w.r.t. the Nyquist rate.

3. RUN-LENGTH LIMITED SEQUENCES
As the information is conveyed in the temporal distances of
the zero-crossings, RLL sequences are a natural choice for
modulation. RLL sequences are known from recording sys-
tems and some of the main results are summarized in [14]. An
RLL sequence can be obtained from a (d, k) sequence where
a one is followed by at least d and at most k zeros. The k con-
straint was introduced for practical reasons in recording sys-
tems, such as clock recovery. In this work we neglect the k
constraint. Fig. 2 depicts the state machine of a d sequence. A
d sequence can be transferred into an RLL sequence by non-

return-to-zero-inverse (NRZI) encoding. This encoding pro-
duces a sequence with a sign flip whenever a one occurs in
the d sequence, i.e., the d = 1 sequence

010001010000001001 (6)

would be converted to the RLL sequence

1− 1− 1− 1− 111− 1− 1− 1− 1− 1− 1− 1111− 1 (7)

It can easily be verified that an RLL sequence derived from a
d sequence has at least d+ 1 consecutive identical symbols.

According to [15], the maximum entropy rate of such a
sequence, also called code capacity, is given by

C(d) = log2λ , (8)

where λ is the largest eigenvalue of the adjacency matrix of
the state machine of the d sequence. Values are given in Ta-
ble 1.

In practice, a simple method to obtain RLL sequences is
by utilizing a fixed length block code that maps m informa-
tion bits onto n code bits, i.e., the rate of the code is R =
m/n. To obtain the numerical results presented in this work,
we utilized a block code with the parameters d = 2, m = 7,
n = 14 and hence R = 1/2. This results in a code efficiency
R/C(d) ≈ 0.91. The code was designed such that the code-
words can be concatenated without violating the d = 2 con-
straint, by giving every codeword two leading zeros. The re-
maining n − 2 = 12 bits are exactly the 128 codewords that
meet the d = 2 constraint [14], except the all zero codeword.

4. INTERFERENCE AND SPECTRAL EFFICIENCY
Depending on the roll-off factor, the transmit pulse gs(t) re-
quires at least a time of β from a negative peak to a positive
peak, or vice versa. Thus, to limit the interference two zero
crossings should be at least β apart from each other. Since
there are MTx transmit symbols within a Nyquist interval, an
RLL code with d + 1 = MTx must be applied. That is, the
run-length encoding limits the interference between the trans-
mit pulses. Due to the 1-bit quantization we only observe the
interference in the zero crossings and thus will refer to it as
inter zero crossing interference (IZI).

Fig. 3 depicts an example for the noiseless receive signal
s(t) and the sample vector y with and without oversampling
w.r.t. the signaling rate. The samples are taken for the case
that α = 1 and ε = 0. We observe that the zero crossings of
s(t) and x(t) are almost identical, i.e., for d + 1 = MTx and
α = 1 the IZI can be neglected. This is consistent with [5]
where studies of an auxiliary channel law for a bandlimited
channel with 1-bit output quantization have shown that IZI
can be neglected for α = 1. For the case of α = 0, i.e., an
ideal low pass filter, the rippling of the transmit pulses decays
much slower than for α = 1 and as a consequence the IZI is
much more pronounced.
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Fig. 3: Example for a noiseless receive signal r(t) = s(t) with signaling
factor MTx = 3 and ε = 0

As depicted in Fig. 3 the optimal sampling of r(t), i.e.,
ε = 0, is such that the zero crossings of x(t) are exactly in
the middle of two samples. If the transmission is noise and
IZI free, a non-zero time shift ε ∈ (−0.5, 0.5) does not af-
fect yk. If r(t) is corrupted by noise and IZI, a shift in the
sampling grid away from the optimal sampling time instants
means that the samples that are shifted towards the zero cross-
ings of x(t) are more sensitive to noise and IZI. Thus, the
worst possible time shift is half the time between two sam-
ples, i.e., ε = ±0.5.

