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ABSTRACT Inferring the network topology from the dynamics of interacting units constitutes a topical
challenge that drives research on its theory and applications across physics, mathematics, biology, and
engineering. Most current inference methods rely on time series data recorded from all dynamical variables
in the system. In applications, often only some of these time series are accessible, while other units or
variables of all units are hidden, i.e. inaccessible or unobserved. For instance, in AC power grids, frequency
measurements often are easily available whereas determining the phase relations among the oscillatory units
requires much more effort. Here, we propose a network inference method that allows to reconstruct the full
network topology even if all units exhibit hidden variables. We illustrate the approach in terms of a basic AC
power grid model with two variables per node, the local phase angle and the local instantaneous frequency.
Based solely on frequency measurements, we infer the underlying network topology as well as the relative
phases that are inaccessible to measurement. The presented method may be enhanced to include systems
with more complex coupling functions and additional parameters such as losses in power grid models.
These results may thus contribute towards developing and applying novel network inference approaches
in engineering, biology and beyond.

INDEX TERMS Complex networks, inverse problems, nonlinear dynamics, network inference, power grids.

I. INTRODUCTION
Many complex real world systems, ranging from technical
supply networks to biological processes such as gene reg-
ulation, consist of a multitude of interacting units and thus
represent network dynamical systems. To understand, predict
and control the full network dynamics typically requires the
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knowledge of the topology defining how the units interact.
However, the topology underlying the current system dynam-
ics might be unavailable, e.g. because it is difficult or expen-
sive to observe. In addition, several dynamical variables may
not be easily accessible to measurement and thus hidden.

The inference of network topology from time series record-
ings or other network features [1]–[3] and inverse prob-
lems in general [4] are active fields of interdisciplinary
research on complex systems. Inference methods are applied
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for example to obtain gene and protein interaction net-
works [5], observe epidemic spreading on networks [6]
or determine the topology of coupled oscillator networks
[7]–[9]. Depending on the field of interest, the available
data and the (mathematical) understanding of the under-
lying system, different inference methods prove viable.
Inference methods range from Bayesian networks and infor-
mation theoretical methods based on mutual information
or maximal entropy [10], [11] over compressed sensing
[12], [13] and deep learning approaches [14] to network
inference from response dynamics [7], see [2], [3] for com-
prehensive reviews. Such methods are useful to gain a better
understanding of the structure and function of the network
at hand, whether it is natural or engineered. The procedure
for many inference approaches is very similar: Observing a
system out of equilibrium reveals the interplay of its different
units and may enable us to infer the underlying topology.
Mathematically, time series of the system are combined with
prior knowledge, e.g. of the intrinsic dynamics at each node,
to estimate the interaction matrix via pseudo-inverses [2].

Recent advances in network inference have focused for
example on revealing the physical interactions, in con-
trast to pure correlations or adopted model free inference
approaches without any knowledge of the intrinsic dynamics,
see, e.g., [7], [15]–[20]. Recent work also indicates how to
infer the number of nodes in the network from observing
only a few accessible nodes [21]. However, most theoretical
approaches still require the full knowledge of the time series
from all variables of each given unit. Uncovering the inter-
acting topology of networks from time series in the presence
of hidden dynamical variables has been successful under
certain conditions by heuristic means, see for instance [18].
Aside from applications of inference methods on biologi-
cal networks, such as gene-regulation [22] or neuronal net-
works [23], or communication networks [24], [25], there
are also several methods for parameter estimation in power
systems, see [13] for an overview.

As paradigmatic example systems, we consider models of
electrical power grids [26] as these constitute particularly
interesting applications for inference methods, for instance
because they may get damaged or experience line failures.
Inference techniques then serve to detect these changes in
topology quickly and help localizing the fault [27], [28]. Fur-
thermore, the power grid topology is changing rapidly, both
in industrialized as well as developing countries, due to the
introduction of distributed generators, charging infrastructure
for electric vehicles and other factors. Combined with the
fact that different parts of one grid are often operated and
administered by different grid operators, the precise topology
is not always fully known, specifically also of lower-voltage
distribution grids [29]. These lower voltage levels become
increasingly relevant for grid operators and power dispatch
strategies because the number of generators connected to the
low-voltage grid is growing, e.g. by the increasing installation
of solar panels [30]. The additional feed-in of power on lower
voltage levels thereby supports power flow from lower levels

to higher ones, in addition to the traditional, reverse direction.
Hence, in particular for power grids, it is essential to have
access to their full topology on all scales to ensure stable
planning and operation [31].

