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Topological Speed Limits to Network Synchronization
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We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random
networks. We demonstrate that random matrix theory can be used to accurately predict the speed of
synchronization in such networks in dependence on the dynamical and network parameters.
Furthermore, we show that the speed of synchronization is limited by the network connectivity and
remains finite, even if the coupling strength becomes infinite. In addition, our results indicate that
synchrony is robust under structural perturbations of the network dynamics.
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nuclear physics and quantum mechanical properties of an instantaneous reset of that oscillator, Vj�t � � 0. The
Complex networks have attracted considerable research
interest in the recent past [1]. Whereas most studies have
focused on the structures of various systems such as the
World Wide Web, email networks, genetic networks, and
biological neural networks [1,2], an equally important
task is to understand the collective dynamics on such
networks. Here, the question arises: How is the dynamics
on a complex network influenced by its structure [2]?

Synchronization appears to be one of the simplest
types of collective dynamics among coupled dynamical
systems [3]. It occurs ubiquitously in artificial as well as
natural networks as different as Josephson junction ar-
rays [4] and biological neural networks [5]. To understand
the dynamics of such networks, theoretical studies have
emphasized systems consisting of simple units such as
phase- and pulse-coupled limit-cycle oscillators [6,7].
Yet, although real-world networks often possess a com-
plex connectivity structure, most studies of synchro-
nization of coupled oscillators either are restricted to
networks of globally coupled units and simple regular
networks or apply some mean field limit [6,7]. Although
exact results on synchronization in networks with a gen-
eral structure have been obtained recently [8–10], it is
still not well understood how the structure of a complex
network affects dynamical features of synchronization.

In this Letter, we study the collective synchronization
of pulse-coupled oscillators interacting on asymmetric
random networks. We find that the speed of synchroniza-
tion is restricted by the network connectivity and remains
finite, even if the coupling strength becomes infinite. No
such speed limit exists, however, in large networks of
globally coupled units. More generally, we show that the
theory of random matrices can be used to successfully
predict the speed of synchronization as a function of
dynamical and network parameters. In addition, our re-
sults indicate that synchrony occurs robustly, i.e., persists
under structural perturbation of the network dynamics.
Random matrix theory has previously been applied to
various physical systems that exhibit certain symmetries,
e.g., time-reversal symmetry, but an otherwise unknown
structure. For instance, correlations of energy levels in
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classically chaotic systems have been successfully pre-
dicted (see Ref. [11] for a recent review). Our results
demonstrate that random matrix theory also is an appro-
priate tool for analyzing synchronization in random net-
works of dynamical units.

We consider asymmetric random networks of N pulse-
coupled oscillators [12]. The sets Pre�i� of presynaptic
oscillators connected to (and thus affecting the dynamics
of) oscillator i specify the structure of such a network.
For each oscillator i, the ki :� jPre�i�j presynaptic oscil-
lators are drawn randomly from the uniform distribution
among all other oscillators f1; . . . ; Ngnfig.

The state of each oscillator i at time t is specified by a
single phaselike variable �i�t�. In the absence of inter-
actions, its dynamics is given by

d�i=dt � 1: (1)

When oscillator i reaches a threshold,�i�t� � 1, its phase
is reset to zero, �i�t�� � 0, and the oscillator is said to
fire. A pulse is sent to all postsynaptic oscillators j 2
Post�i� which receive this signal after a delay time �. The
incoming signal induces a phase jump

�j��t� ���� :� U
1�U��j�t� ���� "ji�; (2)

which depends on the instantaneous phase �j�t� �� of
the postsynaptic oscillator and the coupling strength "ji
which we take to be inhibitory (phase retarding), "ji  0.
The phase dependence is determined by a twice continu-
ously differentiable ‘‘potential’’ function U��� that is
assumed to be strictly increasing, U0��� > 0, concave
(down), U00���< 0, and normalized such that U�0� � 0,
U�1� � 1.