Since the elements in y are not independent (due to RLL
encoding, overlapping transmit pulses and colored noise sam-
ples), the maximum likelihood sequence estimator (MLSE) is
needed to achieve the optimum detection quality in terms of
frame error rate [16]. To derive the MLSE, an exact analyti-
cal description of the likelihood function p(y|x) is required.
Unfortunately, it is a mathematically open problem to find an
analytical description for the likelihood function of system
models with correlated Gaussian noise and 1-bit quantization,
since there is no analytical description of the orthant proba-
bilities [17].

Hence, we consider the IZI as a noise source and the
receiver assumes a memoryless binary symmetric channel
(BSC). The MLSE only considers the run-length constraint
and thus can be implemented by the Viterbi algorithm with the
Hamming distance as metric. To minimize the IZI, we chose
d+ 1 = MTx and α = 1. Since this work is in the context of
board-to-board computer communication, the resulting out of
band power is permissible. The difference to the BSC is due
to the fact that for MTx > 1 elements of x that are close to
the zero crossings are more sensitive to noise, since they are
placed inside the transition regions of s(t). Furthermore, the
approximation as BSC neglects the noise correlation.

The spectral efficiency is defined as

ζ =

MTx
β R

2W
=MTxR = (d+ 1)R , (9)

whereR is the rate of the RLL code. For RLL sequences with
maximum entropy rate the spectral efficiency is given in Table
1. Although the entropy rate is decreasing with increasing d,
the spectral efficiency is increasing due to higher signaling
rates. For our RLL block code with d = 2 and R = 1/2, the
spectral efficiency is ζ = 1.5 bit/s

Hz . Note that the roll-off factor
does not influence the spectral efficiency, since we defined the

Table 1: Maximum entropy rate and spectral efficiency

d 0 1 2 3 4

C(d) 1 0.6942 0.5515 0.4650 0.4057
ζ(d) 1 1.3884 1.6545 1.8600 2.0285
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Fig. 4: Effect of the factor MRx on the WER if ε = 0

bandwidth in terms of the cut-off frequency.

5. THE EFFECT OF OVERSAMPLING WITH
RESPECT TO THE SIGNALING RATE

In this section we will show that oversampling w.r.t. the sig-
naling rate, i.e., MRx > 1, leads to a vanishing influence of ε
on the word error rate (WER). A word error occurs when an
RLL codeword is demapped into a wrong information word.
Since the bit error rate (BER) depends on the specific map-
ping of the utilized block code between information bits and
codewords, the WER is a better suited error measure. We start
with considering the system with perfect timing, i.e., ε = 0.
As depicted in Fig. 4 oversampling w.r.t. the signaling rate
has little positive influence on the WER if MRx is odd and a
considerably bad effect if MRx is even.

To explain this phenomenon, we start with the assumption
that an error occurred but the run-length constraint was not
violated. In this case oversampling w.r.t. the signaling rate is
similar to using a repetition code since there areMRx samples
for every symbol, i.e., instead of only one sample one takes
MRx samples in the region of the symbol. The difference from
actually applying a repetition code is that for the symbols next
to the zero crossings of x(t), the additional samples are even
closer to the zero crossings (see Fig. 3) and are thus more
likely to flip. Hence, for odd MRx the performance gain is
probably rather small, in fact there is none. If MRx is even,
there is always the possibility of an irresolute situation where
the decision for plus and minus one is equally likely. Hence,
a random decision gives a 50% chance of making the correct
decision. Since for MRx > 1 additional samples are closer to
the zero crossings of x(t), an irresolute situation due to a zero
crossing shift appears more likely than an error in the case of
MRx = 1. Hence, we restrict all further discussions to odd
MRx.

On the other hand, if we assume that the run-length con-
straint of the sequences was violated, oversampling w.r.t. the
signaling rate actually helps the MLSE to recover the correct
sequence. However, since RLL codes do not increase the min-
imum distance [18], this has almost no influence on the WER,
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Fig. 5: Effect of the factor MRx on the WER if ε 6= 0

as can be seen in Fig. 4.
If ε 6= 0 oversampling w.r.t. the signaling rate is beneficial

even if the run-length constraint is not violated. To illustrate
this, consider the worst possible time shift ε = 0.5. After
quantization, the signs of the samples that are placed directly
on the zero crossings of x(t) are completely random. This
is also true if MRx = 3, 5, 7, . . . but now there are MRx − 1
additional samples available to recover the correct sequence.

