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Abstract. Counting problems, determining the number of possible states of
a large system under certain constraints, play an important role in many areas
of science. They naturally arise for complex disordered systems in physics and
chemistry, in mathematical graph theory, and in computer science. Counting
problems, however, are among the hardest problems to access computationally.
Here, we suggest a novel method to access a benchmark counting problem,
finding chromatic polynomials of graphs. We develop a vertex-oriented
symbolic pattern matching algorithm that exploits the equivalence between the
chromatic polynomial and the zero-temperature partition function of the Potts
antiferromagnet on the same graph. Implementing this bottom-up algorithm
using appropriate computer algebra, the new method outperforms standard top-
down methods by several orders of magnitude, already for moderately sized
graphs. As a first application, we compute chromatic polynomials of samples
of the simple cubic lattice, for the first time computationally accessing three-
dimensional lattices of physical relevance. The method offers straightforward
generalizations to several other counting problems.
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Given a set of different colors, in how many ways can one color the vertices of a graph such
that no two adjacent vertices have the same color? The answer to this question is provided by
the chromatic polynomial of a graph [1, 2], which gives the number of possible colorings as a
function of the number q of colors available. It is a polynomial in q of degree N, the number
of vertices of the graph. The chromatic polynomial is closely related to other graph invariants
e.g. to the reliability and flow polynomials of a network or graph (functions that characterize its
communication capabilities) and to the Tutte polynomial. These are of widespread interest in
graph theory and computer science and pose similar hard counting problems.

The chromatic polynomial is also of direct relevance to statistical physics, as it is equivalent
to the zero-temperature partition function of the Potts antiferromagnet [3, 4]: the Potts model [3]
constitutes a paradigmatic characterization of systems of interacting electromagnetic moments
or spins, where each spin can be in one out of q > 2 states; it thus generalizes the Ising model
where q = 2. For antiferromagnetic interactions, neighboring spins tend to disalign such that
at zero-temperature the partition function of the Potts antiferromagnet counts the number of
ground states of a spin system on a graph just as the chromatic polynomial counts the number of
proper colorings of the same graph. For sufficiently large q there are many system configurations
in which all pairwise interaction energies are minimized at zero-temperature. Indeed, these
systems exhibit a large number of disordered ground states that is exponentially increasing
with system size. Thus, the Potts model exhibits positive ground state entropy, an exception to
the third law of thermodynamics. Experimentally, complex disordered ground states and related
residual entropy at low temperatures have been observed in various systems [5]–[10].

Although there are several analytical approaches to find chromatic polynomials for families
of graphs and to bound their values [1]–[4], [11]–[17], there is no closed-form solution to
this counting problem for general graphs. Algorithmically it is hard to compute the chromatic
polynomial, because the computation time, in general, increases exponentially with the number
of edges in the graph [18]. It also strongly depends on the structure of the graph and rapidly
increases with the graph’s size, and the degrees of its vertices, cf [19]–[21]. Therefore, most
studies on chromatic polynomials up to date have focused on small graphs and families of
graphs of simple structure and low vertex degrees, e.g. two-dimensional lattice graphs [15]–[17]
(an interesting recent attempt to analytically study simple cubic lattices considered strips
with reduced degrees [11]). In fact, it is not at all straightforward to computationally access
larger graphs with more involved structure, including physically relevant three-dimensional
lattice graphs. Finding the chromatic polynomial of a graph thus constitutes a challenging,
computationally hard problem of statistical physics, graph theory and computer science
(cf [18, 19]).

Below we present a novel, efficient method to compute chromatic polynomials of larger
structured graphs. Representing a chromatic polynomial as a zero-temperature partition function
of the Potts antiferromagnet, we transform the computation into a local and vertex-oriented,
ordered pattern matching problem, which we then implement using appropriate computer
algebra. In contrast to conventional top-down methods that represent and process the entire
graph (and many modified copies thereof) from the very beginning, the new method presented
here works through the graph bottom-up and thus processes comparatively small local parts of
the graph only.

Consider a graph G that is defined by a set of N vertices i ∈ V = {1, . . . , N } and a set of
M := |E | edges {i, j} ∈ E , each edge joining two vertices i and j which are then called adjacent
or neighboring. This graph is said to be (properly) q-colored if every vertex is given one out of
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q colors {1, 2, . . . , q} such that every two adjacent vertices have different colors. The number
of q-colorings of a graph G is expressed by its chromatic polynomial P(G, q), a polynomial in
q of order N [2].

