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Abstract

Receivers based on 1-bit quantization and oversampling with respect to the

transmit signal bandwidth enable a lower power consumption and a reduced

circuit complexity compared to conventional amplitude quantization. In this work,

the achievable rate for systems using such analog-to-digital conversion with

different modulation schemes is studied. The achievable rate and the spectral

efficiency with respect to a given power containment bandwidth are considered.

The proposed sequence-based communication approach outperforms the existing

methods known from the literature on noisy channels with 1-bit quantization and

oversampling at the receiver. It is demonstrated that the utilization of 1-bit

quantization and oversampling can be superior in terms of the spectral efficiency

in comparison to conventional amplitude quantization using a flash converter

with the same number of comparator operations per time interval.

Keywords: 1-bit quantization; oversampling; ADC; faster-than-Nyquist

signaling; achievable rate; Markov capacity

1 Introduction

The achievable rate in case of Nyquist rate sampling is limited by the quantiza-

tion resolution of the analog-to-digital converter (ADC). In this regard, a flash

converter consisting of NComp comparators limits the maximum achievable rate

to log2(NComp + 1) bits per Nyquist interval [1]. Differently, by time interleaving

NComp comparator operations per Nyquist interval, 2NComp quantization regions ex-

ists, which enhances the limit of the achievable rate to NComp bits per Nyquist in-
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terval. In this regard, employing 1-bit quantization and oversampling at the receiver

is promising in terms of achievable rate. Moreover, a 1-bit ADC at the receiver is

robust against amplitude uncertainties such that the automatic gain control can be

simplified, and linearity requirements of the analog frontend are relaxed. Last but

not least, a 1-bit ADC requires only simple circuitry and does not need much head-

room for amplitude processing, which makes it appropriate for low supply voltages

and with this low energy consumption. All this motivates us to study the achievable

rate of channels with 1-bit output quantization and oversampling at the receiver.

A first study of the achievable rate with 1-bit quantization and oversampling at

the receiver has been carried out by Gilbert [2] showing a marginal benefit in terms

of the achievable rate by oversampling. Subsequently, by using a Zakai bandlimited

channel input processes, Shamai [3] has shown that oversampling can significantly

increase the achievable rate. Both of these works consider a noiseless channel. For

noisy channels, in [4] a benefit of oversampling has been proven in the low signal-

to-noise ratio (SNR) regime by studying the capacity per unit cost. Moreover, in [5]

the achievable rate at high SNR has been studied by considering generalized mutual

information, which did not confirm the high rates promised in [3].

Besides these papers on strictly bandlimited channels, also cases with less strict

spectral constraints on the transmit signal have reported benefits from 1-bit quan-

tization and oversampling. For example, in [6, 7], where the channel is treated as

memoryless, it has been observed that random processes such as additive noise and

intersymbol interference can yield an increase of the achievable rate due to dithering.

The same strategy, namely treating the channel as memoryless, has been applied

for the utilization of faster-than-Nyquist (FTN) signaling [8, 9] for channels with

1-bit quantization and oversampling at the receiver [10]. An alternative strategy

for communication with 1-bit quantization and oversampling at the receiver is to

transmit sequences which generate a unique output signal after 1-bit quantization.

In this regard, a waveform design supporting a unique detection of symbols with 16

quadrature amplitude modulation (16-QAM) has been proposed in [11]. Without

being exhaustive, the named papers show some benefit of oversampling when using

1-bit channel output quantization. Nevertheless, none of these approaches provide

achievable rates comparable to those which are presented in [3] for the noiseless

channel.



Landau et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:83 Page 3 of 43

In addition, 1-bit quantization —not necessarily with oversampling— received

increased attention in the context of multiple-input multiple-output (MIMO) sys-

tems, where the low SNR regime is discussed in [12, 13] and the high SNR case is

investigated in [14]. It is shown, that the power penalty for the 1-bit quantization

in the low SNR regime is less than 2dB. For the high SNR regime, channel state

information can be exploited at the transmitter for a channel inversion strategy

for the construction of receive signals appropriate for 1-bit quantization. Moreover,

the sequence design approach described in [11] for the single-input single-output

channel has been recently extended for the massive multiple-input single-output

scenario in [15] and for the massive MIMO scenario in [16].

Furthermore, 1-bit quantization is considered in the context of phase quantization

[17] and a related concept named overdemodulation [18], where the received signal

is down-converted with more than 2 carrier phases, different to 90 degrees. The

increased number of carrier phases provide additional information in cases where a

coarse quantization at the receiver is considered. Another study is presented in [19],

where multidimensional quantizer designs are investigated in the context of channels

with memory. The proposed quantizers in [19] are optimized for channels with

memory whose quantization regions incorporate multiple receive samples.

The channel with 1-bit quantization and oversampling at the receiver is implicitly

a channel with memory. In this regard, we have to consider sequence detection

based receivers to approach the channel capacity [20]. As the capacity of finite state

channels can be approached by Markov sequences [21], we consider different channel

input processes of this class. In this regard, we study sequences based on:

• QAM and phase-shift keying (PSK) symbols at Nyquist rate

• Faster-than-Nyquist signaling with quadrature phase-shift keying (QPSK) and

QAM symbols

i.e., we either design transmit sequences corresponding to a conventional modulation

or with an increased signaling rate. Moreover, we study specific signal design ap-

proaches, 1) reconstructible 4 amplitude-shift keying (4-ASK) / 16-QAM sequences

for conventional signaling rate and 2) runlength limited (RLL) sequences for FTN

signaling. We also propose a sequence optimization strategy, based on the approach

in [22], which maximizes the achievable rate by optimizing the transition probabili-

ties of a Markov source model. The present work goes clearly beyond the studies we
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have presented before on this subject. The main extensions are: the consideration of

PSK signaling; the consideration of the spectral efficiency with different out-of-band

power thresholds; the extended description of the sequence optimization strategy

including the explanation of the lower bound on the achievable rate and the overall

performance comparison for a large number of transmit signaling schemes under the

same conditions. Moreover, in the present work, we describe the constraints on the

waveform for the reconstructable 16-QAM sequences and discuss the zero-crossings

in sequences composed of weighted cosine pulses.

In [23] we treat the channel with 1-bit quantization and oversampling at the re-

ceiver and root-raised-cosine (RRC) transmit and receive filters with infinite mem-

ory. The study serves as a proof-of-concept for strictly bandlimited channels. The

results in [23] in terms of achievable rate are comparable to [3]. However, the uti-

lization of RRC filters is impractical for many applications. In this regard, consider

that the use of RRC filters implies an extensive memory of the channel when having

1-bit quantization and oversampling at the receiver, which dramatically increases

the computational complexity of the sequence demapping, e.g., by utilizing a trellis

receiver. Differently to [23], in the present work, we consider transmit pulses with

a shorter length in time domain such as the cosine pulse and the Gaussian pulse.

These waveforms provide a good trade-off between spectral efficiency and chan-

nel memory. We rely on the assumption that the residual out-of-band radiation

can be tolerated for specific applications such as board-to-board communication

at sub-Terahertz carrier frequency and intra-chipstack communications, e.g., using

through-silicon-vias. Our results show that the proposed methods outperform exist-

ing methods in terms of the spectral efficiency. Furthermore, our results show that

1-bit quantization with oversampling at the receiver can yield comparable and even

superior spectral efficiency than conventional methods based on amplitude quan-

tization when operating in the low quantization regime with the same number of

comparator operations per time interval.

In the present work, we consider sequences with infinite length and optimal re-

ceivers which rely on the true or an auxiliary channel law. Alternative approaches

based on fixed-length sequences and receive strategies with a lower complexity are

presented in our prior work [24,25].
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Figure 1 System Model, oversampling factor M and faster-than-Nyquist coefficient MTx

The rest of the paper is organized as follows. Section 2 introduces the system

model. In Section 3, we recall a method to lower-bound the achievable rate for

channels with memory, which we subsequently will apply to evaluate the perfor-

mance of the studied signaling schemes. Afterwards, in Section 4, we present an

approach to generate reconstructible 4-ASK/16-QAM sequences. Moreover, the ap-

plication of RLL sequences, which are used in combination with FTN signaling,

is described in Section 5. In Section 6, we propose an optimization strategy for

sequence design, which maximizes the given lower bound on the achievable rate.

