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We analyze the dynamics of networks of spiking neural oscillators. First, we present an exact linear
stability theory of the synchronous state for networks of arbitrary connectivity. For general neuron
rise functions, stability is determined by multiple operators, for which standard analysis is not
suitable. We describe a general nonstandard solution to the multioperator problem. Subsequently,
we derive a class of neuronal rise functions for which all stability operators become degenerate and
standard eigenvalue analysis becomes a suitable tool. Interestingly, this class is found to consist of
networks of leaky integrate-and-fire neurons. For random networks of inhibitory integrate-and-fire
neurons, we then develop an analytical approach, based on the theory of random matrices, to
precisely determine the eigenvalue distributions of the stability operators. This yields the
asymptotic relaxation time for perturbations to the synchronous state which provides the character-
istic time scale on which neurons can coordinate their activity in such networks. For networks with
finite in-degree, i.e., finite number of presynaptic inputs per neuron, we find a speed limit to
coordinating spiking activity. Even with arbitrarily strong interaction strengths neurons cannot
synchronize faster than at a certain maximal speed determined by the typical in-degree. © 2006
American Institute of Physics. �DOI: 10.1063/1.2150775�

The individual units of many physical systems, from the
planets of our solar system to the atoms in a solid, typi-
cally interact continuously in time and without significant
delay. Thus at every instant of time such a unit is influ-
enced by the current state of its interaction partners.
Moreover, particles of many-body systems are often con-
sidered to have very simple lattice topology (as in a crys-
tal) or no prescribed topology at all (as in an ideal gas).
Many important biological systems are drastically differ-
ent: their units are interacting by sending and receiving
pulses at discrete instances of time. Furthermore, biologi-
cal systems often exhibit significant delays in the cou-
plings and very complicated topologies of their interac-
tion networks. Examples of such systems include
neurons, which interact by stereotyped electrical pulses
called action potentials or spikes; crickets, which chirp to
communicate acoustically; populations of fireflies that in-
teract by short light pulses. The combination of pulse-
coupling, delays, and complicated network topology for-
mally makes the dynamical system to be investigated a
high dimensional, heterogeneous nonlinear hybrid system
with delays. Here we present an exact analysis of aspects
of the dynamics of such networks in the case of simple
one-dimensional nonlinear interacting units. These sys-
tems are simple models for the collective dynamics of re-
current networks of spiking neurons. After briefly pre-
senting stability results for the synchronous state, we
show how to use the theory of random matrices to ana-
lytically predict the eigenvalue distribution of stability
matrices and thus derive the speed of synchronization in
terms of dynamical and network parameters. We find

that networks of neural oscillators typically exhibit speed
limits and cannot synchronize faster than a certain bound
defined by the network topology.

I. INTRODUCTION

Most neurons in the human central nervous system com-
municate by sending and receiving brief stereotyped electri-
cal pulses, called action potentials or spikes. Via chemical
synaptic connections, these spikes induce changes in the po-
tential across the membrane of the connected postsynaptic
neurons.1 Due to this mode of communication, these neurons
interact at discrete instances in time only—and thus behave
substantially different from the interacting units of many
physical systems. Other important characteristics of neuronal
communication are delayed interactions �due to finite propa-
gation speed of the spikes along axons, nonzero time needed
for chemical processes across the synapses and signal trans-
mission along the dendrites� and a complex wiring diagram.
As in the example of neurons, many networks of interacting
units are not arranged in regular lattices. Instead, single units
form an intricate network of connections that mediate the
interactions. In addition, these connections are often di-
rected, meaning that a connection from one unit to another
does not imply a connection in the reverse direction. From a
dynamical systems perspective, these aspects—discrete inter-
action times, interaction delays, and nonsymmetric, compli-
cated wiring diagram—make the theoretical investigation of
the exact spiking dynamics of large neural networks a chal-
lenging task.
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Previous research has occasionally explicitly considered
interaction delays in analytical calculations; the complicated
topology of neural networks, however, has received much
less attention. As a consequence, if one wants to uncover the
dynamics beyond numerical investigations, one is often re-
stricted to mean field theoretical arguments or focuses on
globally connected networks or on networks of simple local
topology.2–11

Here we follow the simple and very useful approach of
Mirollo and Strogatz12 to represent the state of a one-
dimensional �neural� oscillator not by its membrane poten-
tial, but by a phase that encodes the time to the next spike in
the absence of any interactions. In the limit of infinitely fast
processing of incoming signals �post-synaptic currents�, the
nonlinear interactions can then be treated analytically in an
exact manner. Following some previous reports4,13–16 that
used the advantages17 of the Mirollo-Strogatz idea12 we here
present an analytical approach to exactly determine the
asymptotic dynamics of spiking neural networks of compli-
cated topology. We particularly focus on how, and how fast,
neurons can synchronize their spikes, i.e., coordinate their
activity in time in networks of random topology.

The paper is organized as follows. In Sec. II we briefly
introduce model networks of pulse-coupled neural oscillators
and state the research question. We are interested in the sta-
bility of the synchronous state and its asymptotic synchroni-
zation properties. Section III gives the details of the deriva-
tion of nonlinear stroboscopic maps of perturbed
synchronous states in networks of arbitrary connectivity. We
explain the emergence of piecewise analytic maps where the
pieces are determined by the temporal spiking order of a
particular perturbation. This results in a multiple operator
nonlinear stability problem. In Sec. IV, we derive first order
operators from the stroboscopic maps leading to a stability
operator with multiple piecewise linear parts. Since standard
eigenvalue analysis is not appropriate for such multiple op-
erator problems, we describe an alternative method to dem-
onstrate stability in Sec. V. Section VI shows how degen-
eracy can be enforced, i.e., how all multiple linear operators
can be made degenerate to one single stability matrix. It
turns out that the oscillator rise functions that guarantee de-
generacy are of integrate-and-fire type. For this stability
problem, standard eigenvalue analysis is suitable. For two
ensembles of random networks, we first study their eigen-
value distributions �Sec. VII�, analytically predict these dis-
tributions by measures derived from Random Matrix Theory
�Sec. VIII� and compare the results between numerics and
analytics �Sec. IX�. In Sec. X, we discuss consequences of
the eigenvalue distributions for the speed of synchronization
of neural oscillators. We close in Sec. XI, where we summa-
rize the results, discuss some of their consequences and give
a brief outlook.

This paper presents new aspects and detailed descrip-
tions of the determination of the asymptotic synchronization
time by Random Matrix Theory. Parts of the results on sta-
bility and speed limits to network synchronization have been
reported in brief in Refs. 15 and 16, respectively. Details of
the stability theory, in particular exact eigenvalue bounds and
asymptotic stability in the multioperator case, not discussed

here, can be found in Ref. 18. For effects on parameter in-
homogeneities, leading to close to synchronous patterns of
spikes, we refer the reader to Ref. 19.

II. MODEL OF NEURAL OSCILLATORS

Consider a system of N neural oscillators that interact by
sending and receiving pulses via directed connections. The
sets Pre�i� of presynaptic oscillators having input to an os-
cillator i define the network connectivity. The number of
inputs

ki ª �Pre�i�� �1�

to every oscillator i, called in-degree in graph theory20 is
nonzero, ki�1, and no further restriction on the network
topology is imposed unless otherwise stated.