The deletion–contraction theorem of graph theory [2] suggests a simple algorithm to
compute the chromatic polynomial of a given graph recursively. In principle, this algorithm
works for arbitrary graphs and is therefore, with certain improvements, implemented in
general-purpose computer algebra systems such as Mathematica [22]–[24] and Maple [25]
(cf also [26, 27]). However, applying the theorem recursively the chromatic polynomial of
exponentially many graphs must be found, the (weighted) sum of which yields the chromatic
polynomial of the original graph. This reflects how hard the problem is algorithmically and
severely restricts the applicability of computational methods, in particular if they employ
standard top-down processing.

We now describe our novel algorithm. It is based on the antiferromagnetic (J < 0) Potts
model [3, 4] with Hamiltonian

H(σ ) = −J
∑

{i, j}∈E

δσi σ j (1)

giving the total energy of the system in state σ = (σ1, . . . , σN ). Here individual spins σi can
assume q different values σi ∈ {1, . . . , q}, generalizing the Ising model (q = 2) [28]. Two spins
σi and σ j on the graph G interact if and only if they are neighboring, {i, j} ∈ E , and in the
same state, σi = σ j , i.e. the Kronecker-delta is δσ i σ j = 1 (otherwise, for any pair σi 6= σ j , it is
δσ i σ j = 0). Thus, the total interaction energy is minimized if all pairs of neighboring spins are
in different states.

The partition function Z(G, q, T ) =
∑

σ exp(−β H(σ )) at positive temperature T =

(kBβ)−1, where kB is the Boltzmann constant, can be represented as

Z(G, q, T ) =

∑
σ

∏
{i, j}∈E

(1 + vδσi σ j ), (2)

where v = exp(β J ) − 1 ∈ (−1, 0]. In the limit T → 0 (implying β J → −∞ and thus v → −1)
this partition function counts the number of ways of arranging the spins σ such that no two
adjacent spins are in the same state. Thus, the zero-temperature partition function (2) exactly
equals [4] the chromatic polynomial

P(G, q) = lim
T →0

Z(G, q, T ) (3)

on the same graph G leading to the representation [4, 12]

P(G, q) =

q∑
σ1=1

· · ·

q∑
σN =1

∏
{i, j}∈E

(1 − δσi σ j ), (4)

of the chromatic polynomial in terms of sums over products of Kronecker-deltas.
The algorithm exploits this representation by expanding the products in (4) and

symbolically evaluating the right-hand side vertex by vertex (cf figure 1), considering each
individual sum

∑
σk

as an operator. This operator interpretation relies on a recently studied
algebraic structure of expressions containing Kronecker-deltas [29]. Here such an operator has
the simple actions∑

σk

1 = q, (5)
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σk

δσkσ j1
= 1, (6)

∑
σk

δσkσ j1
δσkσ j2

= δσ j1σ j2
, (7)

and for an arbitrary number r ∈ N0 of factors,∑
σk

δσkσ j1
· · · δσkσ jr

= δσ j1σ j2
· · · δσ jr−1σ jr

, (8)

if the jρ , ρ ∈ {1, . . . , r}, are pairwise distinct and all jρ 6= k.
For illustration consider the chromatic polynomial

P(G, q) =

q∑
σ3=1

q∑
σ2=1

q∑
σ1=1

(1 − δσ1σ2)(1 − δσ1σ3)(1 − δσ2σ3) (9)

of a triangular (complete) graph comprised of N = 3 vertices and M = 3 edges. We start at
vertex i = 1 by expanding the relevant product

p1 = (1 − δσ1σ2)(1 − δσ1σ3) (10)

= 1 − δσ1σ2 − δσ1σ3 + δσ1σ2δσ1σ3 (11)

that is comprised of all factors that contain σ1. (We note that Birkhoff [1] in 1912 already
used closely related expansions to theoretically derive an alternative representation of chromatic
polynomials.) Symbolically applying the above replacement rules (8) yields a ‘partial partition
function’

z1 =

q∑
σ1=1

p1 (12)

= q − 2 + δσ2σ3, (13)

and thus P(G, q) =
∑q

σ3=1

∑q
σ2=1 z1(1 − δσ2σ3). Proceeding with the vertices i = 2 and i = 3 in

a similar fashion, we obtain p2 = (q − 2 + δσ 2σ 3)(1 − δσ 2σ 3), z2 =
∑q

σ2=1 p2 = (q − 1)(q − 2),
p3 = z2, and reduce the chromatic polynomial to the final result