We discuss the numerical results in Section 7, and finally, a conclusion is given in

Section 8.

Notation: Bold symbols, e.g., yk denote vectors, where k indicates the k-th symbol,

or more specifically, the samples which belong to the k-th input symbol time interval.

yk is a column vector with M entries, where M is the oversampling factor w.r.t. a

transmit symbol. Sequences are indicated with xn = [x1, . . . , xn]T and sequences of

vectors are denoted as yn = [yT1 , . . . , y
T
n ]

T . A segment of a sequence is written as

xk
k−L
= [xk−L, . . . , xk]T and yk

k−L
= [yT

k−L
, . . . , yT

k
]T . Random quantities are denoted

by upright letters, e.g., yk is random vector. A simplified notation for probabilities

of random quantities is used with P (yn |xn) = P (yn = yn |xn = xn). Exceptions are

explicitly declared.

2 System model

We consider the single carrier communication system model shown in Fig. 1. The

digital-to-analog converter (DAC) in Fig. 1 is considered as ideal such that its output

is described by a sequence of weighted Dirac delta pulses
∑∞

k=−∞ xkδ(t − k Ts
MTx
),

with xk being the k-th channel input symbol and MTx

Ts
describes the symbol rate
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depending on the unit time interval Ts and the integer parameter MTx. The complex

baseband receive signal r(t) corresponds to the complex transmit signal x(t), which

is given as a weighted sum of time shifted transmit pulses h(t), disturbed by additive

white Gaussian noise n(t). At the receiver r(t) is processed by the receive filter with

the impulse response g(t) such that the ADC input signal is given by

z(t) =
∫ ∞

−∞

(
∞∑

k=−∞

xk h
(
τ − k

Ts

MTx

)
+ n(τ)

)
g(t − τ)dτ. (1)

MTx larger than 1, e.g., MTx = 2 or 3, corresponds to faster-than-Nyquist signaling

following the principle in [8,9]. In this regard, a compression of channel input sym-

bols in time is given, such that MTx channel input symbols are emitted in the unit

time interval Ts. The compression of input symbols in time provides additional de-

grees of freedom which can be exploited for the waveform design. In order to avoid

extensively complex trellis-based receivers, a transmit filter h(t) with short impulse

response is favorable. In this context, different standard pulses (Gaussian pulse,

cosine pulse and rect pulse) will be examined in terms of the spectral efficiency for

the considered channel. Instead of considering matched filtering,[1] we consider an

integrate-and-dump receiver, whose integrator over the time interval Ts serves as

the receive filter

g (t) =


√

1
Ts
, 0 ≤ t < Ts

0, otherwise,

(2)

whose short impulse response is favorable for a trellis based sequence detection. The

system impulse response is denoted as v(t) = (h ∗ g)(t).

Finally, the output signal of the low-pass filter z(t) is sampled at rate MMTx

Ts

and quantized by the ADC. Here, M denotes the oversampling factor with respect

to the transmit symbol rate. The channel with the transmit symbols xk as input

symbols and the output of the ADC yk is a discrete-time channel. For describing the

input and output relations, we express the length of the overall impulse response

v(t) of the channel in terms of input symbol durations. The length of the impulse

response v(t) is by definition L + 1 symbol durations. The noise n(t) is just filtered

[1]A matched filter would also depend on the sequence design, i.e., on the statistical

dependencies of the individual xk .
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by the receive filter g(t) whose impulse response has length of ξ symbol durations.

Considering the receive filter in (2) with the length of Ts corresponds to ξ = MTx.

Perfect synchronization is assumed, such that one of the M samples at the receiver

includes the peak of the system impulse response. With this, the sampling time

instances are case sensitive, such that the sampling vector zk = [zk ,1, . . . ,zk ,M ]
T is

described by

zk ,m =


z
(

kTs
MTx
+ mTs

MMTx

)
, (L + 1)M is even

z
(

kTs
MTx
+
(m− 1

2
)Ts

MMTx

)
, (L + 1)M is odd

and m ∈ {1, . . . ,M} ,

where M is the oversampling factor with respect to a transmit symbol. Accordingly,

the vector zk contains the M samples corresponding to the transmit symbol xk . The

subsequent quantization is denoted by yk ,m = Q(zk ,m), where Q(zk ,m) = sgn(zk ,m),

such that yk ,m ∈ {1 + j,1 − j,−1 + j,−1 − j}. The quantization operator applies

element-wise with Q{zk} = [Q(zk ,1), . . . ,Q(zk ,M )]T .

The channel input symbols xk are taken from discrete modulation alphabets,

specifically, a QPSK, QAM or PSK symbol alphabet X with the cardinality |X|.

While for QAM we use the standard constellation, for PSK constellations the input

symbols are given by xk = e j2π
mk+

1
2

|X| with mk ∈ {0, . . . , |X| − 1}[2]. The channel

including transmit and receive filtering and quantization is a discrete input discrete

output channel with memory, for which it is known that the channel capacity can

be asymptotically achieved by a stationary Markov source [21]. Thus, we consider a

stationary Markov source model, such that each channel input symbol xk depends on

Lsrc previous symbols P
(
xk |xk−1

)
= P

(
xk |xk−1k−Lsrc

)
= P (sk |sk−1), where for the latter

we use the state variable sk = xk
k−Lsrc+1

to describe the current state of the source.

To simplify notation, we use the short hand notation Pi, j = P (sk = j |sk−1 = i). We

denote the stationary distribution of the source states by µi = P (sk = i) for i =

1, . . . , |X|Lsrc .

Due to transmit and receive filtering, the channel output depends on previous

channel inputs and outputs. Accordingly, later in Section 3, we introduce an aux-

iliary channel law, which accounts for for the dependency on N previous channel

[2]Thus the input symbols are not placed on the real and imaginary which are the

thresholds of the applied 1-bit quantizer.
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outputs yk−1
k−N

. Thus, we are interested in the description of N+1 subsequent channel

output signals yk
k−N

. The parameter N can be understood as the trace-back of the

sequence, which corresponds to the truncation length in the receiver processing, i.e.,

it limits the dependency on prior channel outputs conditioned on the channel in-

puts. In the following, we use a matrix-vector notation of the channel input/output

relation given by

ykk−N =Q
{
zkk−N

}
= Q

{
V (N)U(N)xk

k−N−L + D(N)G(N)nkk−N−ξ
}

, (3)

cf. notation introduced at the end of Section 1. Due to the memory of the channel in-

troduced by transmit and receive filtering, the subsequence of channel outputs yk
k−N

depends on the transmit symbols xk
k−N−L

. An individual channel output symbol is

given by setting N = 0 in (3) yielding

yk =Q{zk} = Q
{
V (0)U(0)xk

k−L + D(0)G(0)nkk−ξ

}
. (4)

The convolution with the system impulse response v(t) is reflected by the multipli-

cation with V (N) and the convolution with the receive filter impulse response (2)

is reflected by multiplication with G(N). The filter matrices V (N) and G(N) with

dimensions (M(N + 1)) × ((L + N + 2)M − 1) and (MD(N + 1)) × (MD(1 + N + ξ)),

respectively, are structured by

V =

©«

[
vTr

]
0 · · · 0

0
[
vTr

]
0 · · · 0

. . .
. . .

. . .

0 · · · 0
[
vTr

]
ª®®®®®®®®¬

, G =
1

‖gr‖2

©«

[
gTr

]
0 · · · 0 0

0
[
gTr

]
0 · · · 0 0

. . .
. . .

. . .

0 · · · 0
[
gTr

]
0

ª®®®®®®®®¬
, (5)

where the receive filter gr is normalized to unit energy[3]. The system impulse

response function is sampled in reverse order with rate MMTx

Ts
to express the con-

volution. With this, the vector in V is given by

vr =
[
v((L + 1) Ts

MTx
), v((L + M−1

M )
Ts

MTx
), . . . , v( Ts

MMTx
)

]T
when (L + 1)M is even and

vr =
[
v((L + 2M−1

2M )
Ts

MTx
), v((L + 2M−3

2M )
Ts

MTx
), . . . , v( Ts

2MMTx
)

]T
when (L + 1)M is odd.