Applying inference on electrical power grids poses a spe-
cial challenge. We typically have access to the voltage ampli-
tude and frequency at each unit, since measurements are easy
and cheap [32]. In contrast, determining the voltage angle
(the oscillatory phase) via a PMU (phasor measurement unit)
between different units [33] in a network is more expensive.
Therefore, in many power grid applications, time series of
voltage angles are not available. To put it in the general
perspective of network dynamical systems, the time series
of some variables of each unit are hidden. Simultaneously,
knowledge about the voltage angle is valuable since the
power flow along a transmission line is a direct function of
the difference of voltage angles (phase differences), not the
frequency [34].

Here we propose a method for revealing the interaction
topology of networkswith hidden dynamical variables as well
as time series of the hidden variables themselves (relative
to a base line). For instance, for an AC power grid model,
the method only requires grid frequency measurements, not
phase (voltage angle) or phase differencemeasurements, at all
N nodes. We provide estimators for the network’s underlying
physical connectivity (which node is connected to which
others) as well as power flows. We find that for a moderate
number of measurements we obtain high prediction accuracy
of both the network topology and the precise state of the net-
work in terms of flows. Overall, our method is immediately
applicable to power grid simulations and should also be useful
for real-world power grid recordings if they follow a given
model approximately. Furthermore, the same procedure may
be extended to other applications in which certain variables
are not directly accessible to measurements.

This article is structured as follows. We first introduce a
class of model systems with two variables per unit, as well
as a specific model approximately characterizing aspects of
power grid dynamics. Further, we present the theoretical
foundation to infer the network topology from time series
available for one of the two variables (frequency-only mea-
surements for the power grid model). We evaluate network
reconstruction on differently sized network topologies and
close with a discussion.

II. THEORY
We start by explaining the theoretical concept and resulting
procedures underlying the inference of network topology and
the network state for systems where not all of the dynamical
variables are recorded. We base our approach on the direct
method, which has been introduced in [15] and is further
discussed in [2], for inference tasks where the time series
of all variables of all units are available. The direct method
allows to infer a network’s topology by separating the known
and unknown terms of the dynamical system, evaluating the
possibly nonlinear unit dynamics and coupling functions at
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FIGURE 1. Network inference with hidden variables. Each node i in the network consists of two interacting dynamic variables (xi and yi ), one of which
is hidden (xi ). Nodal dynamics may differ between nodes, as long as they satisfy equations (1) and (2). In addition, the interactions between nodes are
hidden as well. By recording the transient relaxation of the observable variable of each node after a small perturbation, we infer the topology as well as
the differences between each pair of hidden variables, both in their initial conditions and in the fixed point.

a number of time points, and reformulating the problem as
an optimization task of systems of linear equations. This
linear system is overdetermined by recording state variables
(or components of them) at sufficiently many time points
at each unit and is then solved for the coupling matrix as
a least squares problem (by calculating the Moore-Penrose
pseudo-inverse).

Fig. 1 illustrates the concept. For a network dynamical sys-
tem with each node i consisting of two interacting dynamical
variables xi and yi, hidden topology and hidden time series
xi(t) for all i ∈ {1 . . .N }, the proposed method aims to
infer both network topology and the time series of the hidden
dynamic variables based on the observed time series of yi and
known dynamics, as detailed below.

A. CLASS OF MODEL SYSTEMS
Throughout this work, we focus on a class of simple network
dynamical systems

ẋi = fi(y, t) (1)

ẏi = gi(y, t)+ hi(x) (2)

with two variables (xi and yi) per unit i ∈ {1, . . . ,N }. The vec-
tors x(t) = (x1(t), . . . , xN (t))T and y(t) = (y1(t), . . . , yN (t))T

together make up the state of the entire systems at time t .
The (possibly nonlinear) functions fi and gi describe the nodal
dynamics, whereas the hi mediate the coupling between units
and the two variables xi and yi at node i. Here, we take
the fi and gi to depend on y and not on x, such that
inferring the topology becomes possible without access to
x-measurements. We remark that the third class of functions,
the hi, still may depend on x. We expand the function

hi(x) =
∑
k

N∑
j=1

(Ak )ij sin (k(xj − xi))