P(G, q) = z3 =

q∑
σ3=1

p3 = q(q − 1)(q − 2), (14)

successively.
For a general graph G on N vertices, the algorithm is analogous to the example. First define

z0 = 1. Then, passing through the vertices from i = 1 sequentially up to i = N ,

1. construct and expand pi = zi−1
∏

{i, j}∈E(1 − δσ i σ j ) where the product is over all edges
incident to i that have not been considered before, i.e. j > i ;

2. symbolically evaluate the sum zi =
∑

σi
pi applying the simple rules (5)–(8) given above.
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Figure 1. The bottom-up, local and vertex-oriented nature of the algorithm.
Sequential processing of edges (dark) adjacent to vertices (a) i = 1, (b) i = 2, and
(c) i = 3. The remainder graph (light) is not affected when processing vertex i.
Partial partition functions zi−1 computed so far (before each vertex step i) are
shown in square brackets.

These operations are local and vertex oriented in the sense that they jointly consider all
edges {i, j} incident to an individual vertex i at any one time. A major advantage of this bottom-
up algorithm is that all edges that are not currently processed are kept outside the computations
until they are needed, quite in contrast to standard top-down deletion–contraction algorithms. If
a graph G has a layered structure,

G =

⋃
ν

Hν (15)

with layers Hν , constituting samples of periodic lattices or aperiodic graphs, the vertices i are
selected (i.e. numbered) layer by layer such that the operations only affect a particularly small
portion of the graph at once (figure 1). These graphs have bounded tree widths, cf [30, 31].
More generally, vertices are numbered appropriately beforehand, for instance, using minimal
bandwidth of the graph as a heuristic criterion [32].

The computation of the chromatic polynomial has been reduced to a process of alternating
expansion of expressions and symbolically replacing terms in an appropriate order. In the
language of computer science, these operations are represented as the expanding, matching,
and sorting of patterns, making the algorithm suitable for computer algebra programs optimized
for pattern matching.

To exploit fully the capabilities of this algorithm, we implemented it using the language
Form [33, 34] which is specialized to large-scale symbolic manipulation problems and as
such a successful standard tool for, e.g., Feynman diagram evaluation in precision high-energy
physics [35, 36].
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Figure 2. Computation time t (in s) for square lattice samples of sizes 2 × n
(main panel) and n × n (inset) increases with the number of edges M of the
graph. The new method (•) drastically outperforms standard methods used in
Mathematica (◦) and Maple (�), both with respect to the scaling of the algorithm
(quantified by the local slope) and the absolute effectiveness (quantified by the
absolute times needed), even for moderately sized graphs.

A practically relevant measure for the speed of our method is the total CPU time t it needs
for a specific calculation. For hard counting problems one generally expects an exponential
increase t ≈ A exp(αm) with the size m � 1 of the problem, here defined as the number
m = M of edges for chromatic polynomials of general graphs. For graphs with bounded tree
widths [30, 31], the solution time of the counting problem typically only grows exponentially
with the width of the graph, i.e. in the square of the number of vertices in the subgraphs Hν . The
factor α in the exponent determines the scaling of the computation time with problem size and
measures the efficiency of the algorithm, whereas the prefactor A fixes the absolute time needed
and depends, among other things, on the software environment and hardware used.

To compare our method to existing ones, we first computed chromatic polynomials of
samples of the two-dimensional square lattice with free boundary conditions (2 × n strips
that have M = 3n − 2 edges and n × n patches that have M = 2n(n − 1) edges). The total
computation times t have been measured as a function of M for the new method as well as
for the standard methods used in Mathematica [22, 23] and Maple [25], respectively. Figure 2
shows that the scaling α of the algorithm (given by the local slope of the data points in the
logarithmic plot) of our new method is markedly better than the ones found for the standard
deletion–contraction methods. This implies that the new method outperforms these standard
computational methods in the absolute computation time by several orders of magnitude already
for moderately sized graphs. With increasing graph size, the advantages of our method become
more pronounced. For example, for the 2 × 100 strip of the square lattice (M = 298 edges), the
pattern matching method needs a computation time of the order of t ≈ 2 s whereas extrapolation
of the data shown in figure 2 indicates that the same problem is not computationally accessible
using the standard deletion–contraction methods.