Moreover, the impulse response of the receiver sampled in reverse order with the

[3]The system impulse response v(t) is normalized implicitly, because it is considered

that h(t) has unit energy normalization.
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rate MMTxD
Ts

is denoted by gr =
[
g(ξ Ts

MTx
),g((ξD − 1

M )
Ts

MTxD
), . . . ,g( Ts

MMTxD
)

]T
. The

D fold higher sampling rate allows to model the aliasing effects which possibly oc-

cur when considering receive filters with a larger bandwidth as can be described

with the sampling rate of the receiver MMTx

Ts
.[4] Accordingly, the vector nk

k−N−ξ

in (3) contains N + ξ + 1 vectors each containing MD independent and identically

distributed (i.i.d.) complex Gaussian samples with zero mean and variance σ2
n mod-

eling n(t). In order to merge the different sampling rate domains, the input xk
k−N−L

is M-fold upsampled by matrix multiplication with U(N) and the filtered noise is

D-fold decimated with matrix multiplication with D(N). The matrix U(N) with di-

mensions ((L + N + 2)M − 1) × (L + N + 1) and the matrix D(N) with dimensions

(M(N + 1)) × (MD(N + 1)) have elements given by

[U(N)]i, j =


1 for i = jM

0 otherwise,

(6)

[D(N)]i, j =


1 for j = (i − 1)D + 1

0 otherwise,

(7)

where i and j are positive integers accounting for the row and the column number,

respectively.

3 Achievable rate

The considered channel in (3) has memory. A channel output yk depends on previous

input symbols and previous channel outputs yk−1, where the latter is induced by the

correlation of the noise samples. Considering blockwise stationarity and ergodicity

with respect to yk , the simulation based methods in [26–29] can be applied for

computing the achievable rate.

[4]The considered integrate-and-dump receiver is an exceptional case, where the

noise correlation can be perfectly described on the sampling grid (D = 1) although

there is no bandlimitation.
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3.1 Lower-bounding by considering an auxiliary channel law

According to [26, 29], the achievable rate for a channel with memory can be com-

puted with

lim
n→∞

1

n
I(xn; yn) = lim

n→∞

1

n
(− log P(yn) + log P(yn |xn)), (8)

where the right hand side (RHS) can be numerically evaluated based on “very long”

sequence realizations yn and xn generated with respect to the distributions P(xn)

and P(yn |xn). An auxiliary channel law W(·|·) is introduced which approximates the

actual channel law by limiting the memory of the channel to N previous channel

output symbols yk−1
k−N

, i.e., P(yk |y
k−1, xk) ≈ W(yk |y

k−1, xk) with

W(yk |y
k−1, xk) = P(yk |y

k−1
k−N , x

k
k−N−L). (9)

According to the Auxiliary-Channel Lower Bound in [29], by employing (9) we get

lim
n→∞

1

n
I(xn; yn) ≥ lim

n→∞

1

n
(− log W(yn) + log W(yn |xn)), (10)

where the limit on the RHS can be numerically approached based on very long

sequences. The probabilities W(yn) and W(yn |xn) are computed recursively with the

forward recursion of the BCJR algorithm [30]. Taking into account the memory of

the auxiliary channel law L+N and the memory of the source model Lsrc the system

state sk , cf. Sec. 2, (including channel and source) becomes sk = xk
k−max(Lsrc ,L+N )+1

.

In this regard, the probability of the output sequence W(yn) is computed with the

recursion given by

W(yk) =
∑
sk

W(yk, sk) =
∑
sk

µk(sk), (11)

µk(sk) =
∑
sk−1

P(yk |y
k−1
k−N , sk, sk−1)P(sk |sk−1)µk−1(sk−1)

=
∑
sk−1

P(yk |y
k−1
k−N , x

k
k−L−N )P(x

k
k−Lsrc+1

|xk−1k−Lsrc
)µk−1(sk−1), (12)

which makes use of (9) with µk(sk) as the branch metric of the Bahl-Cocke-Jelinek-

Raviv (BCJR) algorithm, cf. notation in [29]. For (12) we have used the fact that

yk , given xk
k−L−N

, is independent of xk−L−N−1
k−Lsrc

if Lsrc > (L + N) applies. Analogously

to (12), the conditional probability W(yn |xn) is computed with the recursion given
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by

W(yk |xn) = µ̃k = P(yk |y
k−1
k−N , sk, sk−1)µ̃k−1 = P(yk |y

k−1
k−N , x

k
k−L−N )µ̃k−1. (13)

Using Bayes’ rule, we can write the conditional probability in (12) and (13) as

P(yk |y
k−1
k−N , x

k
k−L−N ) =

P(yk
k−N
|xk

k−L−N
)

P(yk−1
k−N
|xk

k−L−N
)
=

P(yk
k−N
|xk

k−L−N
)

P(yk−1
k−N
|xk−1

k−L−N
)
, (14)

where we have used that yk−1 is independent of xk . Numerator and denominator in

(14) can be computed directly when considering a specific system model.

3.2 Transition probabilities

Because the computation of the transition probabilities incorporates an integration

over a multivariate circularly symmetric Gaussian distribution, it is favorable in

terms of computational complexity to decompose them into statistically indepen-

dent real valued components. With Re {zk} = źk and Im {zk} = z̀k , a short hand

notation is used, which is also applied for the xk and nk .

The real part of the received signal before the quantization follows a multivariate

Gaussian distribution described by

p( źkk−N | x́
k
k−L−N ) =

1√
(2π)M(N+1) |RN+1 |

exp

(
−

1

2
( źkk−N − µx)

TR−1N+1( ź
k
k−N − µx)

)
,

(15)

with the mean vector µx = V (N)U(N)x́k
k−L−N

and the covariance matrix

RN+1 = E{D(N)G(N)ńk
k−N−ξ

(ńk
k−N−ξ

)TG(N)TD(N)T }, where G(N) is real valued.

The transition probabilities for the quantized signal in (3) are given by the inte-

gration over the corresponding quantization regions[5], i.e.,

P( ýkk−N | x́
k
k−L−N ) =

∫
z′k
k−N
∈Ýk

k−N

p( źkk−N | x́
k
k−L−N )d ź

k
k−N , (16)

where Ýk
k−N
=

{
źkk−N

���Q{ źkk−N } = ýkk−N

}
. QAM sequences are described by two inde-

pendent ASK sequences. In case of a PSK input alphabet, the real and imaginary

[5]For the computation symmetries in the input sequences can be exploited to reduce

the number of integrations.
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part of the received signals are independent when they are conditioned on the input,

which allows to write the probability distribution as a product.

4 Reconstructible ASK sequences

A

xk xk+1

B

xk xk+1

C

xk xk+1

D

xk xk+1

Figure 2 State machine for unconstrained 4-ASK symbol transitions

In this section, we discuss the construction of ASK[6] sequences which can be dis-

tinguished by a receiver using 1-bit quantization and oversampling. For illustration

of our approach we consider a triangular waveform, i.e.,

v(t) = tri

(
t − Ts

Ts

)
=



t
Ts
, 0 ≤ t < Ts

2 − t
Ts
, Ts ≤ t < 2Ts

0, otherwise.

(17)

Note that the principle can be applied for all waveforms which fulfill the constraints

described in Appendix A, e.g., when h(t) is a cosine pulse with length 2Ts. For

the illustrating example, we consider a 4-ASK input alphabet, 3-fold oversampling

(M = 3), and a signaling rate with MTx = 1.