The state of an individual oscillator j is represented by a
phaselike variable � j � �−� ,1� that increases uniformly in
time,

d� j/dt = 1. �2�

Upon crossing a firing threshold, � j�tf��1, at time tf an
oscillator is instantaneously reset to zero, � j�tf

+�=0, and a
pulse is sent. After a delay time � this pulse is received by all
oscillators i connected to j �for which j�Pre�i�� and induces
an instantaneous phase jump

�i��tf + ��+� = U−1�U��i�tf + �� + �ij�� . �3�

Here, �ij �0 are the coupling strengths from j to i, which are
taken to be purely inhibitory ��ij �0 if j�Pre�i�, �ij =0 oth-
erwise� and normalized,

�
j=1

N

�ij = � , �4�

throughout this paper.
The rise function U, which mediates the interactions, is

monotonic increasing, U��0, concave �down�, U��0, and
represents the subthreshold dynamics of individual oscilla-
tors. This models the dynamics of the membrane potential of
a biological neuron that is driven by a current. Note that the
function U need to be defined on the entire range of acces-
sible phase values. In particular, inhibitory coupling can lead
to negative phase values �i�0.

Large sparsely connected networks of inhibitory neurons
were known before to exhibit irregular asynchronous spiking
states in which excitatory drive and inhibitory feedback bal-
ance out and fluctuation induce spikes.5–7 However, in a pre-
vious study15 we found that regular states, in the homoge-
neous case defined by exact spike synchrony, coexist with
irregular states in these networks at the same parameters
�Fig. 1�. This means that by external perturbations one can
switch between regular and irregular activity. In particular,
strong excitatory synchronous inputs can synchronize the
network activity. Strong random inputs can switch the net-
work back to the balanced state. If random inputs to the
synchronous state are not too strong, the activity relaxes
back to the synchronous state. Two major questions intrigued
us: �1� Why, given an irregular topology of the network, can
the regular synchronous state be stable such that neurons
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resynchronize their spikes upon sufficiently small perturba-
tions? �2� What is the typical time scale for resynchroniza-
tion, i.e., how fast can neurons coordinate their spiking ac-
tivity if they are not directly interconnected but interact on
large networks of complex topology?

We address these questions analytically in the following,
focusing on the speed of synchronization. All results are de-
rived for the simplest of all regular states, the synchronous
periodic state, in which all neural oscillators exhibit identical
dynamics. However, a similar approach can be used for clus-
ter states in which two or more groups of synchronized os-
cillators exist,4,13 as well as for any periodic solution because
they can be traced analytically in the model system used. In
the presence of inhomogeneity, the approach needs to be
modified but similar principles are expected to apply.

III. NONLINEAR STROBOSCOPIC MAPS: EMERGENCE
OF MULTIPLE OPERATORS

The synchronous state

�i�t� = �0�t� for all i , �5�

in which all oscillators display identical phases �0�t� on a
periodic orbit such that �0�t+T�=�0�t�, is one of the sim-
plest states a network of neural oscillators may assume. The
normalization of the coupling strengths �4� ensures that it
exists but does not tell whether or not it is stable and an
attractor of the system. To uncover this, we perform a stabil-
ity analysis of the synchronous state the period of which is
given by

T = � + 1 − 	 , �6�

where

	 = U−1�U��� + �� . �7�

For inhibitory coupling ���0� and sufficiently small delay
��1 the total input is subthreshold, U���+��1 such that
	�1. A perturbation

��0� ¬ � = �
1, . . . ,
N� �8�

to the phases is defined by


i = �i�0� − �0�0� . �9�

If we assume that the perturbation is small, in the sense that

max
i


i − min
i


i � �/2 �10�

it can be considered to affect the phases of the oscillators at
some time just after all signals have been received, i.e., after
a time t� t0+� if all oscillators have fired at t= t0. Such a
perturbation will affect the time of the next firing events
because the larger the perturbed phase of an oscillator is, the
earlier this oscillator reaches threshold and sends a signal.

To construct a stroboscopic period-T map, � is ordered
according to the rank order rank��� of the 
i: For each oscil-
lator i we label the perturbations 
 j of its presynaptic oscil-
lators j�Pre�i� according to their size

�i,1 � �i,2 � ¯ � �i,ki
, �11�

where ki is the number of its presynaptic oscillators �1�. The
index n� �1, . . . ,ki� counts the signals that arrive succes-
sively. Thus, if jn	 jn�i��Pre�i� labels the presynaptic oscil-
lator from which i receives its nth signal during the period
considered, we have

�i,n = 
 jn�i�. �12�

In addition, we define

�i,0 = 
i. �13�

For illustration, let us consider an oscillator i that has
exactly two presynaptic oscillators j and j� such that Pre�i�
= �j , j�� and ki=2 �Figs. 2�a� and 2�d��. For certain perturba-
tions, oscillator i first receives a signal from oscillator j� and
slightly later from oscillator j. This determines the rank or-
der, 
 j��
 j, and hence �i,1=
 j� and �i,2=
 j �Fig. 2�a��. Per-
turbations with the opposite rank order, 
 j �
 j�, lead to the
opposite labeling, �i,1=
 j and �i,2=
 j� �Fig. 2�d��. In gen-
eral, relabeling cannot be achieved by permuting the indices
because one oscillator j� may receive an input connection
from yet another one m whereas oscillator j may not receive
this connection.

We now consider a fixed arbitrary perturbation, the rank
order of which determines the �i,n according to the inequali-
ties �11�. Using the phase shift function h�� ,��=U−1�U���
+�� and denoting

Di,n ª �i,n−1 − �i,n �14�

for n� �1, . . . ,ki� we calculate the time evolution of phase-
perturbations 
i satisfying the bound �10�, starting near
�0�0�=� /2 without loss of generality. The stroboscopic time-
T map of the perturbations, 
i�
i�T�, is obtained from the
scheme given in Table I. The time to threshold of oscillator i,
which is given in the lower left entry of the scheme,

Ti
�0�

ª

�

2
− �i,ki

+ 1 − �i,ki
�15�

is about �0�0�=� /2 smaller than the period T. Hence the
period-T map of the perturbation can be expressed as

FIG. 1. Irregular, balanced activity coexists with regular, synchronous ac-
tivity. This enables switching by external stimulus signals. Random network
of connection probability p=0.2 �N=400, I=4.0, �=−16.0, �=0.14�. Firing
times of five oscillators are shown in a time window �t=240. Vertical
dashed lines mark external perturbations. �i� Large excitatory pulses lead to
synchronous state, �ii� a small random perturbation ����i � �0.18� is re-
stored, �iii� a sufficiently large random perturbation ����i � �0.36� leads to
an irregular state. Bottom, time evolution of the spread of the spike times
after perturbation �ii�, total length �t=0.25 each. Decreasing width of the
distribution indicates resynchronization. Figure modified from Ref. 15.
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i�T� = T − Ti
�0� −

�

2
= �i,ki

− 	 + �i,ki
, �16�

where 	 is given by Eq. �7�.