+

∑
k ′

N∑
j=1

(Bk ′ )ij cos (k
′(xj − xi)) (3)

in terms of Fourier series with constant matrices Ak ,Bk ′ ∈
RN×N of coupling strengths in Fourier modes k, k ′. In the
examples illustrated below, we restrict ourselves to the

coupling function

hi(x) =
N∑
j=1

Aij sin (xj − xi) (4)

for all i ∈ {1, . . . ,N }, i.e., consider only the contribution
of one Fourier term, A1 = A, all other Ak = 0 and all
Bk ′ = 0. The extension to general h is conceptually identical
but much more cumbersome. As for the direct method men-
tioned above, we take all functions gi(y, t) and fi(y, t) as well
as the time series of yi(t) to be known for all i ∈ {1, . . .N }.

B. INFERENCE OF INTERACTION TOPOLOGY
The task is to find for which pairs (i, j), the coupling matrix
is non-zero, i.e. Aij 6= 0, and to infer state differences xj − xi
for the non-observed part of the state vector x. If we were to
apply the original direct method in a network with N units
with two variables each, both the time series of x and y had to
be recorded at each unit and atM > 2N measurement points
tm, n ∈ {1, . . . ,M}. In contrast, the method we introduce
in the following is applicable without knowledge of the time
series of the xi(t). Given we have no access to x(t), we aim at
eliminating the x(t) from the dynamical system. Substituting
the xi(t) by integrating the first differential equation (1) that
defines the dynamics yields

xi(t) =
∫ t

t0
fi(y(t ′), t ′) dt ′ + xi(t0) , (5)

where we now introduce the N initial condition components
x0i = xi(t0) ∈ R, which are unknown real parameters.
Substituting these integral expressions into equations (2) (for
our choice (4) of the hi) gives

ẏi = gi(y, t)+
N∑
j=1

Aij sin
(∫ t

t0
1fji(y, t ′) dt ′ +1x0ji

)
, (6)

with 1fji(y, t) := fj(y, t)− fi(y, t) and 1x0ji := x0j − x
0
i .

Separating known and unknown variables results in a lin-
ear system of equations, which then is overdetermined by
recording sufficiently many data of the partial state vec-
tors y(t). Exploiting sin (α + β) = sinα cosβ + cosα sinβ,
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the system’s coupling terms become

sin
(
xj − xi

)
= sin

(∫ t

t0
1fji(y, t ′) dt ′

)
cos

(
1x0ji

)
+ cos

(∫ t

t0
1fji(y, t ′) dt ′

)
sin
(
1x0ji

)
. (7)

We approximate both ẏi(t) and
∫ t
t0
1fji(y, t ′) dt ′ by numer-

ically differentiating and integrating the recorded time series
of yi(t), respectively, compare [2]. Such approximation is
faithful if the temporal sampling resolution of the measured
trajectory y(t) allows for robust numerical integration and
differentiation.

For each unit i ∈ {1, . . . ,N } and each time instant tm,
m ∈ {1, . . .M}, we define

`i(tm) := ẏi(tm)− gi(y(tm), t) ∈ R (8)

and ri(tm) ∈ R2N×1 via its components

r ij′ (tm)=

sin
(∫ tm

t0
1fj′i(y, t ′) dt ′

)
, j′ ∈ NN

cos
(∫ tm
t0
1f(j′−N )i(y, t ′) dt ′

)
, j′ ∈ N2N \ NN

(9)

where Nn = {1, . . . , n} for n ∈ N. Moreover, we abbreviate

Li =
(
`i(t1), . . . , `i(tM )

)
∈ R1×M (10)

and

Ri =
(
ri(t1), . . . , ri(tM )

)
∈ R2N×M . (11)

The unknown, temporally constant terms that result from a
combination of the unknown initial condition components
x0i and the missing knowledge of the Aij (coupling strength
from unit j to unit i) to be inferred are substituted by C i

∈

R1×2N with

C i
j′ =

Aij′ cos
(
1x0j′i

)
, j′ ∈ NN

Ai(j′−N ) sin
(
1x0(j′−N )i

)
, j′ ∈ N2N \ NN .