4.1 The reconstruction issue of sequences with i.i.d. symbols

The symbol transitions xk to xk+1 can be classified regarding their properties on

sequence reconstruction. The states A to D in the state machine in Fig. 2 cover all

possible signal evolutions, e.g., when considering sequences of i.i.d. input symbols

xk . The classification of the 16 symbol transitions into the 4 sub classes is a favorable

[6]The case of QAM sequences follows by using the concept for the real as well as

for the imaginary axis.
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Figure 3 State machine for reconstructible 4-ASK sequences, with dependency on the whole prior

sequence, P(xk |x
k−1)

illustration, because transmit symbol sequences can be modeled by arbitrary com-

bining the the states A to D, while symbol transitions within the classes have iden-

tical properties for sequence reconstruction. The illustrations within the boxes show

possible evolutions of the received symbol over the time duration kTs ≤ t ≤ (k+1)Ts.

The (M+1) sampling instances within this time interval are indicated by the vertical

bars on the x-axis. The sequence reconstruction properties are determined by the

corresponding channel output patterns given by the signs at the sampling instances.

In this regard, the four states of the machine themselves represent classes of sym-

bol transitions which are associated with different properties regarding sequence

reconstruction:

A: xk and xk+1 can be directly reconstructed based on the current M + 1 ADC

output samples in the time interval kTs ≤ t ≤ (k + 1)Ts (‘decision’)

B: xk+1 can be reconstructed based on the current M + 1 ADC output samples

in case xk is known at the receiver, or xk can be reconstructed in case xk+1 is

known (‘forward’)

C: possible ambiguity with transitions in state D (‘ambiguity1’)

D: possible ambiguity with transitions in state C (‘ambiguity2’).
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4.2 A state machine representation for reconstructible ASK sequences

In Section 4.1, it has been shown that only a subset of all possible transmit se-

quences can be distinguished based on the current ADC output pattern, when the

transmit symbols xk are i.i.d.. The problem arises from the fact that the transi-

tions contained in state D cannot be distinguished from the transitions contained

in state C or vice versa. In the following, we describe how to avoid this problem

by a systematic sequence construction. For this purpose, we model the transmit se-

quences by a state machine. The state machine is designed such that each possible

realization of state transition sequences corresponds to a different output pattern

at the receiver, i.e., each realization of the machine corresponds to a reconstructible

sequence. We assume that the structure of the state machine is shared with the

receiver. A segment of a reconstructible sequence is initiated and terminated with

state A. This is due to the fact that with state A, xk and xk+1 are known, which

is employed as starting point for backtracking. Moreover, the introduction of an

additional constraint allows to some extent the utilization of both ambiguity states

for sequence construction. First, one of the ambiguity states, e.g., state C, can be

termed as a primary ambiguity state. The primary ambiguity can be considered for

sequence construction nearly unconstrained. The residual, state D, is the secondary

ambiguity which involves a constraint, e.g., such that after state D is visited only

state B or state A are allowed, which retains the sequences segment unique for

reconstruction. The corresponding state machine is illustrated in Fig. 3, where the

B state subsequent to state D is termed B*. The adjacency matrix, describing the

directed connections of the states, is given by

Aadj =



1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 0 0 0 1

1 0 0 0 1


, (18)

where the first three rows account for the outgoing connections for states A, B, and

C and the last two rows account for the outgoing connections from the states D and

B*. The columns represent the incoming states in the order A, B, C, D, and B*.

According to [31], the maximum entropy rate of sequences generated by this state
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Table 1 Source entropy rates of reconstructible sequences

sequence property Lsrc = 1 Lsrc = 2 Lsrc = 3 Lsrc = 4

limn→∞
1
n H(xn) [bit/symbol] 1.585 1.7237 1.7583 1.7678

machine can be computed with

Hmax = lim
n→∞

1

n
log2

∑
i, j

[An
adj]i, j = log2(λmax) (19)

= 1.7716 [bit per symbol], (20)

where λmax is the largest real valued eigenvalue of Aadj and An
adj describes Aadj

raised to the power of n. Furthermore, according to [31] the transition probabilities

that maximize the source entropy are computed with

Pi, j =
bj

bi
·
[Aadj]i, j

λmax
, (21)

where bj, bi are the ith and jth entry of the right hand eigenvector belonging to the

eigenvalue λmax, respectively. The proposed state machine models sequences with

infinite memory in terms of channel input symbols when expressing them by the

Markov source introduced in Section 2 with a state corresponding to sk = xk
k−Lsrc+1

.

To generate finite memory transmit sequences a minor modification of the presented

state machine is required, which is described in Appendix B. This modification leads,

depending on the source memory Lsrc, to a slight reduction of the source entropy

rate. However, according to Table 1, we already closely approach the maximum

entropy of the state machine with infinite memory given in (20) by considering a

memory of Lsrc = 4.

5 Runlength-limited sequences

An alternative approach to model transmit sequences which can be uniquely re-

constructed at a receiver with a 1-bit ADC is to use runlength-limited (RLL) se-

quences [32] in combination with FTN signaling. RLL sequences are a natural choice

because they convey the information in the distances of zero-crossings or runlengths.

As the temporal positions of a change of the signal should be controlled on a more

fine grained time-grid than Ts we have to choose MTx > 1 in (1), which corresponds

to FTN signaling. RLL sequences can be obtained from so-called (d, k)-sequences,

where d and k are parameters which constrain binary sequences. In a (d, k)-sequence
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1 2 d d + 1

1

0 0 0

0

Figure 4 State machine describing d constrained sequences

a 1 is followed by at least d and at most k 0s. The k property is introduced for prac-

tical purpose such as clock recovery which is neglected in this work, i.e., we assume

k = ∞. The corresponding state machine for a d constrained sequence is illustrated

in Fig. 4. The (d, k)-sequence is subsequently transformed into a run-length limited

sequence by non return to zero inverted (NRZI) encoding. An example is given as

follows

(d) -seq. [. . . 1 0 0 1 0 1 0 1 . . . ]

rll-seq. [. . . 1 1 1 -1 -1 1 1 -1 . . . ] ,

where d = 1. According to [31], the maximum entropy rate of such a sequence,

which limits the corresponding achievable rate, depends on the adjacency matrix

Aadj of the state machine and can be calculated by (19). The adjacency matrix

describing the state machine in Fig. 4 is given by

Aadj,d=1 =

[
0 1

1 1

]
, Aadj,d=2 =


0 1 0

0 0 1

1 0 1

, (22)

where the rows correspond to the current states and the columns correspond to

the following state. Furthermore, the transition probabilities for the source with

maximum entropy are computed with (21). With this, the maximum achievable

rates per symbol are given in Table 2. The d constraint implies redundancy within

Table 2 Maximum entropy of d-constrained sources

run-length constraint d = 1 d = 2 d = 3

max entropy rate [bit/symbol] 0.6942 0.5515 0.4650

the channel input sequence. However, in combination with a higher signaling rate,

the RLL sequences can yield a benefit in terms of spectral efficiency for the case

of 1-bit quantization at the receiver, which is different from the unquantized FTN

based on i.i.d. signaling [33]. This is due to the fact that the FTN-caused intersym-

bol interference cannot be corrected by trellis-based receivers because of the loss
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of the additional amplitude information due to the 1-bit ADC. In this regard, the

sequences need to be well shaped, such that the intersymbol interference does not

induce a flip of the sign of current symbols. In this regard, the RLL sequences can

tolerate intersymbol interference, e.g., of the considered channel, at a relatively low

cost in redundancy. In addition, the RLL sequences yield a higher concentration of

the signal power of the transmit symbol sequence at lower frequencies. Depending

on the bandwidth criterion this might further increase the spectral efficiency. For

complex transmit symbol sequences, we consider independent RLL sequences for

the real and the imaginary part.

