
On the Achievable Rate of Multi-Antenna Receivers
with Oversampled 1-Bit Quantization

Sandra Bender, Meik Dörpinghaus, and Gerhard Fettweis
Vodafone Chair Mobile Communications Systems, SFB 912 HAEC, Technische Universität Dresden, Germany

Email: {sandra.bender, meik.doerpinghaus, gerhard.fettweis}@tu-dresden.de

Abstract—We analyze the spectral efficiency of a 1-bit quan-
tized multiple-input multiple-output channel with oversampling
in time, where 1-bit quantization could become a key component
to achieve the energy efficiency that is required for future
communication systems. Applying adapted signaling schemes and
appropriate power allocation algorithms, we derive lower bounds
on the spectral efficiency based on results for the single-input
single-output case. We show the potential gain compared to
previous results without oversampling.

Index Terms—A/D-conversion, oversampling, runlgenth-
coding, MIMO

I. INTRODUCTION

Communication in the mmWave range at 60 GHz continues
to draw attention, especially in combination with multiple-
input multiple-output (MIMO) systems, for achieving data
rates in the order of tens of Gbit/s; hence, its relevance
in the standardization process, e.g., for the fifth generation
mobile standard (5G) or for the IEEE 802.11ay, where the
latter is planned to be released this year [1]. One advantage
of the 60 GHz band is the amount of unlicensed spectrum
available, which holds even more if taking this one step
further to the range of 100-300 GHz carrier frequency, which
is promising for applications like wireless communications
between computer boards within a server [2].

However, when it comes to the likewise important topic
of energy efficiency, the increased bandwidth results in a
bottleneck in terms of energy consumption at the analog-to-
digital converter (ADC). The consumed energy per conversion
step increases with sampling frequency and converter resolu-
tion [3]. The effect scales with the MIMO-scenario, as one
ADC is required for every data stream. This and the small
voltage headroom of downscaled CMOS technology [4] make
signaling schemes adapted to 1-bit quantizers an attractive
alternative. We are mainly interested in the achievable rate of
such a coarsely quantized system, which is analyzed in terms
of capacity bounds in [5] and [6] analytically and in [7]–[9] by
simulations for different scenarios, where [9] considers spatial
oversampling.

For the case of single-input single-output systems, oversam-
pling in time domain of a 1-bit quantized receive signal has
been shown to increase the achievable rate for the noiseless
case already in [10] and [11]. It has been further studied
in [12] for the low SNR domain analytically and in [13],
[14] by simulation, where gains in terms of achievable rate
w.r.t. Nyquist sampling were observed. Despite this, to the
best of our knowledge, there are no analytic capacity bounds
for temporally oversampled MIMO channels available. In

this work, we thus evaluate the performance by deriving
lower bounds on the achievable rate for signaling schemes
applying oversampling w.r.t. Nyquist-sampling in the context
of 1-bit quantized MIMO schemes. These signaling schemes
are not necessarily capacity-achieving. Our contribution can
be summarized as follows:
• Extension of the spectral efficiency results for 1-bit

quantized SISO channels with oversampling in time to
the MIMO scenario.

• Analysis of the performance of different channel equal-
ization and power allocation schemes.

• Optimization of the power allocation for the case that no
channel equalization can be carried out at the receiver.

We apply the following notations: vectors and matrices are set
bold, random variables sans serif. XK is a random vector of
length K. For information measures, (·)′ denotes the corre-
sponding rate. Further, (·)H denotes the Hermitian transpose
of a matrix and diag(x) is a diagonal matrix with the vector
x specifying the main diagonal.

II. SYSTEM MODEL

We consider a bandlimited complex Nr×Nt MIMO channel
with 1-bit quantization and oversampling at the receiver, where
Nr and Nt are the numbers of receive and transmit antennas,
respectively. The system model is depicted in Fig. 1. All
components, i.e., mapper, ADC, and demapper, process the in-
phase and quadrature components of the signal separately. For
both, in-phase and quadrature component, 1-bit quantization
only allows to resolve the sign of the signal. The transmitted
information is effectively encoded in the position of the zero-
crossings (ZC) of the real and imaginary part of the transmitted
signal. We therefore consider as input signal sequences, which
contain the distances of consecutive ZCs. The resolution Tres
with which these distances can be specified, depends on the
oversampling factor M of the system, which is defined w.r.t.
the one-sided signal bandwidth W of the lowpass (LP) filters
at the transmitter and receiver