(12)

We hence rewrite both left-hand side and right-hand side of
the dynamical system defined by (1) and (2), sampled at times
tm as a system of linear equations,

Li = C i Ri. (13)

For each unit i ∈ {1, . . . ,N }, the quantities Li and Ri are
known, whereas C i is unknown and searched for. The sys-
tem (13) is overdetermined if the number M of time points
at which state data of y is recorded exceeds 2N , twice the
number of units.

Due to inexact measurement data and numerical inaccu-
racies, we are searching for a robust solution of the overde-
termined system of equations (13). Hence, we minimize the
L2 norm

∥∥Li − C iRi
∥∥
2 and obtain the solution Ĉ i

by multi-
plying (13) with theMoore-Penrose-Pseudoinverse Ri+ [2],

Ĉ i
= LiRi+. (14)

By definition (12) the matrix Ĉ i
already hints which of the Aij

might be zero, indicating which of the potential interactions

from a unit j to another i are not present. Beyond this quali-
tative binary information, we may quantitatively estimate the
elements of the coupling matrix via

|Aij| =

√(
Aij cos (1x0ji)

)2
+

(
Aij sin (1x0ji)

)2
=

√(
Ĉ i
j

)2
+

(
Ĉ i
j+N

)2
(15)

for j ∈ {1, . . . ,N }.

C. FEATURES OF HIDDEN STATE VARIABLES
Given the dynamics, the values of the hidden variables x
cannot be obtained entirely. However, we can determine their
differences for all times t , i.e., find estimates for all xi up to
a uniform additive shift for all units i. We identify the initial
difference between xj and xi using Euler’s formula and obtain
their difference

1x0ji + 2πm = −ı ln
[
1
Aij

(
Ĉ i
j + ı Ĉ i

j+N

)]
, m ∈ Z (16)

where ı is the imaginary unit. The complex valued logarithm
specifies the phase except for an additive term of an integer
multiple of 2π . Here, we take the terms m = 0, and restrict
the phase differences to the interval [−π, π). We calculate
the phase differences at any arbitrary time t ∈ [t0, t∞] via

1xji(t) =
∫ t

t0

[
fj(y, t ′)− fi(y, t ′)

]
dt ′ +1x0ji (17)

where t0 is the time at start of observation and t∞ chosen such
that t∞ − t0 is much larger than the relevant relaxation time
scales in the system.

Finally, combining (5) for two units (i and j) yields the
fixed point differences,

1x∗ji =
∫ t∞

t0

[
fj(y(t ′), t ′)− fi(y(t ′), t ′)

]
dt ′ +1x0ji. (18)

From the phase differences 1xji(t) we thus obtain all the
phases xi(t) up to one overall (and arbitrary) phase shift.

D. UNDIRECTED NETWORKS
For undirected networks, i.e. systems with symmetric cou-
pling matrices Aij = Aji, we modify the equations to assure
symmetry in the coupling matrix and antisymmetry in the
coupling functions by requiring that

C i
j = C j

i and C i
j+N = −C

j
i+N . (19)

Taking

|Aji| = |Aij| =
1
2

√
(Ĉ i

j + Ĉ
j
i )
2 + (Ĉ i

j+N − Ĉ
j
i+N )

2, (20)

symmetrizes the reconstructed matrix, where the quantities
on the right hand side are computed via (12).

For the differences in initial conditions we obtain

1x0ji = −ı ln
[

1
2Aij

(
Ĉ i
j + Ĉ

j
i + ı (Ĉ i

j+N − Ĉ
j
i+N )

)]
. (21)
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FIGURE 2. Reconstruction of an example model network. (a) Exemplary synthetic power grid with N = 64 units, generated using the algorithm
published by Schultz et al. [35]. Green squares represent generators, and blue disks represent consumers. (b) Receiver operating characteristic (ROC)
curves for the depicted network for various sample lengths. The AUC score is defined as the area below the ROC curve. (c) Precision-recall (PR)
curves for various sample lengths. AP is defined as the area below the PR curve. Sample length, AUC score and AP for each curve are listed in the
upper right box. (d) Histogram of the frequency of reconstructed edge weights (black). For comparison, the real edge distribution is also depicted in
blue. To filter out false positives, we apply Otsu’s threshold selection method [36]. Every edge with a weight below the calculated threshold, depicted
as the dotted vertical line, is discarded. (e) Visualization of the original and reconstructed coupling matrix. (f) Plotting the reconstructed against the
original edge weights shows good agreement, although the inferred edge weights are systematically slightly too small.