This phase dynamics is equivalent (cf. also [12]) to
ordinary differential equations

dVi=dt0 � f�Vi� � Ii�t0�; (3)

where Ii�t0� �
P
j;m"ij��t

0 
 t0j;m 
 �0� is a sum of delayed
� currents induced by the oscillators j 2 Pre�i� sending
their mth pulse at time t0j;m. A pulse is sent by oscillator j
whenever a threshold is crossed, Vj�t0j;m� � 1, leading to

0 �
j;m
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positive function f�V� > 0 yields a free (Ii � 0) solution
V�t0� � V�t0 � T0� of intrinsic period T0. The above func-
tion U is related to this solution via

U��� :� V��T0�; (4)

defining a natural phase � by rescaling the time axis, t �
t0=T0 and � � �0=T0.

We focus on the specific form U��� � UIF��� �
I�1
 e
TIF�� that represents the integrate-and-fire oscil-
lator defined by f�V� � I 
 V. Here I > 1 is a constant
external input and TIF � ln�I=�I 
 1�� the intrinsic period
of an oscillator. Other forms of U��� give qualitatively
similar results. In such a network the synchronous state,
�i�t� � �0�t� for all i, exists if the coupling strengths are
normalized such that

P
j2Pre�i�"ij � ". Its period is given

by T � �� 1
U
1�U��� � "�.
In numerical simulations of the network dynamics,

we find that the synchronous state is always stable, inde-
pendent of the parameters (cf. [9]). A sufficiently small
perturbation ��0� � � � ��1; . . . ; �N�

T of the phases,
defined by �i�0� � �0�0� � �i asymptotically decays
exponentially with time. Thus, denoting �0�t� :�
��t� 
 lims!1��s�, the distance ��n� :� maxij�

0
i�nT�j=

maxij�0
i�0�j from the synchronous state behaves as

��n� � exp�
n=�syn�; (5)

defining a synchronization time �syn in units of the col-
lective period T. The speed of synchronization �
1

syn

strongly depends on the parameters. For instance, as
might be expected, synchronization is faster for stronger
coupling. Surprisingly, however, we find that synchroni-
zation cannot be faster than an upper bound even if the
coupling strength becomes arbitrarily large (cf. Fig. 1).

To understand how the speed of synchronization de-
pends on the dynamical and network parameters, we
analyze the linear stability of the synchronous state.
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FIG. 1. Asymptotic synchronization time in a random net-
work [N � 1024, ki � k � 32, I � 1:1, � � 0:05, "ij � "=k for
j 2 Pre�i�] . The inset shows the distance � of a perturbation �
from the synchronous state versus the number of periods n (" �

0:4). Its slope yields the synchronization time �syn shown
in the main panel as a function of coupling strength j"j.
Simulation data (�), theoretical prediction (solid line) de-
rived in this Letter, and its infinite coupling strength asymp-
tote (dashed line).
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Following [9] we obtain a nonlinear stroboscopic map
��T� � F��� for the perturbations giving the perturba-
tion ��T� after one period T in terms of the initial
perturbation �. Linearizing this map yields

� �T� �
:
A�; (6)

defining the stability operator A that depends on
U��� and the "ij. For U��� � UIF��� and coupling
strengths "ij � "=ki for j 2 Pre�i� the matrix elements
reduce to [13]

Aij �

8<
:

1
A0

ki
; if j 2 Pre�i�;

A0; if j � i;
0; if j =2 Pre�i� [ fig;

(7)

where

A0 �
Ie
�TIF

Ie
�TIF 
 "
> 0: (8)

The matrix A is row stochastic, i.e.,
P
jAij � 1 for all

i and Aij � 0 for all i and j. Thus A has one trivial
eigenvalue �1 � 1 associated with the eigenvector
v1 � �1; 1; . . . ; 1�T representing a uniform phase shift
and thus reflecting time-translation invariance. Further-
more, the Gershgorin theorem [15] implies that all eigen-
values are located inside a disk of radius rG � 1
 A0

centered at A0, such that, in particular, j�ij  1 and the
synchronous state is (at least neutrally) stable. For sim-
plicity, we consider networks of homogenous random
connectivity, ki � k for all i, in the following.