IV. MULTIPLE FIRST ORDER OPERATORS

In order to perform a local stability analysis, we consider
the first order approximations of the maps derived in the
preceding section. Expanding �i,ki

for small Di,n1 one can
prove by induction18 that

�i,ki
� 	 + �

n=1

ki

pi,n−1Di,n, �17�

where

pi,n ª
U��U−1�U��� + �m=1

n �ijm��
U��U−1�U��� + ���

�18�

for n� �0,1 , . . . ,ki� encodes the effect of an individual in-
coming signal of strength �ijn

. The statement x�y means
that x=y+�i,nO�Di,n

2 � as all Di,n→0. Substituting the first
order approximation Eq. �17� into Eq. �16� using Eq. �14�
leads to


i�T� � �
n=1

ki

pi,n−1��i,n−1 − �i,n� + �i,ki
�19�

such that after rewriting


i�T� � pi,0�i,0 + �
n=1

ki

�pi,n − pi,n−1��i,n �20�

to first order in all �i,n. Since �i,n=
 jn�i� for n� �1, . . . ,ki�
and �i,0=
i according to Eqs. �12� and �13�, this results in a
first order map

��T� � A� , �21�

where the elements of the matrix A are given by

Aij = 
pi,n − pi,n−1 if j = jn � Pre�i� ,

pi,0 if j = i ,

0 if j � Pre�i� � �i� .

�22�

As for the nonlinear stroboscopic maps �16�, because jn in
Eq. �22� identifies the nth pulse received during this period
by oscillator i, the first order operator depends on the rank
order of the perturbations, A=A�rank����. The variables pi,n

encode phase jumps evoked by all pulses up to the nth one
received. Since the matrix elements �22� are differences of
these pi,n, matrix elements Ai,j and Ai,j� with j� j� have in
general different values depending on the order of incoming
signals.

This multioperator problem is induced by the structure
of the network together with the pulsed interactions. For net-
works with homogeneous, global coupling different matrices
A can be identified by an appropriate permutation of the
oscillator indices. In general, however, this is impossible.

FIG. 2. Two signals arriving almost simultaneously induce different phase changes, depending on their rank order. The figure illustrates a simple case where
Pre�i�= �j , j�� and 
i=0, �a�–�c� for 
 j��
 j and �d�–�f� for 
 j �
 j�. �a�, �d� Local patch of the network displaying the reception times of signals that are
received by oscillator i. Whereas in �a� the signal from j� arrives before the signal of j, the situation in �d� is reversed. �b�, �e� Identical coupling strengths
induce identical jumps of the potential U but �c�, �f� the phase jumps these signals induce are different and depend on the order of the incoming signals. For
small �
i � 1, individual phase jumps are encoded by the pi,n, see �18�. The figure displays an example for inhibitory �negative, phase-retarding� coupling but
the mechanism generating multiple operators does not depend on the signs of the coupling strengths.
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Thus even for a network of given number of neuronal oscil-
lators at given connection strengths and given delay and in-
teraction function, the stability of the synchronous state is
described by many different operators that depend on the
rank order of the perturbation.

V. ALTERNATIVE METHOD TO DETERMINE
STABILITY

In most stability problems for periodic orbits in dynami-
cal systems theory, finding the eigenvalues of an appropriate
stroboscopic map is sufficient for determining the stability of
the orbit. Typically, one eigenvalue equals one and corre-
sponds to perturbation along the periodic orbit trajectory
such that there is no restoring force. If all other eigenvalues
are smaller than one in absolute value, the periodic orbit is
asymptotically stable and all sufficiently close initial states
converge to it.

On the contrary, the multioperator property of the stabil-
ity problem considered here implies that standard eigenvalue
analysis fails. However, we found other methods to deter-
mine the stability of the synchronous periodic state. We
present the results briefly in the following.

To show plain �nonasymptotic� linear stability, observe
that the row-sums of the stability matrices are normalized,

�
j=1

N

Aij = 1 �23�

reflecting the invariance of the periodic orbit with respect to
perturbations along it. Given that the coupling strengths are
purely inhibitory, �ij �0, one can show that the pi,n �Eq.
�18�� are positive and bounded above by one,

0 � pi,n � 1, �24�

and that they increase with n,

pi,n−1 � pi,n. �25�

Hence the nonzero off-diagonal elements are positive, Aijn
= pi,n− pi,n−1�0 such that

Aij � 0 �26�

for all i , j� �1, . . . ,N�. Moreover the diagonal elements

Aii = pi,0 =
U����

U��U−1�U��� + ���
¬ A0 �27�

are identical for all i and satisfy

0 � A0 � 1 �28�

because U is monotonically increasing, U�����0, and con-
cave down, U�����0, for all �. It is important to note that A
has the properties Eqs. �23�–�28� independent of the param-
eters, the network connectivity, and the specific perturbation
considered. With these observations, it is straightforward to
show that the synchronous state is stable in the sense that
small perturbations cannot grow: To first order, a given per-
turbation �=��0� satisfies

���T�� ª max
i

�
i�T�� �29�

=max
i
��

j=1

N

Aij
 j� �30�

�max
i

�
j

�Aij��
 j� �31�

�max
i

�
j

�Aij�max
k

�
k� �32�

=max
i

�
j

Aijmax
k

�
k� �33�

=max
k

�
k� �34�

=�� � , �35�

where we use the vector norm

�� � ª max
i

�
i� . �36�

Thus the length of a perturbation vector does not increase
during one period implying that it does not increase for an
arbitrary long time. Using methods from graph theory, one
can show18 that for strongly connected networks �in which
every oscillator can be reached from every other by follow-
ing a directed path on the network� the synchronous state is
asymptotically stable such that from sufficiently close initial
conditions the spiking activity will become exactly synchro-
nous. The results on asymptotic stability use the recurrence
properties of strongly connected networks and rely on the
fact that every oscillator can communicate with every other
at least indirectly. Thus the results for plain and asymptotic

TABLE I. Time evolution of oscillator i in response to ki successively
incoming signals from its presynaptic oscillators jn, n� �1, . . . ,ki�, from
which i receives the nth signal during this period. The right-hand column
gives the phases �i�t� at times t given in the left-hand column. The time
evolution is shown for a part of one period ranging from �i� /2 to reset,
1→0, such that �i=0 in the last row. The first row gives the initial condition
�i�0�=� /2+
i. The following rows describe the reception of the ki signals
during this period whereby the phases are mapped to �i,n after the nth signal
has been received. The last row describes the reset at threshold such that the
respective time Ti

�0�=� /2−�i,ki
+1−�i,ki

gives the time to threshold of oscil-
lator i.

t �i�t�

0 �

2
+
i¬

�

2
+�i,0

�

2
−�i,1

h��+Di,1 ,�ij1
�¬�i,1

�

2
−�i,2

h��i,1+Di,2 ,�ij2
�¬�i,2

� �
�

2
−�i,ki

h��i,ki−1+Di,ki
,�ijki

�¬�i,ki

�

2
−�i,ki

+1−�i,ki

reset: 1�0
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stability are independent of the specific choice of parameters,
�ij �0, �� �0,1�, the potential function U���, and the rank
order of the perturbation. They are derived without using the
eigenvalues or eigenvectors of a given stability matrix and
solve the stability problem exactly. In summary this means
that any network of the type described above, with normal-
ized inhibitory coupling Eq. �4� exhibits a synchronous state
that is at least marginally stable; it is moreover asymptoti-
cally stable if the network is strongly connected.

A simple intuitive argument why networks of inhibitorily
coupled neural oscillators synchronize can be obtained from
the response dynamics of individual units, Fig. 3. If two �or
more� neurons simultaneously receive inhibitory input of the
same size, their potential is decreased by the same amount
such that their potential difference stays unchanged. Due to
the negative curvature of the rise function that mediates the
negative input, this, however, leads to a decrease of their
phase differences, which encode the future spike times. This
intuitive explanation holds for simple situations like globally
coupled systems with homogeneous coupling strengths.
However, the synchronization dynamics is more complicated
if the inputs are not of equal size or only one input exists for
some unit, as, e.g., in a directed ring of neurons.