Tres =
1

MfNyq
=

1

2WM
(1)

where fNyq = 2W is the Nyquist rate corresponding to the re-
ceive filter bandwidth. The extreme cases hereby are M →∞,
i.e., Tres → 0, representing infinite oversampling and, hence,
a continuous-time channel, and M = 1, representing Nyquist-
sampling. For every input, two input sequences AK

i,R and AK
i,I

are mapped onto a complex signal xi(t), that is suited for
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Fig. 1. System model
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Fig. 2. Mapping from input sequence A
(K)
i,R to xi,R(t)

transmission over the channel. For real and imaginary part
of xi(t), the transitions between two levels ±

√
P̂i exactly

correspond to the ZC-distances specified in AK
i,R and AK

i,I ,
i.e.,

xi,R/I(t)=
(∑K

k=1

√
P̂i(−1)kg(t−Ti,R/I,k)

)
+

√
P̂i (2)

where g(·) is the transition waveform and Ti,R/I,k =∑k
w=1 Ai,R/I,w the time instant of the kth ZC. One possible

mapping of the real signal component is depicted in Fig. 2.
The average transmit power of xi(t) depends on the transition
waveform and the ratio between transition β time and hold
time of the level ±

√
P̂i. In the remainder of this work, we

will focus on two special cases
1) Continuous Time Channel: It represents a limiting case

in the sense of infinite oversampling (M → ∞) as then
the maximum temporal solution is available at the receiver.
We consider exponential distributed ZC-distances Ai,k, which
maximizes the input entropy, with parameter λ, s.t. E[Ai,k] =
1/λ+β and a sine-based transition waveform [15]. As Tres → 0,
the transition time between the levels ±

√
P̂i is β � Tres, cf.

Fig. 2. The filter bandwidth W is set to 1/2β allowing for
neglecting of deletion errors, see Section III-A.

2) Discrete Time Channel: It represents a simple discrete-
time and, thus, implementable scheme, where we sample
such that the transition time β = Tres. We consider a
runlength-limited input sequence with geometric distributed
ZC-distances Ai,k, which again corresponds to input entropy
maximization. E[Ai,k] then depends on the minimum run-
length. The filter bandwidth W is set to the 90% power
containment bandwidth of xi(t) given a triangular transition
waveform [16].

The chosen input distribution determines the average sym-
bol duration Tavg = E[Ai,k]. For the aforementioned scenarios
the average transmit power of xi(t) per channel is given by

Pi =

2
1
2+2Wλ−1

1+2Wλ−1 P̂i, (Scenario II-1)

2
(
1− 2

3E[Ak,i]

)
P̂i, (Scenario II-2)

. (3)

After mapping, the signal xi(t) is LP-filtered by an ideal LP
with one-sided bandwidth W in order to ensure bandlimitation.
The filter output x̂i(t) is transmitted via an Nr × Nt MIMO

channel with precoding. The sampled and quantized received
signal y = [y1[lTres], y2[lTres], ...yNr

[lTres]]
T is given by

y = Q1 (HCx̂ + n̂) (4)

where H is the time-variant Nr×Nt channel matrix containing
the complex Gaussian distributed channel coefficients at time
lTres, x̂ = [x̂1[lTres], x̂2[lTres], ...x̂Nt

[lTres]]
T and n̂ is the fil-

tered and sampled zero-mean complex additive Gaussian noise
vector with variance per sample σ2

n̂ . Due to bandlimitation
and oversampling it is temporally correlated. Q1(·) denotes
a binary quantizer with threshold zero, i.e., Q1(x) = 1 if
x ≥ 0 and Q1(x) = −1 if x < 0, and C denotes the
precoding operation. For notional convenience, we omit the
sampling time index l at H, x̂, n̂ and y. We assume full
channel state information (CSI) at transmitter and receiver, as
we are interested in short-range, quasi static and likely indoor
communication scenarios as, e.g., in [2]. Channel estimation
with 1-bit ADCs is a topic under active research, e.g., [17]–
[20]. For very short range communication with line-of-sight
component it has further been measured, that such channels
can be considered largely frequency flat, despite the large
bandwidth [21].