6 Maximization of a lower bound on the achievable rate using an

expectation-based Blahut Arimoto algorithm

In this section, we study a numerical input sequence optimization approach with

respect to the achievable rate. In this regard, we discuss a strategy to optimize the

transition probabilities of a given Markov source which models the channel input

sequences. The set of transmit symbols X is given and fixed. The objective of the

optimization is an auxiliary channel based lower bound on the achievable rate similar

to the one introduced in Section 3. The proposed sequence optimization approach

[34] follows the principle of the iterative Markov source optimization suggested

in [22]. Rewriting the information rate with the chain rule yields

lim
n→∞

1

n
I(xn; yn) = lim

n→∞

(
1

n

n∑
k=1

H(sk |sk−1) −
1

n

n∑
k=1

H(sk |yn, sk−1)

)
(23)

≥ lim
n→∞

(
1

n

n∑
k=1

H(sk |sk−1) −
1

n

n∑
k=1

H(sk |yn, sk−1)

)
(24)

≥ lim
n→∞

(
1

n

n∑
k=1

H(sk |sk−1) −
1

n

n∑
k=1

HW (sk |y
n, sk−1)

)
, (25)

where we use sk = xk
k+L+N+1

on the RHS and with

HW (sk |y
n, sk−1) =

∑
sk
k−1

,yn P(sk
k−1

, yn) log2
1

W (sk |sk−1 ,yn)
. The inequality in (24) holds

as conditioning can only decrease entropy and the inequality in (25) holds according

to the auxiliary channel lower bound, see Appendix C. The 2nd term on the RHS

of (25) can be expressed as

lim
n→∞

1

n

n∑
k=1

HW (sk |y
n, sk−1) = (26)



Landau et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:83 Page 18 of 43

lim
n→∞

(
1

n

n∑
k=1

log2 W
(
sk, sk−1 |yn

)
−

1

n

n∑
k=1

log2 W
(
sk−1 |yn

))
,

where the RHS can be practically evaluated with very long sequences. Considering

a very long sequence, the argument of the limit of the RHS of (26) can be rewritten

with the symbol transition probabilities Pi, j and the stationary distribution[7] µi as

1

n

n∑
k=1

log2 W
(
sk, sk−1 |yn

)
−

1

n

n∑
k=1

log2 W
(
sk−1 |yn

)
(27)

=
∑
i, j

µiPi, j log2 W (sk = j, sk−1 = i |yn) −
∑
i

µilog2 W (sk−1 = i |yn),

where (·) denotes the average over the specific state or state transition based on

the number of their occurrences in the very long sequence realization. The second

sum on the RHS of (27) can be also written as
∑

i, j µiPi, j(·), such that (27) can be

rewritten as
∑

i, j µiPi, jT̂i, j with the coefficients

T̂i, j =

∑
k
����sk−1 = i

sk = j

log2 W (sk, sk−1 |yn)∑
k
����sk−1 = i

sk = j

1
−

∑
k − 1|sk−1 = i

log2 W (sk−1 |yn)∑
k − 1|sk−1 = i

1
, (28)

where the denominators account for the number of specific state transitions and

states, respectively, occurring in the sequence xn. The quantities W (sk, sk−1 |yn) and

W (sk−1 |yn) are computed with the BCJR algorithm [30]. Based on the T̂i, j notation,

the lower bound on the achievable rate in (25) is rewritten as

lim
n→∞

1

n
I(xn; yn) ≥

∑
i, j

µiPi, j

(
log2

(
1

Pi, j

)
+ T̂i, j

)
. (29)

In the following, it is described how to chose Pi, j for maximizing the RHS of (29).

In this regard, the so-called noisy adjacency matrix is given by

[
Ãadj

]
i, j
= 2T̂i , j . (30)

With (30), the transition probabilities which maximize the achievable rate are given

by

Pi, j =


b j

bi

[Ãadj]i , j
λmax

, if the transition occurs in xn

0, else,

(31)

[7]The stationary distribution µi can be computed based on Pi , j
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Figure 5 The achievable rate for different transmit pulses

where λmax is the largest real eigenvalue of Ãadj and bi and bj are entries of the

corresponding eigenvector. The method is applied iteratively as T̂i, j itself is a func-

tion of Pi, j , where each iteration involves the generation of xn and yn. Note that

this optimization procedure does not take into account the power spectral density

of the resulting channel input signal. Moreover, the optimization has an influence

on the average transmit power and, thus, on the SNR.

7 Numerical results

In this section, we numerically evaluate the achievable rate based on the lower

bound in (10). The simulation-based computation of the RHS of (10), i.e., of the

argument of the limit, is carried out based on a sequence of length n = 106 symbols.

Whenever the sequence optimization strategy proposed is applied, 19 iterations of

the loop in the algorithm described in Section 6 have been carried out. The power

containment bandwidth and the SNR are post computed as the transmit signal

bandwidth depends on the individual Markov source.
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Figure 6 Power spectral density for different transmit pulses

The correlation of the sequence of input symbols xn depends on the used Markov

source and determines the power spectral density (PSD) of the transmit signal. The

coefficients of the discrete-time auto-correlation function of the transmit symbol

sequence xn are given by

ck =E
{
xlx
∗
l+k

}
=

∑
i

µi xl(sl = i)
∑
j

x∗l+k(sl+k = j)P(sl+k = j |sl = i), (32)

with the stationary input state distribution µi. Hence, the corresponding PSD is

given by its Fourier transform Sx( f ) =
MTx

Ts

∑∞
k=−∞ cke j2π kTs

MTx
f
, where the infinite

sum can be approximated by considering a very large number of coefficients. To-

gether with the transfer function H( f ) of the transmit filter h(t), the PSD of the

transmit signal is given by S( f ) = Sx( f ) |H( f )|2. In the following, we will refer to

the power containment bandwidth B90% (or B95%), which implies that a certain
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Figure 7 The spectral efficiency w.r.t. B90% for different transmit pulses

amount, e.g., 10% (or 5%) of the transmit power is emitted outside the nominal

bandwidth [8].

The power containment bandwidth, e.g., B90%, is used for computing the spectral

efficiency as

spectral eff . =
Ibpcu · MTx

Ts · B90%
, (33)

where Ibpcu is the achievable rate w.r.t. one symbol symbol duration Ts
MTx

. For nu-

merical evaluation, we define the oversampling factor w.r.t. the power containment

bandwidth, e.g., B90%, as

Moversampling =
M · MTx

Ts · B90%
. (34)

[8]In case of asymmetric spectra, it is considered that the power of the out-of-band

radiation is equally splitted into the frequency range towards f = ∞ and the frequency

range towards f = −∞.
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Table 3 Overview on considered scenarios with 1-bit quantization at the receiver

Modulation Alphabet Transmit Pulse Sequence Design M MTx N

QPSK Cosine i.u.d. 1 1 0

16-QAM Cosine i.u.d. 2, 3 1 1

16-QAM Gaussian i.u.d. 2, 3 1 1

16-QAM Rect i.u.d. 2, 3 1 1

16-QAM Cosine optimized 2, 3 1 1

16-QAM Cosine reconstructible 3 1 1

64-QAM Cosine optimized 2, 3 1 0

256-QAM Cosine optimized 2, 3 1 0

8-PSK Cosine i.u.d. 2, 3 1 0

8-PSK Cosine optimized 2, 3 1 0

16-PSK Cosine i.u.d. 2, 3 1 0

16-PSK Cosine optimized 2, 3 1 0

QPSK Cosine i.u.d. 1 2, 3 1

QPSK Cosine optimized 1 2 1

16-QAM Cosine optimized 1 2 0

QPSK Cosine optimized 1 3 0

QPSK Cosine RLL, d = 1 1 2 1

QPSK Cosine RLL, d = 2 1 3 1

QPSK Cosine RLL, d = 1 1 3 0

Moreover, also the SNR depends on the power containment bandwidth, e.g., B90%,

and is defined as

SNR =
limT→∞

1
T

∫
T
|x (t)|2 dt

N0 B90%
. (35)

Note that the transmit power depends on the Markov source modeling the input

sequence xn and the transmit filter h(t). In the sequel, if not otherwise stated, we

assume the 90% power containment bandwidth (B90%).

For different simulations, we use auxiliary channels with different memory N, cf.

(9), as the computational complexity scales with the number of states sk which itself

increases exponentially with N.[9] For computational extensive cases, e.g., when the

length of the channel impulse response L+1 is large because of a high signaling rate

as is for MTx = 3 or when the input symbol alphabet is large as is for MQAM = 256,

it is essential to consider an auxiliary channel law with a small N, e.g., N = 0, to

retain the computability. For the considered scenarios, we have observed that the

achievable rate practically approaches its maximum when considering an auxiliary

channel law with N ≥ ξ = MTx. Considering N = ξ = MTx implies that the condition

in the channel law corresponds to exactly the channel outputs yk−1
k−N

, whose time

[9]This is true as long as L + N > Lsrc holds, cf. Sec. 3.
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Figure 8 The spectral efficiency w.r.t. B95% for different transmit pulses

instances match to the noise samples nk−1
k−ξ

which influence the current output yk , cf.