Moreover, in contrast to transfer matrix or other, analytical recurrence methods [12, 13, 15],
our bottom up method also works in a simple way for graphs with non-identical subgraphs
Hν , such as randomly diluted lattices. The same comparison as above for randomly diluted
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Figure 3. Computation time t (in s) for randomly edge-diluted square lattice
samples with next-nearest neighbour interactions (displayed as a cartoon inset
in panel (a)). The new method (filled symbols) strongly outperforms standard
deletion-contraction method (Mathematica, open symbols). (a) Computation
time versus the actual total number M of edges for samples of 3 × n
vertices where each original edge has been deleted independently with
probability p = 0.1 (circles) p = 0.2 (triangles) and p = 0.5 (squares). (b)
Computation time versus the fraction f of edges present. Edges are sequentially
randomly removed independently, starting from an undiluted 3 × 5 square
lattice graph ( f = 1) with next-nearest neighbour interactions; the graph
is diluted until before it becomes disconnected below f ≈ 0.4. Whereas
the computation times using the new method are still at fluctuation level
(t < 10−2 s), standard methods take at factor of 103–107 longer.

3 × n square lattice samples with next-nearest neighbor interactions (figure 3) confirms the
pronounced outperformance and moreover illustrates the general applicability of our method,
also in comparison with recursive analytical methods.

As a first application to an open hard counting problem in physics, we now turn to
three-dimensional lattices of direct physical relevance. First, we consider n × n × n samples
of the simple cubic lattice with free boundary conditions, which have N = n3 vertices and
M = 3n2(n − 1) edges. We found chromatic polynomials up to n = 4 (N = 64, M = 144).
A representation of the chromatic polynomial P(G, q) in terms of its N complex zeroes
q1, . . . , qN [37] is shown in figure 4(a) for n = 3 and 4. We further consider simple cubic
lattice strips that extend in the diagonal (111) direction with periodic boundaries in the two
other (transverse) directions. This keeps the number of vertices within one layer low, at the
same time allowing for a large number Nc of vertices with the same degree (equal to six)
as vertices in the infinite lattice, a fact that is heuristically known to be essential for a rapid
convergence towards the thermodynamic limit (N , M → ∞). The largest three-dimensional
sample graphs shown in figure 4(b) have N = 384 vertices, M = 1128 edges and a fraction
Nc/N = 368/384 ≈ 0.96 of vertices with correct degree (as compared to Nc/N = 8/64 ≈ 0.13
for the 4 × 4 × 4 sample extending along the Cartesian axes and to Nc = 0 for previous attempts
to address three-dimensional lattices). The computation time was approximately 11 h on a single
Linux machine with an Intel Pentium 4, 2.8 GHz-32 bit processor.

In summary, we have presented a novel method to calculate chromatic polynomials of
graphs. Using the partition function representation, it proceeds vertex by vertex employing an
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Figure 4. Complex zeroes representing chromatic polynomials of samples of
the simple cubic lattice: (a) n × n × n Cartesian samples with free boundary
conditions and (b) 2 × 4 × n3 diagonal samples with periodic transverse
boundary conditions, with up to M = 1128 edges.

a priori reduction to local operations only and is thus particularly suited for graphs exhibiting
a layered structure. The method combines a symbolic bottom-up algorithm, which is based on
systematic term-wise expansion and pattern matching, with an appropriate computer algebra
program [33, 34]. Our method is applicable to general types of graphs, including graphs with
bounded and unbounded tree widths as well as randomized graphs. We demonstrated by several
sets of examples that it drastically outperforms existing standard methods for all these types
of graphs. As a practical application, we computed chromatic polynomials for samples of the
simple cubic lattice, for the first time computationally accessing three-dimensional lattices of
physical relevance.

Since the main ideas underlying our method are simple to apply, they may be
generalized in a straightforward way and also be transferred to other challenging counting
problems. Among others, one may compute quantitative measures relevant in computer
science that give information about the communication capabilities of a network, such as
(i) the flow polynomial and (ii) the reliability polynomial [41, 42]. It is equally possible to
determine (iii) ferromagnetic and (iv) positive temperature partition functions of statistical
physics [38]–[40] and, equivalently, (v) the Tutte polynomial (of two variables q and v, cf
equation (2)), valuations of which directly result in the number of spanning subgraphs, the
number of spanning trees, and other invariants of a graph [12, 13]. Of course, applications in
graph theory may include studies of families of graphs where computational results seemed
impossible so far, because the computational effort is substantially reduced. As the new method
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yields exact results not only for the final solution (in our examples, the chromatic polynomial)
but also in the intermediate steps (the partial partition functions above), it may moreover be
combined with analytical tools [11], [15]–[17], [38, 40, 42] to obtain unprecedented results
for various classes of graphs. Finally, the method can easily be implemented in parallel
computations. Taken together, the novel bottom-up pattern matching algorithm combined with
specialized computer algebra presented here constitutes a promising starting point to access a
number of challenging, computationally hard counting problems from statistical physics, graph
theory and computer science.
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