In the case of integrate and fire rise functions U=UIF one
can derive18 stability results based on the eigensystem be-
cause all stability operators become degenerate; see below
for details of the degeneracy for networks of integrate and
fire neurons. The Geršgorin disk theorem then bounds all
eigenvalues in a disk of radius rG=1−A0 centered at A0,
touching the unit circle from the inside at z=1. It ensures that
the eigenvalue largest in magnitude is �1=1, with corre-
sponding eigenvector v1� �1,1 , . . . ,1�T. For strongly con-
nected networks, the Perron Frobenius theorem implies that
this eigenvalue is unique, i.e., all other eigenvalues are
smaller than one in absolute value. Thus all perturbations
that contain components other than v1 will decay towards a
uniform perturbation. Such an analysis confirms that net-
works of arbitrary connectivity are at least marginally stable
and strongly connected networks exhibit asymptotically
stable synchronous states, as shown above by alternative
methods.

If networks consist of several strongly connected com-
ponents, the analysis is much more involved and structural
identification of strongly connected components and the wir-
ing among them is required. Such networks display a kind of
nonsynchronous activity that is controlled by the coarse and

fine scale structure of the network, cf. Ref. 21. This state
seems to be universal among networks of coupled oscillators
exhibiting a synchronization mechanism.

VI. ENFORCING DEGENERACY:
THE PHOENIX INTEGRATE-AND-FIRE

From the general class of concave increasing rise func-
tions, we now derive a subclass of rise functions in which all
multiple operators degenerate to a single stability matrix if
the coupling strength are suitably chosen. Interestingly, it
turns out that the class of standard leaky integrate-and-fire
oscillators provides potential functions consistent with this
condition.

A general potential function U that is monotonically in-
creasing, U�����0, and concave �down�, U�����0, yielded
stability operators A in the first order map �21� that are de-
fined by their respective matrix elements �22� in terms of
differences of the pi,n �Eq. �18�� that in turn describe the
effect of the nth signal received by oscillator i within the
period considered. Thus, the actual stability operator to be
used for a specific perturbation depends on the rank order of
the incoming signals given this perturbation. Can the mul-
tiple linear operators be made degenerate? If so, the eigen-
system of the resulting matrix completely describes the
asymptotic synchronization dynamics.

Consider a network for which the coupling strengths of
all presynaptic oscillators j�Pre�i� are identical,

�ij =
�

ki
�37�

for each oscillator i. For such a network, two matrix ele-
ments are interchanged at the boundary of the domains of
definition of an individual operator. For instance, assume that
an oscillator i has exactly two presynaptic oscillators j and
j�. If a perturbation is changed such that 
 j �
 j� is turned
into 
 j �
 j�, the operator A will change from A=A�1� to A
=A�2� where the nonzero off-diagonal elements of row i read

Aij
�1� = Aij1

= pi,1 − pi,0, Aij�
�1� = Aij2

= pi,2 − pi,1, �38�

Aij
�2� = Aij2

= pi,2 − pi,1, Aij�
�2� = Aij1

= pi,1 − pi,0, �39�

respectively. As above, j1 labels the oscillator presynaptic to
i that has sent the first signal to i during the period consid-
ered, and j2 labels the presynaptic oscillator that has sent the
second one such that

j1 = j and j2 = j� Û 
 j � 
 j�, �40�

j1 = j� and j2 = j Û 
 j� � 
 j . �41�

Degeneracy of these two, in general distinct, cases requires
that

Aij
�k�=

!
Aij

�l� �42�

for k , l� �1,2� or, equivalently,

FIG. 3. Intuitive synchronization mechanism: Inhibition synchronizes due to
the concavity of U. Simultaneously received inhibitory input decreases
phase differences between the receiving oscillators, ��2�t+�−�1�t+� �
� ��2�t�−�1�t��.
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pi,2 − pi,1=
!

pi,1 − pi,0. �43�

If every oscillator i� �1, . . . ,N� in the network has ki

presynaptic oscillators, the degeneracy condition is easily
generalized to Eq. �42� with k and l running over all different
stability matrices that occur for all possible differently or-
dered perturbations. Expressed in terms of the pi,n, which
describe the effect of individual incoming pulses, we obtain

pi,n − pi,n−1=
!

pi,m − pi,m−1 �44�

for all i� �1, . . . ,N� and all n ,m� �1, . . . ,ki�.
If we define

q�xi,n� ª pi,n =
U��U−1�U��� + xi,n��
U��U−1�U��� + ���

, �45�

where

xi,n = �
m=1

n

�ijm
=

n�

ki
�46�

for n�ki, the requirement �44� is satisfied if

q��x� = const �47�

in the relevant interval x� �� ,0�. Note that ��0 because we
consider inhibitory coupling. The first derivative of q�x�
satisfies

q��x� �
U��U−1�U��� + x��
U��U−1�U��� + x��

¬

U��h�x��
U��h�x��

, �48�

where h�x�=U−1�U���+x� is an invertible function of x. To-
gether with Eq. �47� this leads to a differential equation

U� = cU�, �49�

where c�R is a constant. The solution U���=a+bec� with
constants a ,b ,c�R together with the normalization U�0�
=0, U�1�=1, and the monotonicity and concavity require-
ments, U�����0 and U�����0, yield the one-parameter
family of solutions in integrate-and-fire form

U��� = UIF��� = I�1 − e−�TIF� , �50�

where I�1 and TIF= ln�I / �I−1���0. This leads to

UIF� ��� = ITIFe−�TIF, �51�

UIF
−1�y� =

1

TIF
ln�1 −

y

I
�−1

, �52�

and

UIF
−1�UIF��� + �� =

1

TIF
ln�e−�TIF −

�

I
�−1

�53�

such that

UIF� �UIF
−1�U��� + ��� = TIF�Ie−�TIF − �� �54�

and

pi,n =
UIF� �UIF

−1�UIF��� + �m=1
n �ijm��

UIF� �UIF
−1�UIF��� + ���

�55�

=
Ie−�TIF − �m=1

n �ijm

Ie−�TIF − �
. �56�

Thus, by construction, if we substitute �ijn
=� /ki all nonzero

off-diagonal elements

Aijn
= pi,n − pi,n−1 =

1

Ie−�TIF − �

�

ki
�57�

in one row i of the stability matrix are identical,

Aijn
= Aijm

, �58�

for all n ,m� �1, . . . ,ki�.
One should note that, given the coupling strengths sat-

isfy Eq. �37�, the condition �47� is sufficient but not neces-
sary for degeneracy of all operators. At given parameters and
a given network connectivity, one can construct potential
functions that fulfill condition �47� only on �local� average
such that the requirement for identical �nonzero� off-diagonal
matrix elements in each row �44� is still satisfied. If we do
not a priori fix the parameters and the network structure,
however, the potential function UIF uniquely leads to opera-
tor degeneracy within the class of concave down, increasing
functions.

This degeneracy has important consequences. Whereas
for the multioperator problem the dynamics in the vicinity of
the synchronous state is determined by an �unknown but de-
terministic� sequence of different linear operators, the dy-
namics in case of degeneracy is typically determined by the
eigenvectors and eigenvalues of a single matrix A. In particu-
lar, the second largest eigenvalue

�m ª max���i�:��i� � 1� �59�

of this matrix A determines the asymptotic speed of conver-
gence towards the synchronous state,

����n + l�T�� � �m
n ���lT�� �60�

for n , l�1.
Interestingly, the derivation of a condition for degen-

eracy led to the standard leaky integrate-and-fire model as a
subclass of models that imply degeneracy for suitably chosen
coupling strengths. Starting from this degenerate case of op-
erators now enables us to develop a characterization of the
synchronization dynamics in terms of eigenvalues of that
operator.