(4). Moreover, from our experience, e.g., from [20], the impact on the lower bound

of the achievable rate, e.g., when choosing N < ξ, is marginal at medium SNR and

vanishes with increasing SNR, which is reasonable because the channel memory on

the channel output arises from the noise process. An overview on the considered

scenarios with 1-bit quantization at the receiver is given in Table 3.

To evaluate the burden for the use of 1-bit quantization and oversampling, we

compare our approach with the channel without output quantization and RRC

matched filtering with a roll-off factor of 0.3. In terms of FTN signaling, we compare

with a reference system without quantization and with a roll-off factor equal to 1

and with various compression factors τT , cf. notation in [33]. Moreover, we compare

our results on the spectral efficiency with the AWGN channel capacity, normalized

with the power containment bandwidth, assuming a flat spectrum.
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Figure 9 Achievable rate with 1-bit quantization and M-fold oversampling, QAM modulation,

various sequence designs, N = 1

7.1 Transmit pulse

Before considering the sequence design, the transmit pulse shape h(t) is examined

in this section. The complexity of the trellis-based receiver scales exponentially

with the length of the memory of the channel. In this context, transmit pulses with

short duration in time domain are favorable and considered in this work explicitly.

Standard transmit pulses are considered, such as the cosine pulse described by

hcos (t) =


√

1
3Ts

(
1 − cos

(
2π 1

2Ts
t
))
, 0 ≤ t < 2Ts

0, otherwise.

(36)

Another widely used transmit pulse is the Gaussian pulse described by

pGauss (t) = e
−π2(t/Ts)

2

α2
h , (37)

where αh =
1

B3dBTs

√
log 2

2 and B3dBTs = 0.34. As the transmit pulse h(t), the Gaussian

pulse with unit energy normalization is considered which is given by hGauss (t) =
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Figure 10 Power spectral density for different sequence designs based on cosine transmit pulses

(∫ ∞
−∞

p2
Gauss (t) dt

)− 1
2

pGauss (t). As a reference also the rectangular pulse shape given

by

hrect (t) =


√

1
Ts
, 0 ≤ t < Ts

0, otherwise,

(38)

is considered. The achievable rate for 16-QAM modulation with independent and

uniformly distributed (i.u.d.) transmit symbols is illustrated in Fig. 5 [10]. Taking

into account the power spectral density shown in Fig. 6, the spectral efficiency can

be computed. The spectral efficiency w.r.t. B90% and w.r.t. B95% are shown in Fig. 7

and Fig. 8, respectively. In terms of spectral efficiency the Gaussian pulse and the

cosine pulse show a comparable performance. Because the cosine pulse has a shorter

duration in time domain, it is considered in the sequel.

7.2 QAM

[10]Note that the SNR definition contains the bandwidth, which then yields a rela-

tively low SNR for scenarios with hrect (t).
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Figure 11 Achievable rate for different oversampling rates and QAM modulation orders, for

comparison, upper bound on the achievable rate with using M comparators in a flash-ADC with

the same number of comparator operations per time interval.

Based on the lower bound on the achievable rate in (10), Fig. 9 shows that the use

of a higher order transmit symbol alphabet, namely 16-QAM, is beneficial. While

with 1-bit quantization and without oversampling just 2 bits per channel use can

be achieved (1 bit in the real and one bit in the imaginary component), with an

increasing oversampling factor M the achievable rate increases. Moreover, it is il-

lustrated that a sophisticated sequence design can further improve the achievable

rate significantly compared to i.u.d. input symbols. In this regard, it is shown that

the proposed method to model reconstructible sequences (Section 4), which is de-

scribed for M = 3, achieves an achievable rate fairly close to the optimized sequences

(Section 6). With the approach based on reconstructible sequences, the achievable

rate approaches the input entropy rate of 2 · 1.7678[bpcu], cf. Table 1, in the high

SNR regime, where the factor two is due to the use of a complex modulation. The

corresponding power spectral densities are shown in Fig. 10. Note that the sequence

optimization depends on the SNR and that the illustrated spectra consider the high
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Figure 12 Spectral efficiency (B90%) versus SNR considering QAM transmit symbols

SNR (30dB). Fig. 11 shows that the achievable rate can be further increased by uti-

lizing even larger modulation alphabets, e.g., 64-QAM or 256-QAM. In this regard,

note that the achievable rate for a 256-QAM alphabet is larger than 2 log2(M+1), for

M = 2 and M = 3.[11] This is remarkable, because it is higher than the upper limit

for the noiseless channel without receive filter, described in Appendix D. We explain

this by the circumstance, that with the receive filter the system impulse response is

enlarged, such that new signal evolutions are enabled, leading to more zero-crossing

patterns. This is in line with the data processing lemma because the subsequent

quantization is suboptimal processing step. Moreover, it is also remarkable, because

2 log2(M + 1) is the maximum achievable rate for flash-ADC sampling with M com-

parators. For 64-QAM and 256-QAM, the achievable rate is lower bounded by the

utilization of a simplifying auxiliary channel model with N = 0. The sequence op-

timization only considers a peak power constraint and no bandwidth constraint.

[11]We expect that for M > 3 a larger input alphabet is required to obtain an achiev-

able rate larger than 2 log2(M + 1).
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Figure 13 Achievable rate versus SNR considering PSK transmit symbols

Because of this and the circumstance that our SNR definition involves the band-

width we expect, that at low SNR the actual capacity is higher than that computed

with our approach.

The spectral efficiency as defined in (33) is shown in Fig. 12. It can be observed

that the spectral efficiency of i.u.d. input sequences might be higher than with

optimized input sequences (Section 6) or with reconstructible sequence due to the

approach presented in Section 4. This effect happens as we do not consider any

spectral shaping during the sequence design approaches besides the choice of the

pulseshape. In this regard, the bandwidth depends on the sequence design and the

spectral efficiency can decrease. However, as also the oversampling factor inversely

scales with the bandwidth, the sequence design is still superior in comparison to

sequences of i.u.d. symbols, as we will point out in detail in Section 7.5.

7.3 PSK

Fig. 13 shows the lower bound on the achievable rate in (10) for PSK symbol

alphabets and 1-bit quantization and oversampling at the receiver. The PSK input
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Figure 14 Spectral efficiency (B90%) versus SNR considering PSK transmit symbols

alphabet deserves special attention because the corresponding transmit signal has

a relatively low peak to average power ratio, which is favorable in terms linearity

requirements of the transmit power amplifier. The case of 8-PSK modulation is

remarkable, because at high SNR the maximum input entropy of 3bpcu is almost

achievable with M = 3.

Unlike as for QAM, due to the constant modulus transmit symbols, the aver-

age transmit power is not strongly influenced by the applied sequence optimization

strategy. However, as discussed for QAM modulation, the nominal bandwidth de-

pends on the PSD of the transmit signal and, thus, on the applied Markov source

which describes the transmit symbol sequences. Thus, the SNR in (35) depends on

the chosen sequence design, which explains the slight horizontal shift of correspond-

ing markers in Fig. 13.

The corresponding spectral efficiency (B90%) is shown in Fig. 14. In some ex-

ceptional cases i.u.d. channel input symbols yield a higher spectral efficiency in

comparison to the optimized sequences design. As explained in Section 7.2 in these

cases sequence optimization (Section 6) yields an increased bandwidth implying a
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Figure 15 Achievable rate with FTN signaling, M = 1, a channel use corresponds to time interval
Ts

MTx

reduced effective oversampling factor Moversampling. The relation between the effec-

tive oversampling factor and the spectral efficiency is evaluated later in Section 7.5.

Comparing 16-PSK and 16-QAM in terms of the spectral efficiency, it can be ob-

served that 16-QAM is superior for M = 2 and M = 3.