III. RESULTS
A. APPLICATION ON A POWER GRID MODEL
We illustrate and discuss the proposed reconstruction method
by applying it to a simple autonomous dynamical network
model for power grid dynamics, namely the coupled second
order swing equations. As opposed to static load-flow mod-
els, the coupled swing equations considered as an example
here model power grid dynamics that include electrome-
chanical dynamics [37]. Here, the voltage angle xi(t) =
θi(t) and the angular frequency deviation from a reference
frequency (e.g., 50 Hz) yi(t) = ωi(t) are the components
of the state variables, fi(ω, t) = ωi and gi(ω, t) = Pi −
γiωi both do not explicitly depend on time and hi(θ ) =∑N

j=1 Kij sin
(
θj − θi

)
is a coupling function exhibiting one

Fourier mode. We thereby consider a lossless transmission
grid for clarity of presentation. Including losses would intro-
duce a cosine Fourier term in the coupling function. As dis-
cussed in section II A, including additional terms in the
coupling function would make the network inference prob-
lem technically more cumbersome without contributing any
qualitative novelty. The resulting dynamical system is given
by [34], [38], [39]

θ̇i = ωi, (22)

Ii ω̇i = Pi − γi ωi +
N∑
j=1

Kij sin
(
θj − θi

)
, (23)

where Ii denotes the moment of inertia, Pi reflects the power
consumed (Pi < 0) or provided (Pi > 0) at unit i and Kij is
the matrix of effective coupling strengths among units of the
power grid.

The term −γi ωi in (23) includes both damping and pri-
mary (proportional) control. In this manuscript, we assume
homogeneous damping, γi ≡ γ for all i ∈ {1, . . . ,N }, and
do not include secondary (integrative) control, again because
this would make the presentation more cumbersome without
adding novelty. Drawing moments of inertia Ii from a normal
distribution with mean 1 and standard deviation 0.1 (almost
certainly yielding Ii > 0 for reasonable N ) creates a family
of sample networks.

Dividing (23) by Ii > 0 gives the functional form
demanded in (2). Note that we thus infer the scaled matrix
elements K ′ij = Kij/Ii, and hence have to correct for the
normalization afterwards. According to the conditions under
whichwe aim to illustrate inference, in this system,we take γ ,
Pi and Ii to be known for each unit i ∈ {1, . . . ,N }. Measuring
the transient frequencies at each node i as the system relaxes
after a small perturbation yields the frequency time series
ωi(t). We take all the θi(t) time series to be unknown.

Following the steps described in Section II, for each mea-
sured time instant tm, m ∈ {1, . . .M}, we define

`i(tm) = ω̇(tm)−
1
Ii
(Pi − γωi(tm)) , (24)
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FIGURE 3. Scaling of topology reconstruction. For various network sizes, measured by their number of units N , 100 random networks have been created
using the model by Schultz et al. [35]. We apply the presented inference method as a function of the measurements M. (a) and (b) display how the AUC
score and AP reach their ideal value of 1 with increasing number of measurements, respectively. (c) shows how the mean absolute error (MAE) decreases
with increasing number of measurements. In (a) to (c) lines represent the mean value and the shaded areas emphasize the 95% confidence interval of
the distribution. (d) to (f) report the scaling to reach a suitable AUC score, AP and MAE as a function of the network size, respectively. Error bars again
indicate the 95% confidence interval, obtained via bootstrapping.

FIGURE 4. Recovery of the hidden variable. (a) For one random network drawn as above via the model by Schultz et al. (same power grid realization as
in Fig. 2), we reconstructed the phase differences 1θ∗ij according to (29) from the recorded frequency time series, yielding reasonably agreement for all
edges (i, j ), see (b). The scaling of the MAE and its 95% confidence interval with the number of measurements of an ensemble of 100 networks for each
network size N is illustrated in (c).

r ij′ (tm) =

{
sin1θj′i(tm), j′ ∈ NN

cos1θ(j′−N )i(tm), j′ ∈ N2N \ NN ,
(25)

C i
j′ =

{
K ′ij′ cos1θ

0
j′i, j′ ∈ NN

K ′i(j′−N ) sin1θ
0
(j′−N )i, j′ ∈ N2N \ NN .