VII. LOCATION OF EIGENVALUES IN LARGE
RANDOM NETWORKS

How fast do random networks synchronize? The charac-
teristic asymptotic time of synchronization, �syn=−1/ ln��m�,
see Eq. �93� below, is given in terms of the second largest
eigenvalue �m that we determine from the distribution of
eigenvalues in the following sections. In this section, we
present examples for the distribution of eigenvalues of sta-
bility matrices describing the asymptotic dynamics of large
asymmetric random networks of integrate-and-fire oscillators
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in the vicinity of the synchronous state. From the details of
the analysis described above, we know that all eigenvalues
must be located in a Geršgorin disk K in the complex plane
that is centered at A0�1 �Eq. �28�� and has radius 1−A0 such
that it contacts the unit circle at z=1 from the inside. In the
following, we consider neural oscillators that interact inhibi-
torily on two classes of random networks �defined in Secs.
VII A and VII B�. The potential functions of the oscillators
are of the integrate-and-fire form U���=UIF���= I�1
−e−�TIF�, where TIF= ln�I / �I−1��. The nonzero coupling
strength are chosen according to �ij =� /ki. We consider only
sparsely connected networks which lead to sparse stability
matrices where we term a matrix “sparse” if at least a posi-
tive fraction of its entries is zero in the limit of large N.

A. Networks with constant in-degree

The first class of networks is given by random networks
in which all oscillators i have the same number ki=k of pr-
esynaptic oscillators which are independently drawn from
the set of all other oscillators with uniform probability. When
increasing the network size N, the number of connections k
per oscillator is kept fixed. We numerically determined the
eigenvalues of different stability matrices changing the net-
work size N� �26 , . . . ,214�, the in-degree k� �2, . . .28�, and
the dynamical parameters �, �, and I such that A0

� �0.6,0.9�. In general, we find that, for sufficiently large N
and sufficiently large k, the nontrivial eigenvalues resemble a
disk in the complex plane that is centered at about A0 but has
a radius r that is smaller than the upper bound given by the
Geršgorin theorem,

r � 1 − A0. �61�

Note that, due to the invariance of the periodic orbit with
respect to globally constant phase shifts, there is always a
trivial eigenvalue �1=1. As an example, the eigenvalue dis-
tributions in the complex plane are displayed in Fig. 4 for
specific parameters and differently sized networks.

B. Networks with constant connection probability

The second class of networks is given by random net-
works for which every connection between any oscillator i

and any other oscillator j� i is present with given probability
p. When increasing N, this probability is kept fixed such that
the number of connections per oscillator is proportional to N.
As for the other class of random networks, we find numeri-
cally that the distribution of nontrivial eigenvalues resemble
disks in the complex plane that are smaller than the Gerš-
gorin disk �61� but centered at about the same point A0. We
numerically determined the distribution of eigenvalues for
N� �28 , . . . ,214�, p� �0.01,0.2�, and the dynamical param-
eters �, �, and I such that A0� �0.6,0.9�. Figure 5 displays
examples of eigenvalue distributions for differently sized
networks at otherwise identical parameters.

VIII. PREDICTIONS FROM RANDOM MATRIX THEORY

The results of the preceding section indicate that the ei-
genvalues of stability matrices for large asymmetric random
networks of integrate-and-fire oscillators are located in disks
in the complex plane if the network size N is sufficiently
large. If this could be demonstrated independent of specific
parameters, it would be guaranteed that all nontrivial eigen-
values are separated from the unit circle. Thus the main con-
dition required for the robustness of the stable synchronous
state under a structural perturbation to the dynamics of the
system would be satisfied. Moreover, the asymptotic syn-
chronization time can be predicted analytically from these
results.

How can we predict the location of the eigenvalues?
Since we are considering random networks, a natural starting
point is the theory of random matrices. Random Matrix
Theory has been investigated intensively since the early
1950s �Ref. 22� �see also Refs. 23 and 24� and turned out to
be a valuable tool for both qualitative and quantitative de-
scription of spectral properties of complex systems. For in-
stance, it describes level correlations in nuclear physics25 as
well as quantum mechanical aspects of chaos.26,27 In appli-
cations of Random Matrix Theory to physical problems, it is
generally assumed that the details of the physical system are
less important for many statistical properties of interest. Of-
ten it turns out that important statistical properties such as
the distribution of spacings of energy levels in quantum sys-
tems are well described by the respective properties of ran-

FIG. 4. Distribution of eigenvalues �i in the complex plane for networks of fixed in-degree k=8 and different sizes �a� N=32, �b� N=128, �c� N=512. For
large networks, the nontrivial eigenvalues seem to be distributed uniformly on a disk in the complex plane. The arc through the trivial eigenvalue �dot at z
=�1=1� is a sector of the unit circle. Parameters of integrate-and-fire oscillators are I=1.1, �=−0.2, �=0.05.

015108-8 Timme, Geisel, and Wolf Chaos 16, 015108 �2006�



dom matrices that respect the same symmetries as the physi-
cal system. Both theoretical investigations and applications
of Random Matrix Theory have focused on symmetric ma-
trices. Asymmetric matrices are less well understood28 and
found only limited applicability. In the following, we will
evaluate the applicability of Random Matrix Theory for es-
timating distributions of eigenvalues of asymmetric stability
matrices.

A. Ensembles of symmetric and asymmetric
random matrices

For the case of real symmetric random N�N matrices
J=JT with independent, identically distributed components
Jij =Jji, it is believed29,30 that there are exactly two univer-
sality classes. Every ensemble of matrices within one of
these universality classes exhibits the same distribution of
eigenvalues in the limit of large matrices, N→�, but the
eigenvalue distributions are in general different for the two
classes. Both universality classes are characterized by spe-
cific ensembles of matrices the elements of which are distrib-
uted according to a simple probability distribution. The class
of sparse matrices is represented by the probability
distribution

psparse�Jij� =
k

N

�Jij −

1

k
� + �1 −

k

N
�
�Jij� , �62�

where k is the �finite� average number of entries in any row
i and 
�·� is the Dirac delta distribution. The class of Gauss-
ian random matrices is exemplified by a Gaussian distribu-
tion of matrix elements

pGauss�Jij� = N1/2�2�s2�−�1/2� exp�−
NJij

2

2s2 � . �63�

To obtain symmetric matrices, one chooses Jij =Jji and Jii

=0 for both ensembles. Thus the arithmetic mean of the ei-
genvalues is zero,

��i�i ª
1

N
�
i=1

N

�i =
1

N
�
i=1

N

Jii = 0 �64�

and the ensemble variance of the matrix elements scale like

�2 = �Jij
2 � �

r2

N
�65�

for N�1. For the Gaussian symmetric ensemble, it is
known22,24 that the distribution of eigenvalues �Gauss

s ��� in
the limit N→� is given by Wigner’s semicircle law

�Gauss
s ��� = 
 1

2�r2 �4r2 − �2�1/2 if ��� � 2r ,

0 otherwise.

�66�

The ensemble of sparse matrices29–32 exhibits a different ei-
genvalue distribution �sparse

s ��� that depends on the finite
number k of nonzero entries per row and approaches the
distribution �Gauss

s ��� in the limit of large k such that

lim
k→�

�sparse
s ��� = �Gauss

s ��� . �67�

It is important to note that in the limit of large N the distri-
butions �sparse

s and �Gauss
s eigenvalues depend only on the one

parameter r, that is derived from the variance of the matrix
elements �65�.