For every receive signal ym, the positions of the ZCs of
the real and imaginary component are mapped back onto
vectors of distances DJ

m,R and DJ
m,I . Note that possibly

K 6= J , since the noise may add or remove ZCs. Neither of
the above mentioned transmit signal waveforms xi(t) is hard
bandlimited, hence, the LP-filter at the transmitter introduces
a distortion to the signal due to the out-of-band energy filtered
out. We capture this distortion by the mean squared error σ2

x̃,i

of the signal x̃i(t) = xi(t) − x̂i(t) and treat it as additional
noise source, where

σ2
x̃,i =

1

π

∫ ∞
2πW

Sx,i(ω)dω (5)

with Sx,i(ω) being the power spectral density of xi(t). Despite
x̃i(t) not being independent of xi(t), by not exploiting this
correlation we obtain a lower bound on the achievable rate. We
assume the noise to be independent and identically distributed
for all receive antennas, such that the signal-to-noise ratio
(SNR) is defined as sum SNR w.r.t. the sum transmit power1

ρ =
P

σ2
n̂

(6)

where P = E[‖Cx̂‖2].

1Note, that this definition is w.r.t. xi(t) and not x̂i(t) as the LP-filter are
treated as part of the channel and, thus, as additional noise source.



III. ACHIEVABLE RATE ON THE OVERSAMPLED
MIMO-CHANNEL

The channel capacity is defined as the supremum of the
mutual information rate over the joint distribution of all x̂i(t),
i = 1...NT , fulfilling the constraints of average power P and
bandwidth W . The mutual information rate is defined as

I ′ (A;D) = lim
K→∞

1

KTavg
I
(

AK ;DJ
)

(7)

with I
(
AK ;DJ

)
being the mutual information. Further-

more, AK = [AK
1,R,A

K
1,I , ...,A

K
Nt,R,A

K
Nt,I ] and DJ =

[DJ
1,R,D

J
1,I , ...,D

J
Nr,R,D

J
Nr,I ]. As we consider two special

cases with a given input distribution, we compute the achiev-
able rate for each, which can be regarded as a lower bound
on the capacity of the corresponding channels.

A. Achievable Rate for the SISO Channel

This section recalls results from [15], [16], [22] in order
to prepare their application to the MIMO-channel. As the
information symbols Ai,k are the distances of the ZCs, we
have to deal with three types of errors to evaluate (7):
• ZC-shifts, i.e., magnitude errors of the received symbol
• additional ZCs, leading to insertion of symbols
• extinction of a ZC pair, leading to deletion of symbols.

The capacity of insertion and deletion channels is still un-
known, therefore we use the concept of the genie-aided
receiver to lower-bound the achievable rate as in [23]. We
provide the auxiliary information V to the receiver, such that
it can recognize the inserted or deleted symbols. Applying the
chain rule, we can write for the mutual information rate in (7)

I ′(A;D) = I ′(A;D,V)− I ′(A;V|D)

= I ′(A;D,V)−H ′(V|D) +H ′(V|D,A) (8)
≥ I ′(A;D,V)−H ′(V) (9)

where (9) holds since conditioning cannot increase entropy
and due to the non-negativity of entropy in case the auxiliary
process V can be modeled as a discrete valued process. This
is the case in both scenarios as we will discuss subsequently.

1) Achievable Rate of the Continuous-Time Model: This
scenario focuses on the mid to high SNR domain. We omit
deletions, as they occur with negligible probability due to
the bandlimited channel [22]. Then, I ′(A;D,V) captures the
impact of approximately Gaussian distributed magnitude errors
of the ZC-distances contained in D on the mutual information.
H ′(V) is the entropy rate of a process capturing the number of
inserted symbols per transmit symbol Ai,k. In [15] we obtain
a lower bound on I ′(A;D,V) and an upper bound on H ′(V).
In the following we choose W/λ = 0.7 as we found that this
maximizes the spectral efficiency for this setup [22].

2) Achievable Rate of the Discrete-Time Model: Here, we
consider runlength encoded binary symbols, cf. [24]. Despite
the correlation of the noise samples, we treat them as inde-
pendent to obtain a lower bound on the achievable rate. With
side information for every sample, we can reconstruct A by
knowing D and V s.t. I ′(A;D,V) = H ′(A). With (9), it
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Fig. 3. Lower bounds on the spectral efficiency of the AWGN SISO channel
for the continuous-time and discrete-time model

results I ′(A,D) ≥ H ′(A) − H ′(V). Most simply, V can be
a binary sequence, indicating which samples are flipped and
which not. We choose Lmin = 4 as this maximizes the spectral
efficiency, resulting in an oversampling factor M = 3.21 [16].

In order to compare both scenarios, we consider a lower
bound on the spectral efficiency

SE =
I ′(A;D)

2W
. (10)

The resulting lower bounds on the spectral efficiency are
depicted in Fig. 3. They exceed the conventional 2 bit for
the 1-bit quantized complex AWGN channel without oversam-
pling. Furthermore, the lower bound for the discrete-time case
exceeds the one for the continuous-time case in the mid SNR
range, which can be either due to the lower-bounding or the
reduced sampling resolution could actually reduce the noise
sensitivity for the given input scheme in a certain SNR range.