(26)

Calculating Ĉ i
= Li Ri+ gives the L2-norm minimizing

solution Ĉ i
of the system Li = C i Ri, which subsequently

yields the elements of the connectivity matrix,

|Kij| = Ii|K ′ij| = Ii
√
(Ĉ i

j )
2 + (Ĉ i

j+N )
2 , (27)

and the initial phase difference at the instant t = t0 of the
perturbation,

1θ0ji = −ı ln
(
Ii
Kij

(
Ĉ i
j + ı Ĉ i

j+N

))
, (28)

VOLUME 10, 2022 76687



R. Schmidt et al.: Inferring Topology of Networks With Hidden Dynamic Variables

where −1θ0ij = 1θ
0
ji . Next, we infer the phase differences in

the fixed point via

1θ∗ji =

∫ t∞

t0

[
ωj(t ′)− ωi(t ′)

]
dt ′ +1θ0ji . (29)

As follows from linear response theory, the amplitude of
the perturbation decays in first order approximation propor-
tional to exp (Re[λ1]t), where λ1 denotes the eigenvalue of
the system’s Jacobian with largest non-zero real part. In the
simulations, we employ this feature and take t∞ as the time,
after which the perturbation amplitude has decayed to 1%
of its initial amplitude.

B. TECHNICAL DETAILS
To test our approach on a large number of networks with
an adjustable number of nodes, which still display core
characteristics of real power grid topology, we utilize the
power grid topology generation algorithm introduced by
Schultz et al. [35]. The unit locations are drawn randomly
from the uniform distribution on [0, 1) × [0, 1) and the dis-
tance between them is defined via the L2 norm. The edge
weights Kij are drawn from a normal distribution with mean
13 and standard deviation 2.0. The damping coefficient is
chosen as γ = 0.1. In each network with N nodes,

⌊N
4

⌋
units

act as power generators, whereas the remaining NC
= N −⌊N

4

⌋
units act as consumers with PC = −1. Since the system

operates at a stable fixed point, the power of the generators
satisfies

∑N
i=0 Pi = 0, hence PG = −NCPC/(N − NC ).

We consider the transient dynamics of the system after
a small perturbation. In real systems, perturbations occur
even without experimental interference; here we externally
perturb the system randomly. Specifically, we perturb each
unit with a phase shift drawn from a normal distribution
with mean zero and standard deviation π/8 and simulate
the nodal frequencies ωi(t) at each unit i ∈ {1, . . . ,N } as
the system relaxes to it’s stable fixed point by integrating the
dynamical system (22), (23). We assume that the frequencies
are sampled in time steps of 0.05. We use these frequency
time series to reconstruct both the network topology and
phase differences following the procedure described above.

An exemplary reconstruction of a modeled power grid
based on a frequency time series with 1500 data points is
illustrated in Fig. 2.

C. QUANTIFICATION AND ERROR MEASURES
Understanding and quantifying systematic errors occurring
in the proposed reconstruction scheme, requires a systematic
analysis of the initially obtained raw results. How many data
points have to be measured to obtain a reliable reconstruc-
tion? How does this requirement scale with the number of
nodes in the network? Answering these questions requires
different methods and quantifiers, as detailed below.

The area under the receiver operating characteristic curves
(AUC score) and the average precision (AP) quantify the
overall reconstructability of the network given a recorded fre-
quency time series, whereas the mean absolute error (MAE)

indicates the precision of the inferred topology and edge
weights. The receiver operating characteristic (ROC) curve
follows from comparing the reconstructed (RM) and origi-
nal (OM) adjacency matrix. Edges present both in RM and
OM count as true positives. If an edge is in RM but not in
OM, it counts as a false positive. The ROC curve results
from calculating the true positive rates and false positive
rates of RM with respect to OM. Each unique value in
RM successively is taken as a threshold, and all edges with
weights below this threshold value are set to zero, values
above are set to 1. Comparison with the original adjacency
matrix yields the true and false positive rates. The ROC
curve then follows from plotting the true positive rate against
the false positive rate. The area below the ROC curve is
denoted the AUC score and serves as a good indicator of the
ability to reconstruct the network topology. An AUC score
of 1 is equivalent to perfect reconstructability, with the true
positive rate equaling 1 and the false positive rate equals zero.
An AUC score of 0.5 indicates, that a detected edge may
be true positive or false positive with equal probability [40],
equivalent to randomly guessing the outcome. Similarly, the
area under the precision-recall (PR) curve, denoted AUC-PR
or average precision (AP), follows from plotting precision,
defined as the ratio of true positives over the sum of true
positives and false positives, as a function of recall, defined
as the ratio of true positives over the sum of true positives
and false negatives, for varying thresholds. In contrast to the
area under the receiver operating characteristic curves, AP is
less sensitive to unbalanced data, where positives occur much
less frequently than negatives [41]. Fig. 2 (b) and (c) display
exemplary ROC and PR curves of the displayed network at
various sample lengths M , respectively. For the subsequent
images in Fig. 2, M = 1500 measurements have been used,
leading to an AUC score and an AP of 1.