7.4 Faster-than-Nyquist signaling

In the following, we evaluate the achievable rate with FTN signaling, i.e., MTx > 1,

on the one hand for RLL sequences as discussed in Section 5 and, on the other

hand, also for transmit sequences with i.u.d. symbols and for optimized sequences

(Section 6) with QPSK and 16-QAM input alphabets. Here we choose an equal

signaling and sampling rate, i.e., M = 1.

Regarding the auxiliary channel law utilized for lower-bounding the achievable

rate, the maximum can be practically approached by considering N = ξ = MTx.

However, we have considered memories of N = 1 or N = 0, not necessarily N = MTx,

to limit the computational complexity.
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Figure 16 Power spectral density for different FTN sequence designs

In Fig. 15, based on (10), lower bounds on the achievable rate per channel use

are shown, where a channel use corresponds to a transmit symbol duration Ts
MTx

.

In general, it can be observed that the achievable rate decreases with an increasing

compression factor MTx. This behavior is a consequence of the fact that the duration

of one channel use is scaled down with MTx. In this regard, the benefit of FTN is

not reflected in Fig. 15. However, Fig. 15 allows a comparison of the achievable rate

with different sequence design approaches for an equal MTx.

Fig. 15 confirms that the maximum achievable rate for RLL sequences, cf. Table 2

can be achieved. For a RLL sequence with d = 1 and MTx = 3, we have observed

that the achievable rate does not approach the source entropy rate when using the

receive filter in (2) (not shown in Fig. 15). For this special case, we choose a receive

filter with a shorter impulse response

g (t) =


√

MTx

Ts
, 0 ≤ t < Ts

MTx

0, else,

(39)
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Figure 17 Spectral efficiency (B90%) versus SNR, with FTN signaling, M = 1

which corresponds to a larger receive bandwidth. In the figures, we refer to this

exception by the notation wideband Rx. In this case, the achievable rate converges

to the source entropy rate. However, due to the larger bandwidth of the receive

filter, more noise is captured such that the achievable rate saturates at higher SNR.

Moreover, it can be observed that the optimized sequences (Section 6) yield a

slightly larger achievable rate than RLL sequences. Compared to the RLL sequences

the sequence optimization strategy has more degrees of freedom for the construction

of zero-crossings. Surprisingly, MTx = 3 yields in the high SNR an even larger

achievable rate as compared to MTx = 2, which is counter intuitive. On one hand,

increasing the signaling rate implies a relative expansion of the system impulse

response w.r.t. Ts
MTx

which in our case strongly attenuates fast signal transitions.

This is why at low SNR, MTx = 2 holds a benefit in the achievable rate w.r.t.

to a channel in comparison to MTx = 3. At high SNR, utilization of MTx = 3,

can effectively exploit more bandwidth for communication. This is possible due to

the fact that the considered transmit pulse is not strictly bandlimited. Finally the
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expansion of the system impulse response provides more degrees of freedom which

is in general favorable for the construction of zero-crossings.

In addition, a 16-QAM alphabet has been considered for sequence optimization

(Section 6) with MTx = 2. Due to the additional degrees of freedom, this approach

shows a much better performance in terms of achievable rate compared to the other

waveforms with MTx = 2.

We have compared our results with RRC-matched-filtering-based FTN signaling

without quantization. The compression in time is such that the transmit pulses have

a distance of τT ·Tx , where Tx would be the conventional transmit symbol duration

without FTN. We have computed a lower bound on the achievable rate by using a

truncation-based auxiliary channel law where we have used for τT = 0.5, 0.4 and

0.3 a truncated system impulse response of length (L + 1) = 3, 5 and 6.

The power spectral densities of the different sequence designs are shown in Fig. 16.

The consideration of runlength limited sequences implies that the signal energy

is concentrated at lower frequencies. To show the benefits of FTN signaling, we

evaluate its performance in terms of the spectral efficiency (B90%) in Fig. 17. This

presentation also enables a fair comparison for different compression factors MTx,

as the achievable rate is normalized with respect to the 90% power containment

bandwidth. In Fig. 17, it can be observed that with increasing MTx and, hence, also

equally increasing sampling rate, the spectral efficiency significantly increases for all

approaches for the transmit symbol sequence generation. Moreover, Fig. 17 shows

that for a given MTx, RLL sequences show a superior performance in comparison to

the other approaches in terms of spectral efficiency. This holds even in comparison

to the case where the large 16-QAM modulation alphabet is used. The additionally

required transmit power in comparison to the unquantized FTN is less than 4dB

when operating at SNR below 15dB.

Moreover, by comparison of Fig. 17 and Fig. 12, we make the important ob-

servation that the communication based on the FTN signaling scheme requires a

significantly lower SNR. This can be explained by the fact that the transmit fil-

ter h(t) in (36) is not strictly bandlimited. In this regard, the spectral copies at a

signaling rate of 1
Ts

when MTx = 1 implicitly restrict the sequence design which

cannot be compensated by a large input alphabet. The faster signaling rate offers

more degrees of freedom for the sequence design at higher frequencies. However, in
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a scenario with strict bandlimitation [23], e.g., by considering Nyquist pulses, this

effect vanishes.

7.5 Relation of the spectral efficiency and the oversampling factor in the high SNR

limit
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Figure 18 Spectral efficiency (B90%) versus effective oversampling factor (B90%) in the high SNR

limit; for FTN (MTx > 1) it holds that M = 1
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Figure 19 Spectral efficiency (B95%) versus effective oversampling factor (B95%) in the high SNR

limit; for FTN (MTx > 1) it holds that M = 1

Fig. 18 illustrates the spectral efficiency (B90%) in the high SNR limit as a function

of the effective oversampling factor (34). Alternatively, the 95% power containment

bandwidth is considered in Fig. 19. Note that spectral efficiency but also the over-

sampling factor inversely scale with the bandwidth. The results confirm the intuitive

presumption that in case of 1-bit channel output quantization an increasing sam-
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pling rate can yield an increase in spectral efficiency. The illustration shows a fair

comparison between the presented approaches because the considered effective over-

sampling factor takes into account the bandwidth of the transmit signal. The results

are compared with results known from the literature, which have been adapted w.r.t.

the power containment bandwidth. We also compare our results with the result on

the achievable rate over a bandlimited noiseless channel with 1-bit output quanti-

zation in [3], which we could not normalize with the power containment bandwidth

as the considered Zakai processes do not have Fourier transformations. Unlike the

existing literature on communication over noisy channels with 1-bit quantization

at the receiver [5–7] which indicates only marginal benefits from oversampling, the

proposed communication schemes show a clear advantage of oversampling in terms

of the spectral efficiency. The results are also comparable with recent results which

are based on strictly bandlimited channels with RRC filtering [23]. Moreover, the

proposed methods are compared to the maximum achievable rate for systems with a

standard flash ADC with Nyquist rate sampling at the receiver with the same num-

ber of comparator operations per time interval. For a strictly bandlimited channel,

its achievable rate is given by 2 log2

(
Moversampling + 1

)
, which we normalize w.r.t.

the power containment bandwidth based on a frequency flat spectrum. Some of the

approaches given in the present work are comparable and even superior in terms of

achievable rate in comparison to the flash ADC approach and the analytical results

on the noiseless channel given in [3]. Note that pipelined ADCs require less compara-

tors in comparison to flash ADCs. However, because of the additional inter-stage

processing in pipelined ADCs, a comparison is not straightforward.

8 Conclusions

We have studied the achievable rate for an additive Gaussian noise channel with

1-bit output quantization and oversampling at the receiver, which is promising in

terms of a simplification of circuitry and a reduction of the energy consumption at

the receiver. As the transmit signal is not strictly bandlimited, we have considered

power containment bandwidth criteria with 90% and alternatively 95% power con-

tainment. The transmit sequences are constructed based on various QAM and PSK

input symbol alphabets and various signaling rates. Concrete sequence designs,

namely reconstructible 4-ASK (and with this 16-QAM) sequences and runlength
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limited sequences for faster-than-Nyquist signaling rates are proposed. Furthermore,

a sequence optimization strategy is studied which approaches the Markov capacity

in the high SNR regime. The performance is evaluated in terms of the achievable

rate and the spectral efficiency. We have observed that the proposed approaches

outperform existing methods on communication with 1-bit quantization and over-

sampling at the receiver. For a number of methods, it has been shown that 1-bit

quantization and oversampling at the receiver yields a comparable or even superior

spectral efficiency than conventional amplitude quantization using a flash converter

with the same number of comparator operations per time interval.