B. MIMO Channel Decomposition
The capacity of the MIMO channel without output quan-

tization is known to be achieved by circular-symmetric com-
plex Gaussian input symbols with covariance matrix Rx =
WPWH , where W is given by the singular value decompo-
sition (SVD) of H = UΣWH . Here, U and W are unitary
and the diagonal matrix Σ contains the individual channel
weights σv , which are the singular values of H. The transmit
and receive signals can be pre- and post-processes such, that
ν = rank(H) ≤ min(Nt, Nr) independent, non-interfering
channels result. The receive SNR on the channel v is given
by ρv,rx = σ2

v
Pv

σ2
n̂

. The remaining question is then to find an
appropriate power distribution P = diag(P1, ..., Pν) among
those channels.

With 1-bit quantization, however, the post-processing in
form of multiplication with UH cannot be carried out on
the quantized signal, which is why we consider it mainly
for theoretical comparison. It is thus not depicted in Fig. 1.
Instead, channel equalization can be carried out at the trans-
mitter by channel inversion (CI) at the cost of potentially
increased transmit power or a lesser receive SNR, respectively,
as the different channel weights σv cannot be leveraged and
ρv,rx = Pv

σ2
n̂

. In both cases, the achievable rate is given by the
sum rate of the achievable rates on the individual channels

I ′ (A;D) =

ν∑
v=1

I ′ (Av;Dv) . (11)
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Eq. (11) is evaluated in terms of lower bounds, cf. (9), for
different power allocation schemes in Section IV.

C. Power Allocation Schemes

Waterfilling is known to be optimal for the AWGN channel
without quantization and Gaussian distributed input symbols.
However, due to 1-bit quantization all amplitude information
is discarded at the receiver such that waterfilling is not neces-
sarily optimal anymore. We therefore analyze the performance
of the following power allocation schemes with illustrations
given in Fig. 5:

1) SVD with waterfilling (SVD WF)
2) SVD with equal power allocation (SVD EP)
3) SVD with a maximum effective channel SNR (SVD

ρmax), where no more power is assigned to a channel
if it has a maximum receive SNR ρv,rx = ρmax as long as
not every channel has this maximum receive SNR

4) CI at the transmitter distributing the power equally be-
tween all ν channels (CI Tx)

5) CI at the transmitter using only a subset of the ν channels
such that the sum rate is maximized (CI Tx opt).

IV. NUMERICAL RESULTS

Lower bounds on the performance of the 1-bit quantized,
temporally oversampled MIMO channel are evaluated based
on the signaling schemes presented in Section III and
applying the aforementioned power allocation schemes. The
results for a 2x2 and 4x4 MIMO channel are depicted in
Fig. 4. In contrast to an unquantized system, we observe
that under 1-bit quantization, waterfilling is not generally the
optimal scheme for power allocation. Due to the very limited

amplitude resolution of 1-bit, the achievable rate and, thus,
the spectral efficiency per individual channel, saturate quickly
over the SNR. Thus, it can be more efficient to either allocate
the available transmit power equally to all channels or to
define a maximum receive SNR and allocate the transmit
power to other channels if it is exceeded. With regard to
transmitter CI, using a subset of the ν available channels turns
out to compensate for the expected loss of performance due
to the reduced effective SNR. In the discrete scenario, it even
outperforms all other power allocation schemes. The obtained
lower bounds, except for CI Tx, outperform in some or all
SNR regimes the lower bounds and partly even an upper bound
on the spectral efficiency of 1-bit quantized MIMO channels
without oversampling known from literature. This shows that
1-bit quantization in combination with oversampling is an
appropriate scheme for energy-efficient high speed commu-
nication and that it can be applied to MIMO channels, even
with the reduced signal processing capabilities at the receiver.

V. CONCLUSION

In the present work, we have studied the spectral efficiency
of MIMO channels with 1-bit quantization and oversampling
in time by extending our previous results on the achievable rate
of the oversampled 1-bit quantized SISO channel. We show
its applicability to MIMO, even without performing channel
equalization operations at the receiver by using appropriate
power allocation schemes. The derived lower bounds on
the spectral efficiency partly outperform bounds known for
Nyquist sampling. This underlines the potential of oversam-
pling in time for compensating the inherent rate reduction
of 1-bit quantization while increasing the energy efficiency
compared to high resolution ADCs.
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