Still, calculatingAP and theAUC score requires the knowl-
edge of the original coupling matrix, which we take to be
unknown. To identify correct edges and discard numerical
artifacts, a different approach is needed. Plotting the distri-
bution of the raw reconstructed edge weights (black) and the
distribution of the real edge weights (blue), see Fig. 2 (d),
reveals incorrectly detected edges with edge weights close
to zero. Applying Otsu’s method [36] yields a threshold to
classify edges and artifacts. All edges with weights below
this threshold are assumed to be false positives and hence
discarded.

Whereas AP and the AUC score indicates the recon-
structability and Otsu’s method serves to distinguish between
correct and incorrect edges, the mean absolute error (MAE)
quantifies the accuracy of the inferred edge weights. The
MAE between two matrices A,B ∈ RN×N is defined by

MAE(A,B) =
1
N ′

N∑
i=0

N∑
j=0

|Aij − Bij|. (30)

To take into account network sparsity, we do not set the
normalization constant N ′ to N 2 as often is the default but
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choose N ′ as the number of non-zero matrix elements in the
original matrix. Removing the numeric artifacts (discarding
edges below a threshold, see Fig. 2 (d)), before calculating
the MAE neglects their contribution to the error. Adjusting
N ′ accordingly prevents scaling of the MAE with the matrix
dimensions.

D. NETWORK INFERENCE
Fig. 2 illustrates step by step the numerical results obtained
by using the introduced method to infer a medium sized syn-
thetic power grid based on its frequency time series induced
by a perturbation. When recording a sufficient amount of
data (sample length M = 1500 in this example), the recon-
structed matrix coincides very well with the original matrix,
see Fig. 2 (e). More quantitatively, plotting the reconstructed
against the original edge weights (Fig. 2 (f)) reveals a good
agreement between the original and reconstructed coupling
matrix. Although the method tends to slightly underestimate
the edge weights with increasing sample length, most values
lie very close to the diagonal that indicates perfect inference.
For a systematic analysis of the reconstruction quality and
the algorithm’s scaling with the number of units in the net-
work and the measurement count, we applied the method
to an ensemble of 100 networks for each network size and
evaluated the reconstructed matrix at different measurement
counts. Fig. 3 (a) to (c) show the AUC score, AP and the
average MAE as a function of the number of measurements
for different network sizes.With the given parameter settings,
both AUC and AP approach 1 for all tested networks. The
average MAE also appears to converge to a fixed value,
although larger networks require significantly more mea-
surements before reaching this limit. Before slowing down
at this tail, the required measurements for reaching a fixed
AUC score, AP and MAE increase linearly with the network
size, as Fig. 3 (d) to (f) illustrate. The cutoff MAE value of
1 corresponds to an average deviation between predicted and
original edge weights of approximately 7.7% with the given
simulation parameters. Sufficiently long measurements yield
a relative edge deviation of approximately 2%with the chosen
parameters. Rarely, we detected numerical outliers in the
MAE due to a single very large inferred matrix element. Data
of the corresponding network have been omitted in Fig. 3.
The maximal reconstructable network size based on data

of a single perturbation is limited, since the amplitude of
the initial perturbation decays exponentially with the largest
real part of the linearized system’s eigenvalues not equal to
zero, which is dependent on the system’s parameters. The
reconstructability of a dynamical system’s coupling matrix
hence improves with larger initial perturbations and lower
damping.