One key observation is that among the proposed methods, the spectral efficiency

is maximized by FTN signaling. This suggest that for the channel input signal,

resolution in time is preferable in comparison to resolution in amplitude. However,

it is known for the unquantized case that FTN exploits the excess bandwidth [33],

such that it can be expected that the advantage of FTN vanishes for more strict

spectral constraints, cf. [23]. In summary, the results show that the use of receivers

with oversampled 1-bit quantization is promising. The proposed ideas are a first step

to a more complete understanding of the achievable rate and of an optimal transmit

sequence design for such channels. Aspects like the robustness of these signaling

schemes towards jitter and timing synchronization errors remain for further study. It

is shown that the presented methods based on 1-bit quantization and oversampling

at the receiver require only 2−3dB more transmit energy (at 5−10dB SNR and 90%

power containment bandwidth) in comparison to a conventional communication

system design with Nyquist sampling and high resolution in amplitude.

Appendix A: The system impulse response for reconstructible

sequences

We consider a symmetric system impulse response ranging over 3Ts. With the pa-

rameters M = 3 and MTx = 1, the discrete system impulse response can be described

by nine coefficients, by v = [v4, . . . , v0, . . . , v4]
T . The output patterns displayed in the

different states in Fig. 2 are functions of 2 consecutive channel input symbols xk

and xk+1 taken from a 4-ASK constellation, e.g., xk ∈ {−3,−1,1,3}. Because of

the length of the system inpulse response, the neighbouring channel input sym-

bols xk−1 and xk+2 are also considered. For the interference from xk−1 and xk+2, we
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assume maximum amplitude and distinguish between positive and negative sign.

For each transition type A. . .D, inequalities can be formulated which describe the

signal shape according to the desired pattern at the output of the ADC (assuming

no noise). Exploiting the symmetry of the impulse response v, its coefficients have

to fulfill the following inequalities to be able to apply the state representation in

Fig. 3: BT
constr. i[v0, . . . , v4]

T > 0, fori = {A, . . . ,D}, where 0 denotes a column vec-

tor containing 8 zeros and where the Bconstr. i express the state transition specific

constraints and are given by

Bconstr. A =



3 3 0 0 0 0 1 1

0 0 3 3 −1 −1 0 0

0 0 −1 −1 3 3 0 0

−4 2 0 0 0 0 −6 0

0 0 3 −3 3 −3 0 0


, (40)

Bconstr. B =



1 1 0 0 3 3 0 0

0 0 1 1 0 0 3 3

0 0 −1 −1 0 0 −3 −3

−4 2 0 0 −6 0 0 0

0 0 −3 3 0 0 −3 3


,

Bconstr. C =



1 1 0 0 3 3 0 0

0 0 1 1 0 0 3 3

0 0 1 1 0 0 3 3

4 −2 0 0 6 0 0 0

0 0 3 −3 0 0 3 −3


,

Bconstr. D =



3 3 0 0 0 0 1 1

0 0 3 3 1 1 0 0

0 0 1 1 3 3 0 0

4 −2 0 0 0 0 6 0

0 0 3 −3 3 −3 0 0


,

which describe the combinations of the input symbols. Note that some of the

constraints are redundant. Moreover, symmetries have been exploited. Besides

the illustrated triangular waveform with [v0, . . . , v4] = [1,0.666,0.333,0,0], the

waveform with the transmit pulse given in (36) jointly with the assumptions

on the receive filter in Section 2 corresponding to the coefficients [v0, . . . , v4] =

[0.9449,0.759,0.387,0.1037,0.0042] fulfills these constraints.

Appendix B: Reconstructible 4-ASK sequence with finite memory

The system model introduced in section 2 relies on channel input sequences defined

by a Markov process where the states correspond to sk = xk
k−Lscr+1

, i.e., the source

has finite memory. Differently, in the state machine in Fig. 3, a channel input

symbol depends on an infinite number of previous channel input symbols. Thus,
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Figure 20 State machine to generate reconstructible 4-ASK sequences with finite memory

we will modify the state machine such that an output symbol just depends on a

finite number of Lscr past output symbols. For this purpose we exclude the state

transition from B* to B* in the state machine in Fig. 3. The loss in terms of the

source entropy rate can be compensated by introducing further states like B**,

B***, etc. This implies that the process returns to state A after passing state D

with a maximum number of transitions which can be easily translated into the

state representation used for Markov sources in this work. The dashed boxes in

Fig. 20 show the state machines for reconstructible sequences for Lscr = 1, . . . ,4.

The corresponding adjacency matrices for are given by

Aadj,1 =


1 1 1

1 1 1

1 1 1

 , Aadj,2 =


1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0


, (41)
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Aadj,Lscr
=


13×4 03×(Lscr−2)[

1Lscr−1 0(Lscr−1)×3

] 
ILscr−2

0TLscr−2




for Lscr > 2. (42)

Appendix C: A lower-bound based on the auxiliary channel law

(reverse)

The auxiliary channel lower bound in [29] (10) is introduced as

I(x; y) ≥
∑
x,y

P(x, y) log2

(
W(y |x)
W(y)

)
, (43)

where W(·) is the auxiliary channel law (9). We will show with similar steps as

used in [29] that the reverse and optionally conditioned formulation of the mutual

information also applies, also for a conditional mutual information. The RHS of

(25) can be written as limn→∞
1
n

∑n
k=1 IW (sk ; yn |sk−1) and its terms are given by

IW (sk ; yn |sk−1) =
∑

sk
k−1

,yn

P(skk−1, y
n) log2

(
W(sk |yn, sk−1)

P(sk |sk−1)

)
. (44)

To show that IW (sk ; yn |sk−1) lower-bounds I(sk ; yn |sk−1) we consider the difference

given by

I(sk ; yn |sk−1) − IW (sk ; yn |sk−1) (45)

=
∑

sk
k−1

,yn

P(skk−1, y
n)

[
log2

(
P(sk, yn |sk−1)

P(sk |sk−1)P(yn |sk−1)

)
− log2

(
W(sk |yn, sk−1)

P(sk |sk−1)

)]
=

∑
sk
k−1

,yn

P(skk−1, y
n) log2

(
P(sk, yn |sk−1)

W(sk |yn, sk−1)P(yn |sk−1)

)
=

∑
sk

P(sk−1)D (P(sk, yn |sk−1)‖W(sk |yn, sk−1)P(yn |sk−1)) ≥ 0,

where D(·‖·) is the Kullback-Leibler divergence [35] which is always non-negative [36,

Th. 8.6.1].

Appendix D: Upper-bounding the capacity of the noiseless

channel without receive filter

We consider a special case with the transmit pulse h(t) = hcos(t), a receive filter

with g(t) = δ(t) and n(t) = 0, such that the input signal of the ADC is x(t), which
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is a weighted sum of time shifted transmit pulses h(t). We consider a conventional

signaling rate with, i.e., MTx = 1 such that the transmit signal is denoted by

x(t) =
n∑

k=1

xk · h (t − k · Ts) . (46)

With this, the signal in a time interval of two consecutive symbols xk−1 and xk is

given by

x(kTs + τ) =

√
1

3Ts

(
xk−1 + xk + (xk−1 − xk) cos

(
2π

τ

2Ts

))
, 0 ≤ τ < Ts,

which describes a raised or lowered cosine function in the interval with the running

time variable τ. Its frequency is such that x(t) has at max one zero-crossing per

time interval kTs ≤ τ < (k + 1)Ts. Now, we consider that this signal is quantized

with 1-bit and sampling rate M
Ts

. The fact that there is at most one zero-crossing in

the time interval Ts implies that the maximum output entropy and with this also

the capacity are upper bounded by 2 log2(M + 1), where the factor two accounts for

the complex equivalent.
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