For real, asymmetric matrices �independent Jij and Jji�,
there are no analytical results for the case of sparse matrices
but only for the case of Gaussian random matrices. The
Gaussian asymmetric ensemble �e.g., Eq. �63� with indepen-
dent Jij and Jji� yields the distribution of complex eigenval-
ues in a disk in the complex plane33,34

�Gauss
a ��� = ���r2�−1 if ��� � r ,

0 otherwise,
�68�

where r from Eq. �65� is the radius of the disk that is cen-
tered at zero. Like in the case of symmetric matrices, this
distribution also depends only on one parameter r, that is
derived from the variance of the matrix elements.

B. Stability matrices and the Gaussian
asymmetric ensemble

In the numerical studies of stability matrices for random
networks �Sec. VII�, we observed that all nontrivial eigen-
values of sparse stability matrices A are located on or near a
disk in the complex plane �Figs. 4 and 5�. Since this is also

FIG. 5. Distribution of eigenvalues �i in the complex plane for networks of fixed connection probability p=0.1 and different sizes �a� N=32, �b� N=128, �c�
N=512. For large networks, the nontrivial eigenvalues seem to be distributed uniformly on a disk in the complex plane, the radius of which shrinks with
increasing network size. The arc through the trivial eigenvalue �dot at z=�1=1� is a sector of the unit circle. Parameters of integrate-and-fire oscillators are
I=1.1, �=−0.2, �=0.05.
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predicted by the theory of asymmetric Gaussian random ma-
trices, let us compare these predictions to numerical results.
If the distribution of eigenvalues of sparse asymmetric ran-
dom matrices �sparse

a for k�1 is approximately equal to the
distribution of Gaussian asymmetric matrices, �sparse

a ���
�Gauss

a ���, in analogy to the case of symmetric matrices
�67�, and Random Matrix Theory is applicable to the stability
matrices at all, we can obtain an analytical prediction for the
radii of the disks of eigenvalues.

The elements of the original stability matrix A have an
average

�Aij� =
1

N
�
j=1

N

Aij =
1

N
�69�

and a second moment

�Aij
2 � =

1

N
�
j=1

N

Aij
2 =

1

N�A0
2 + �

j=1
j�i

N

Aij
2� , �70�

where the off-diagonal sum is bounded above and below by

�1 − A0�2

max
i

ki
� �

j=1
j�i

N

Aij
2 � �1 − A0�2 �71�

due to the normalization �23�.
The variance �A

2 = �Aij
2 �− �Aij�2 given by

�A
2 =

A0
2

N
+

� j�iAij
2

N
−

1

N2 �72�

is thus also bounded

A0
2

N
+

�1 − A0�2

N�N − 1�
−

1

N2 � �A
2 �

A0
2 + �1 − A0�2

N
−

1

N2 �73�

because maxi ki�N−1. The eigenvalues of the original ma-
trix A have the average value

��i� ª
1

N
�
i=1

N

�i =
1

N
�
i=1

N

Aii = A0. �74�

To directly compare the ensemble of the stability matrices
considered here to random matrices with zero average eigen-
value, ��i�=0, and given variance �65�, we transform the
stability matrix A to

Aij� = Aij − A0
ij �75�

for i� �1, . . . ,N�. Here 
ij denotes the Kronecker delta, 
ij

=1 if i= j and 
ij =0 if i� j. The transformation to A� shifts
all eigenvalues by −A0 and hence the average value of the
eigenvalues to

��i�� = 0. �76�

In addition

�Aij� � = �Aij� −
A0

N
=

�1 − A0�
N

�77�

and

�Aij�
2� = �Aij

2 � −
A0

2

N
�78�

such that the variance is

�A�
2 = �A

2 −
A0

2

N
+

2A0

N2 −
A0

2

N2 �79�

=
1

N��
j=1
j�i

N

Aij
2 −

�1 − A0�2

N � . �80�

The eigenvalue distribution of this ensemble of rescaled
stability matrices A� for random networks may be compared
to the Gaussian asymmetric ensemble with zero average ei-
genvalue and variance �A�

2 . In such a comparison, the addi-
tional eigenvalue �1=1 of A, is neglected. This should not
matter for large networks �N�1�.

It is important to note that we compare the location of
eigenvalues of a sparse matrix with deterministic nonzero
entries at certain random positions with the eigenvalue dis-
tribution of the Gaussian ensemble, which consists of fully
occupied matrices with purely random entries.

If we assume that the eigenvalue distributions for these
two ensembles of networks with fixed in-degree and net-
works with a fixed connection probability are similar to those
for random Gaussian matrices, we obtain a prediction

r2  N�A�
2 �81�

for the radius of the disk of eigenvalues from Eq. �65�. For
further investigations, we consider the two exemplary classes
of large random networks of integrate-and-fire oscillators
discussed in Sec. VII. If we assume that the stability matrix
A has exactly k nonzero off-diagonal elements per row and
identical coupling strength �ij =� /k between connected
integrate-and-fire oscillators, the off-diagonal sum is exactly
equal to

�
n=1

k

Aijn
2 =

�1 − A0�2

k
, �82�

such that the variance of A equals

�A
2 =

A0
2

N
+

�1 − A0�2

Nk
−

1

N2 �83�

and the variance of A� is given by

�A�
2 =

1

N
�1 − A0�2�1

k
−

1

N
� . �84�

If we now take the prediction from Random Matrix Theory
rRMT for the radius r of the disk of eigenvalues of the stabil-
ity matrices, we obtain

rRMT = N1/2�A� = �1 − A0��1

k
−

1

N
�1/2

. �85�

In random networks where all oscillators have exactly k pr-
esynaptic oscillators, the approximation for the variance of A
�and thus of A�� is exact. If the random network is con-
structed by choosing every connection independently with
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probability p, the variance �83� is only an approximation
because we replaced �ki

−1�i by k−1 which gives the order of
magnitude of the number of connections as a function of N.

Substituting A0=1−� j,j�iAij for integrate and fire neu-
rons �57� into the radius prediction rRMT, Eq. �85�, we obtain

rRMT
IF = � �

Ie−�TIF − �
��1

k
−

1

N
�1/2

�86�

which explicitly contains all parameters of the system.

IX. NUMERICAL TESTS OF EIGENVALUE
PREDICTIONS

We verified this scaling law for different parameters A0

determined by different I, �, and � and found good agree-
ment with numerically determined eigenvalue distributions.
We compared the theoretical prediction �85� to the numerical
data for both ensembles considered in Sec. VII.

A. Networks with constant in-degree

At a given network connectivity and given parameters,
we obtained all eigenvalues of the stability matrix A for sev-
eral network sizes N and in-degrees k. We find that the pre-
diction obtained from Random Matrix Theory well describes
the numerically determined eigenvalues. Examples of eigen-
value distributions for matrices at fixed k and three different
N are shown in Fig. 6.