We numerically determined the eigenvalues of differ-
ent stability matrices A for various network sizes N 2
f26; . . . ; 214g, in-degrees k 2 f2; . . . ; 28g, and dynamical
parameters ", �, and I such that A0 covers the entire
accessible range A0 2 �0; 1�. In general, we find that for
sufficiently large k and N the nontrivial eigenvalues re-
semble a disk in the complex plane that is centered at
about A0 and has a radius r that is smaller than the up-
per bound given by the Gershgorin theorem, r < rG �
1
 A0. Examples are shown in Fig. 2.

This eigenvalue distribution is reminiscent of the
‘‘circle law’’ of random matrix theory [16]: Gaussian
asymmetric random matrices, having a distribution of
matrix elements

pGauss�Jij� � N1=2�2�r2�
1=2 exp

�


NJ2ij
2r2

�
(9)

with independent Jij and Jji, also exhibit eigenvalue
distributions

 a
Gauss��� �

�
��r2�
1; if j�j  r;
0; otherwise;

(10)

for N ! 1 that are uniform in a disk in the complex
plane [16]. The radius r of the disk is given by

r � N1=2!; (11)

where !2 � hJ2iji is the variance of the matrix elements.
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FIG. 3. Scaling of the radius r of the disk of nontrivial
eigenvalues. Main panel displays the radius r as a function of
network size N for fixed k � 32. Symbols display rRe (�) and
rav (�). Inset displays r as a function of k for fixed N � 1024.
Dots display numerical data of rav. In the main panel and the
inset, lines are the theoretical estimate rRMT [Eq. (14)]. Other
parameters are as in Fig. 2.
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FIG. 2 (color online). Distribution of eigenvalues �i of two
stability matrices A in the complex plane (I � 1:1, " � 
0:2,
� � 0:05 ) A0 � 0:83; k � 8) for networks of (a) N � 32,
(b) N � 512 oscillators. For large networks, the nontrivial
eigenvalues seem to be distributed uniformly on a disk in the
complex plane. The prediction from random matrix theory
[Eq. (14)] is indicated by a circle. The arc through the trivial
eigenvalue �1 � 1 is a sector of the unit circle.
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Interestingly, we find that the radii of the eigenvalue
distributions of the above stability matrices (7) agree well
with the radii obtained from Eq. (11) if hJ2iji is replaced by
the variance of the elements of the stability matrices
shifted such that they also exhibit a zero average eigen-
value. To directly compare the eigenvalues of the stability
matrices, which have average eigenvalue ��i� :�
1
N

PN
i�1 �i � A0 to those of the Gaussian ensemble, we

transform A0
ij � Aij 
 �ijA0 shifting the average eigen-

values to ��0
i� � 0. Here �ij denotes the Kronecker delta,

�ij � 1 if i � j and �ij � 0 if i � j. For the variance of
A0 we obtain

!2
A0 � �A02

ij� 
 �A0
ij�

2 (12)

�
1

N

0
@XN

j�1
j�i

A2
ij 


�1
 A0�
2

N

1
A: (13)

For identical nonzero coupling strengths, the off-diagonal
sum is exactly equal to

P
N
j�1;j�i A

2
ij � �1
 A0�

2=k such
that, using (11), we obtain the random matrix theory
prediction

rRMT � N1=2!A0 � �1
 A0�

�
1

k



1

N

�
1=2
: (14)

for the radius r of the disk of eigenvalues of the stability
matrices A [17].

We verified this scaling law (14) for various dynamical
parameters A0 (determined by different I, ", and �), net-
work sizes N, and in-degrees k and found excellent
agreement with numerically determined eigenvalue dis-
tributions; see, e.g., Fig. 2. To quantify the accuracy of
the prediction (14), we numerically estimated the ra-
dius of the distribution of the nontrivial eigenvalues of
A for various N, k as well as A0. Results from two dif-
ferent estimators are shown in Fig. 3. The real part esti-
mator rRe :�

1
2 �maxi�1Re��i� 
mini�1Re��i�� estimates

the radius from the maximum spread of eigenvalues par-
074101-3
allel to the real axis. Typically, rRe should give an estimate
that is slightly inaccurate because it is based on two
eigenvalues only. This is circumvented by the aver-
age estimator rav :�

3
2

1
N
1

PN
i�2 j�i
�A0 
�1
A0�N
1�j

that estimates the radius r of a circle from the average
distance hdi of eigenvalues from its center, because hdi �R
2�
0

R
r
0 r

02 �r0�dr0d’ � 2
3 r if we assume a uniform den-

sity  �r0� according to (10). Here we take the center of the
disk to be the average h�iii�2 � A0 
 �1
 A0�N


1 �
O�N
2� of the nontrivial eigenvalues. Varying k at fixed
N as well as N at fixed k yields excellent agreement
between the numerical data and the theoretical predic-
tions for sufficiently large N and k (Fig. 3). Varying the
coupling strength j"j and thus A0 yields equally good
agreement (cf. Fig. 1).

The radius (14) implies a prediction for the synchroni-
zation time [see (5)]

�syn � 
1= ln�A0 � rRMT�; (15)

in terms of the (in modulus) largest nontrivial eigenvalue
�m � A0 � rRMT. With increasing coupling strength j"j,
the synchronization time decreases. However, the speed
of synchronization �
1

syn is bounded by a finite speed for
arbitrary large j"j: Even if j"j � 1 and thus A0 � 1, the
largest nontrivial eigenvalue asymptotically becomes
�m � k
1=2 for large N. Thus, the shortest synchroniza-
tion time

�j"j!1
syn �

2

ln k
(16)

is limited by the network connectivity (cf. the asymptote
in Fig. 1). This means that even for arbitrary strong
interactions, the speed of synchronization stays finite.
Furthermore, at fixed k, the synchronization time also
cannot exceed a certain maximum, even if the network
size N becomes extremely large (cf. Fig. 3). This bound
074101-3
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�N!1
syn is determined by the asymptotic radius r1 :�

limN!1rRMT � �1
 A0�k

1=2. Moreover, because eigen-

values change continuously with a structural perturba-
tion to the system’s dynamics, the existence of a gap
g :� 1
 �A0 � r1� > 0 indicates that no eigenvalue
crosses the unit circle for sufficiently small structural
perturbations. Thus stable synchrony is not restricted to
the specific model considered here, but should persist
in systems obtained by structural perturbations of the
dynamics.

The above results show that the distribution of eigen-
values of a sparse stability matrix with deterministic
nonzero entries at certain random positions is well de-
scribed by the eigenvalue distribution of the Gaussian
ensemble, which consists of fully occupied matrices with
purely random entries. This sparse-Gaussian coincidence
for asymmetric matrices is similar to that of symmetric
random matrices for large k: Gaussian symmetric matri-
ces exhibit an eigenvalue distribution  s

Gauss���, the
Wigner semicircle law [18]. Sparse symmetric matrices
[19] exhibit an eigenvalue distribution  s

sparse��� that is
different from the semicircle law but approaches it in
the limit k! 1. For k� 1 the distribution of eigenval-
ues of sparse asymmetric random matrices  a

sparse appear
to be well approximated by the eigenvalue distribution
of Gaussian asymmetric matrices,  a

sparse��� �  a
Gauss���.

Our results indicate that this is true even for moder-
ate k � 10.

Further investigations of eigenvalue distributions for
small-world networks show that with decreasing random-
ness the speed of synchronization decreases (the second
largest nontrivial eigenvalue increases) such that fully
random networks synchronize faster than small-world
networks, at least asymptotically.

In conclusion, we have derived accurate analytical
predictions for the (asymptotic) speed of synchronization
in asymmetric random networks of oscillators in depen-
dence of the dynamical parameters ", �, I, as well as the
network parameters N and k. Even the scaling with net-
work size N, artificially introduced via the variance (13)
of finite matrices, is accurately reproduced (see, e.g.,
Fig. 3). The analysis revealed that, as well as how the
speed of synchronization is restricted by the network
connectivity.

Possible lines for future applications of our random
matrix theory approach may include synchronization
phenomena of pulse- and phase-coupled units as well as
of chaotic dynamical systems (cf. also [20]). The speed
limits of synchronization predicted in this Letter are
expected to occur in those systems, too. More generally,
other equilibration processes and the dynamics in more
structured topologies such as small-world networks may
be analytically investigated using statistical spectral
properties of the respective operators.
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