Fig. 3 depicts the transmit symbols and the additional
samples for MRx = 3 and ε = 0. Detection is successful if a
zero crossing shift due to noise and IZI does not exceed be-
yond the optimal sampling time instant of the transmit sym-
bol next to the zero crossing. Let us now quantify the range
of a zero crossing shift that does not lead to a detection error.
For ε = 0, a zero crossing in x(t) is Ts

2 away from the clos-
est sample. This sample is MRx−1

2 Ts away from the optimal
sampling time instant of the transmit symbol. Now consider
that ε 6= 0 and recall that Ts = β

MTxMRx
. The range of a cor-

rectable zero crossing shift s is given by

s > −
(
1

2
+
MRx − 1

2
− ε
)

β

MTxMRx

∧ s <

(
1

2
+
MRx − 1

2
+ ε

)
β

MTxMRx
.

(10)

If MRx = 1 and ε = 0, the range reduces to − β
2MTx

< s <
β

2MTx
. The same is true if ε 6= 0 and MRx → ∞. Hence, the

additional errors due to ε 6= 0 vanish if MRx → ∞. This fact
is somehow obvious, since the problem of finding the optimal
sampling points becomes obsolete if the sampling rate is in-
finitely large.

Fig. 5 shows the performance improvement caused by
oversampling w.r.t. the signaling rate if ε 6= 0. If ε = 0.5
and MRx = 1, the WER increases significantly. However, by
increasing MRx the WER converges to the WER of ε = 0 and
MRx = 1. This coincides with the above discussions. Hence,
we are able to compensate the errors introduced by a time
shift ε without estimating and correcting ε.

Moreover, Fig. 5 depicts the performance for an ε that
was chosen independently and randomly from [−0.5, 0.5] for
every simulation run. This average performance is better than
the performance of the worst case ε = 0.5, as for small MRx
the actual performance depends strongly on the specific εwith
the worst case ε = ±0.5 and the best case ε = 0. One way
to circumvent this dependency of the specific ε, is to apply
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Fig. 6: Effect of dithered and irregular sampling

dithered sampling, i.e.,

rn = r

(
nTs +

Ts
2

+ εnTs

)
, εn ∼ U (−0.5, 0.5) , (11)

with independently drawn εn. Hence, instead of equidistant
sampling, the samples are taken at random time instances
without crossing the interval to the next sample. This results
in a randomized sampling grid and a performance equal to the
average performance with a fixed ε, as shown in Fig. 6.

As dithered sampling is difficult to implement and integer
oversampling can in general not be guaranteed, we now con-
sider an irrational oversampling factor MRx. The sampling
grid will be irregular w.r.t. the optimal sampling time instants,
and thus the performance will be independent of ε. Fig. 6 de-
picts this effect for MRx = π. On the other hand, if MRx is
not an integer, the receive vector yk can have either dMRxe
or bMRxc elements. In order to resolve which samples belong
to which transmit symbol xk, one must know the time shift
ε. Since estimating ε on 1-bit quantized samples is an open
problem, we considered perfect knowledge in the simulations.
The study of this estimation problem remains for future work.
Obviously, drastically increasing MRx would compensate for
not knowing ε but is probably more costly than estimating ε.

6. CONCLUSION
We study an RLL sequence based communication system
with 1-bit quantization and FTN signaling. Additional over-
sampling w.r.t. the signaling rate is performed at the receiver.
The system is considered to be perfectly synchronized, ex-
cept for a fixed but unknown time shift. We observed that for
small oversampling rate the WER is dependent on the actual
time shift. This can be circumvented by dithered sampling,
which results in a randomized sampling grid. The same ef-
fect can be achieved with an irrational oversampling factor.
On the downside, an irrational oversampling factor requires
knowledge of the time shift. Its estimation remains for fu-
ture work. However, with increasing oversampling rate, the
detection error due to a fixed time shift vanishes without esti-
mating and correcting the time shift.
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