There are several ways to numerically estimate the ra-
dius of the disk of eigenvalues. For illustration, we use three
different estimators here. The real part estimator

rRe ª
1

2�max
i�1

Re��i� − min
i�1

Re��i�� �87�

estimates the radius from the maximum spread of eigenval-
ues parallel to the real axis. Typically, rRe should give an
estimate that is too low compared to the radius obtained from
the eigenvalues of an ensemble of matrices because it mea-
sures the maximal spread in one direction only. This is cir-
cumvented by the radial estimator

rrad ª max
i�1

��i − �A0 − �1 − A0�N−1�� �88�

that finds the maximum distance of any nontrivial eigenval-
ues from the average of the nontrivial eigenvalues, ��i�i�1

=A0− �1−A0�N−1+O�N−2�. This estimator should yield an
approximation that may be too large compared to the respec-
tive ensemble average. The average estimator

rav ª
3

2

1

N − 1�
i=2

N

��i − �A0 − �1 − A0�N−1�� �89�

estimates the radius r of a disk from the average distance �d�
of eigenvalues from its center, because

�d� = �
0

2� �
0

r

r�2��r��drd� =
2

3
r �90�

if we assume a uniform ��r��=1/ ��r2� for r��r and ��r��
=0 otherwise �68�. This estimate has the advantage, that it
contains information from all eigenvalues in contradistinc-
tion to the two other estimators. Its disadvantage is that one
has to assume a priori a uniform distribution of nontrivial
eigenvalues. As displayed in Fig. 7, all three estimators con-
verge towards the radius predicted by the random matrix
model for large N and given in-degree k. Varying the in-
degree k at fixed N also yields excellent agreement between
the numerical data and the theoretical predictions for suffi-
ciently large N and k. An example is displayed in Fig. 8.

For both, networks of fixed k and networks of fixed p,
there are deviations for small and even for intermediate N,
because the prediction rRMT was obtained from Random Ma-
trix Theory that is exact only in the limit N→�, and the
finite-size scaling of rRMT was assumed to resemble the scal-
ing of the variance of finite matrices. Furthermore, as dis-
cussed above, the numerical estimators of the radius rely on
assumptions that are fulfilled only approximately. For suffi-
ciently large networks, however, the theoretical prediction
agrees well with the numerical data.

Thus there is a gap of size

FIG. 6. Distribution of eigenvalues in the complex plane for networks with fixed in-degree k=8 for different network sizes �a� N=128, �b� N=512, �c� N
=4096. The disks are centered at A0 and have radius rRMT, the prediction obtained from Random Matrix Theory. The arc through the trivial eigenvalue z
=�1=1 is a sector of the unit circle. Parameters of integrate-and-fire oscillators are I=1.1, �=−0.2, �=0.05.
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g = 1 − A0 − r� �91�

between the nontrivial eigenvalues for large networks and
the unit circle, where

r� ª lim
N→�

rRMT = �1 − A0�k−1/2. �92�

This indicates that the stability of the synchronous state in
the model system considered is robust, i.e., sufficiently small
perturbations to the systems dynamics will not alter the sta-
bility results.

Nevertheless, there is an important restriction to these
results. Given a fixed in-degree k, the limit N→� is not
described by the theory derived in the preceding section,
because the structure of the network considered and thus the
structure of the stability matrices is only well defined if the
network is connected in the sense that every oscillator has at
least one presynaptic oscillator. However, the probability that
at least one oscillator is disconnected from the remaining
network approaches one with increasing network size. Thus

eigenvalue predictions of stability matrices of networks with
fixed in-degree k are only reasonably described for network
sizes that are large, N�1, but not in the limit N→�.

B. Networks with constant connection probability

If we assume that every connection is present with a
constant probability p, the network will be connected with
probability one in the limit N→� because the number of
presynaptic oscillators ki follows a binomial distribution with
average pN and standard deviation �p�1− p�N�1/2. In this
limit, the radius of the disk of eigenvalues decreases with
increasing network size N, see Fig. 9.

In order to verify the scaling behavior of the radius of
the eigenvalue disk for large stability matrices A, we numeri-
cally determined the eigenvalues �m=max���i � : ��i � �1�, see
Eq. �59�, that are second largest in absolute value. For suffi-
ciently large N, the theoretical prediction �mA0+rRMT

agrees well with the numerical data �Fig. 10�. The radius
approaches zero for large networks such that the eigenvalue
second largest in absolute value converges towards the center
A0 of the disk. In conclusion, for large networks, all non-
trivial eigenvalues are located near A0 and are thus bounded
away from the unit circle. This implies that the speed of
synchronization that is determined by �m increases with in-
creasing network size. Moreover, the condition necessary for
robustness against structural perturbations of the systems dy-
namics is satisfied.

X. SYNCHRONIZATION SPEED AND SPEED LIMIT

The existence of bounds on the radius of the eigenvalue
distribution has severe consequences for the synchronization
speed of networks of neural oscillators. Whereas the largest
�trivial� eigenvalue �1=1 corresponds to the invariant nature
of the synchronized periodic orbit, the second largest eigen-
value �m �Eq. �59�� determines the asymptotic speed of syn-
chronization starting from sufficiently close-by initial condi-
tions. Because the dynamics can locally be approximated by
a linear map, the synchronization of spike times is an expo-
nential. Thus, denoting ���t�ª��t�−lims→� ��s�, the dis-
tance ��n�ªmaxi �
i��nT� � /maxi �
i��0�� from the invariant
state behaves as

��n� � exp�− n/�syn� �93�

defining a synchronization time �syn in units of the collective
period T. The speed of synchronization �syn

−1 strongly depends
on the parameters. For instance, as might be expected, syn-
chronization is faster for stronger coupling.

Given the results from Random Matrix Theory derived
above, we can deduce an expression for the synchronization
time

�syn = − 1/ln��m�
= − 1/ln�A0 + rRMT�

�94�

from the prediction of the second largest eigenvalue �m

A0+rRMT. In general, upon increasing the coupling
strength �, the center A0 of the disks of eigenvalues is moved
towards zero, as can be seen from the defining equation �27�.
This means that, as expected, stronger interaction strengths

FIG. 8. Scaling of the radius r of the disk of nontrivial eigenvalues with the
in-degree k for random networks of N=1024 oscillators �I=1.1, �=−0.2, �
=0.05�. Main panel displays the radius r as a function of in-degree k. Inset
displays the same data on a doubly logarithmic scale. Symbols display nu-
merical results, using the average estimator rav, lines are the theoretical
prediction rRMT= �1−A0��1/k−1/N�1/2.

FIG. 7. Scaling of the radius r of the disk of nontrivial eigenvalues with the
network size N at fixed in-degree k=32 �I=1.1, �=−0.2, �=0.05�. Main
panel displays the radius r as a function of network size N. Symbols display
rrad ���, rav ���, and rRe ���. Inset displays r�−r as a function of N on a
doubly logarithmic scale, where r�= �1−A0�k−1/2. Dots display numerical
data of rav. In the main panel and the inset, lines are the theoretical predic-
tion rRMT= �1−A0��1/k−1/N�1/2.
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lead to faster synchronization of the spiking activity if all
other dynamical parameters and the network are kept fixed.
There is, however, a speed limit to synchronization if the
in-degree of the network is finite. The speed limit plays a
noticeable role if the typical in-degree k is significantly
smaller than the number N of oscillators in the network.

For networks with constant in-degree �Fig. 11�, the ra-
dius of the eigenvalue disk converges to a positive constant
with increasing network size N. This means that the second
largest eigenvalue does not converge to zero as the coupling
increases arbitrarily strong. Thus the asymptotic synchroni-
zation time �94� is bounded below by

�syn
���→� =

2

ln k
�1 −

k

N ln�k�
+ O�N−2�� �95�

for large N and thus limited by the network connectivity �cf.
the asymptotes in Fig. 11�.

For networks with fixed connection probability p, the
radius of the eigenvalue disk does converge to zero with
increasing network size N. However, for any finite network

with finite number of connections per oscillator, it has a posi-
tive radius and again leads to a speed limit, see Fig. 11. Note
that in the example displayed the typical number of connec-
tions per oscillator is as large as k pN409 but the speed
limit is still prevalent.

Can we intuitively understand the speed limit that is en-
forced by the topology of the network, parametrized by its
typical in-degree? Consider a large number of neural oscil-

FIG. 9. Distribution of eigenvalues in the complex plane for networks with fixed connection probability p=0.1 for different network sizes �a� N=128, �b�
N=512, �c� N=4096. The disks are centered at A0 and have radius rRMT, the prediction obtained from Random Matrix Theory. Note that the disk of nontrivial
eigenvalues shrinks towards the point A0 in the limit N→�. The arc through the trivial eigenvalue z=�1=1 is a sector of the unit circle. Parameters of
integrate-and-fire oscillators are I=1.1, �=−0.2, �=0.05.

FIG. 10. Maximum nontrivial eigenvalue and the radius of the eigenvalue
distribution for random networks �same parameters as in Fig. 9�. Main panel
displays the maximal nontrivial eigenvalue �mA0+r as a function of net-
work size N. The maximal nontrivial eigenvalue converges to A00.83 as
N→ � . Inset displays the radius r of the disk of eigenvalues as a function of
N. Dots display numerical results based on r=rrad �Eq. �88��, lines are the
theoretical predictions for both, the radius r and the maximal nontrivial
eigenvalue �m.

FIG. 11. Asymptotic synchronization time in random networks. �a� Network
with fixed in-degree ki	k=32 �N=1024, I=1.1, �=0.05, �ij =� /k for j
�Post�i��. Panel modified from Ref. 16. The inset shows the distance � of
a perturbation � from the synchronous state versus the number of periods n
��=−0.4�. Its slope yields the synchronization time �syn shown in the main
panel as a function of coupling strength ���. Simulation data ���, theoretical
prediction �—� derived in this paper, its infinite coupling strength asymptote
�---�. �b� Network of N=2048 neural oscillators and connection probability
p=0.2. Other parameters and inset as in �a�. Note that although the typical
in-degree is changed drastically from �a� to �b�, the synchronization speed
limit is hardly affected.

015108-13 Speed of complex network synchronization Chaos 16, 015108 �2006�



lators connected via a network of complicated topology. If
from the fully synchronous state �Fig. 12�a�� only one oscil-
lator is perturbed away �Fig. 12�b�� this constitutes a simple
example of resynchronization. One might imagine that all the
other oscillators are pulling the phase of the perturbed one
back to their common phase �Fig. 12�c��. This would explain
why, with increasing coupling strengths, synchronization
would be faster—the stronger the local pulling force, the
faster the local resynchronization. If that was the only
mechanism involved, the network could be resynchronized
arbitrarily fast using sufficiently large coupling strengths.
The actual mechanism, however, is nonlocal. Because in the
linearized dynamics each neural oscillator performs local av-
eraging, see Eqs. �22�–�28�, of their own phase and those
phases of its presynaptic oscillators, the common phase of
the resynchronized state will be globally agreed on �Fig.
12�d��, i.e., determined by the phases of all oscillators in the
network. Neural oscillators can only interact with their
neighbors, and, due to their pulsed interactions, only at dis-
crete times once a period. For inhibitory interactions this
means that the time between communication events is
bounded below by �tinteract�1, independent of the delay
time �. At long times, the averaging must be performed all
over the network, thus limiting the speed of synchronization.

XI. CONCLUSION

We have investigated the dynamics of synchronization in
networks of neural oscillators with complex connection to-
pology. We first described the stability analysis for the gen-
eral case and found that the arising nonlinear and first order
mappings have multiple state dependent parts. As an impor-
tant consequence standard eigenvalue analysis of the first
order system is not suitable. Using alternative methods, we
demonstrated that the simplest periodic state, the synchro-
nous state in which all neurons fire periodically at identical
times, is stable for inhibitory coupling, independent of the
specific network topology. Second, to study the speed of syn-
chronization, we derived a subclass of models for which all

parts of the first order stability operators become degenerate.
This class in general requires rise functions of integrate-and-
fire type. Subsequently, we used Random Matrix Theory to
analytically predict the speed of synchronization via the ei-
genvalue distributions depending on dynamical and network
parameters. Numerical estimates are in excellent agreement
with our theoretical predictions.

Although the theory used is based on Gaussian �i.e.,
fully occupied� matrices in the limit N→�, our results also
hold for sparse random networks with moderately large finite
N. Moreover, it is known that the eigenvalue distribution of
the sparse symmetric random matrix ensemble converges to-
wards the eigenvalue distribution of the Gaussian symmetric
ensemble in the limit k→�. It is not clear whether a similar
relation holds for Gaussian and sparse asymmetric ensembles
as well. In fact it is an open question why the Gaussian
ensemble actually describes the synchronization of sparse
random networks even for small k101 rather than only for
k→�.

Our results also indicate that stable synchrony is com-
mon to a class of neural oscillators and not restricted to the
specific model considered here. Moreover, given the expres-
sion for the speed of synchronization, we discovered a speed
limit to synchronization on networks that is controlled by the
typical in-degree of each oscillator, i.e., the number of other
oscillators it receives input from. The dependence of the
speed limit on the in-degree is logarithmic such that even for
large in-degree the speed limit is significant.

The application of Random Matrix Theory in the present
study suggests that it might well be possible to analytically
predict dynamical properties of other systems from their
structure, using an ansatz comparable to ours. Examples of
the application of Random Matrix Theory in ecology are
provided in Refs. 35 and 36. They were restricted to the
dynamics near fixed points. Due to the idealization in the
model class considered here, it was possible to analytically
predict dynamical aspects near invariant �periodic� solutions
that are not simple fixed points using Random Matrix
Theory.

Some straightforward generalizations of possible appli-
cation include less simple periodic states like cluster periodic
orbits4,10,17 or periodic patterns of spikes which occur in the
presence of heterogeneity.19,37–39 More interesting, and cer-
tainly more involved possibilities for Random Matrix Theory
applications may arise if the dynamics becomes unstable. Of
particular interest for theoretical neuroscience may be saddle
periodic orbits which imply a high degree of flexibility when
switching between states.10,40–44 Starting from the class of
systems considered in the current paper, the next step into
this direction would be to consider orbits that arise in net-
works where inhibitory and excitatory recurrent interactions
coexist.5–7

Our approach is not restricted to the well-known Erdős
Renyi random graphs considered here. If other network to-
pologies have to be considered, we expect that under some
additional assumptions, just the associated random matrix
ensemble could be used to describe the linearized dynamics
of such systems. For future investigations of synchronization
properties of networks, scale free and small world45,46 to-

FIG. 12. Schematic illustrating the mechanism of resynchronization in a
network of pulse-coupled neural oscillators. A collection of oscillators �con-
nections not shown� at specific phases illustrated as. “time on the clocks.”
�a� Unperturbed, fully synchronous state. �b� One oscillator perturbed �out
of phase�. �c� Purely local restoring of phases might seem to be the natural
way for resynchronization but it is not possible because local averaging of
phases implies spreading of the perturbation such that finally �d� all oscilla-
tors of the network agree on a common phase that does not equal their
original one.
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pologies constitute promising candidates because these net-
works might be analytically tractable but nevertheless appear
to reflect important aspects of real world networks.
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