Comparing the introduced method with the direct method
to infer network topology from time seriesmeasurements [15]
reveals that our proposed method requires more samples to
achieve a comparable inference quality in terms of F1-Score
(the harmonic mean of the precision and recall value) and
MAE, see Fig. 5. However, the direct method is incapable

of inferring network topology from incomplete information
such as time series missing for any variables. We therefore
used both the frequency and phase angle time series for infer-
ence and hence approximately twice the information avail-
able to our proposed method. With sufficient data available,
both methods achieve a similarly high F1-Score and MAE.

E. PHASE RECOVERY
As discussed in Section II, the hidden phase differences
1θij along all lines in the network may be recovered from
measurements of the local angular velocities ωi, see Fig. 4.
Given sufficiently many data points, the reconstructed

phase differences in the fixed point1θ∗ij lie close to the diag-
onal when plotted against the measured phase differences,
i.e. the measured and reconstructed 1θ∗ij match well, see
Fig. 4 (b) for the inferred phase difference from the network
topology shown in Fig. 4 (a) (same power grid realization as
in Fig. 2).

The scaling of the mean MAE for ensembles of 100 net-
works each for different measurement counts and network
sizes is illustrated in Fig. 4 (c). For all networks, the MAE
starts at a constant value, since phase angles differences
are restricted to the interval [0, π), leading to an average
initial MAE of π/2. After the number of measurements M
increases, the MAE decreases very fast and converges to
an exponential decay afterwards. The initially large MAE is
dominated by the reconstruction error of 1θ0ij . As this error
decreases, the accuracy still is restricted by the exponential
damping of the dynamical system. Only as the system’s state
has reached its stable fixed point again, the inference error is
minimal.

The amplitudes of the perturbed frequencies decay approx-
imately exponentially and so does the error of the recon-
structed phases. Adding the reconstructed initial phase dif-
ference to the integral over the frequency difference yields
the phase differences in the fixed point, see (29). Note that
we also could recover the fixed point phases by using the
reconstructed edges to calculate the roots of the dynamical
system given by (22) and (23). However, by using the intro-
duced method we additionally obtain the unknown initial
perturbation 1θ0ij and also compute phase difference tra-

jectories 1θij(t) for all edges, purely based on frequency
measurements.

IV. DISCUSSION AND OUTLOOK
We have presented an inference method to obtain the network
connectivity matrix without monitoring all nodal quantities,
i.e., inference with hidden (not directly monitored) variables.
Using frequency recordings of a simulated synthetic power
grid, both the coupling matrix and the entire phase difference
time series may be recovered. Thereby, we have demon-
strated by an example model application that the theoretically
derived method of reconstruction from partial information
works well in a simulated dynamical system. The presented
inference method may prove to be a powerful tool for sys-
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tems with established dynamical models of appropriate func-
tional forms (2). The inference quality is high already for a
moderate number of measurements. Keeping the inference
quality constant, the number of required measurements scales
approximately linearly with the network size. Since we are
not aware of other methods that infer topology from partial
measurements, we compare the proposed method with the
well-established direct method [15], which requires access
to all time series (no hidden variables). As illustrated in
Fig. 5, compared to the direct method, the method proposed
here requires a larger number of measurements from the
observable units to achieve similarly large F1-Score (the
harmonic mean of the precision and the recall value) and
MAE, respectively. However, since the direct method uses
effectively twice as much information (hidden variable and
observable variable), the total information required in both
approaches is approximately equal.

FIGURE 5. Comparison with direct method Comparing the required
measurements of our proposed method (blue) and the direct method
(orange) [15] to achieve a given F1-Score (a) and a given MAE (b) reveals
that the direct method (assuming full knowledge of all time series) infers
more accurately at the same number of measurements. However, both
methods achieve similarly good scores eventually.

Our advancement is twofold: First, we have extended gen-
eral network inferencemethods by providing an approach that
does not require all nodal quantities to be monitored directly.
This further moves the boundary of what quantities and infor-
mation of a dynamical system can be recovered. We add to
model-free inference [19] and hidden node detection [21] a
method of inference when facing incomplete variable obser-
vation. This could be useful to many other applications where
monitoring all quantities is either impossible or very costly,
as in many biological systems, such as metabolic or neuronal
systems [17]–[19], [42], [43].

Second, we have applied network inference methods to
basic dynamical systems models of power grids with its
dynamics given by the second order model (coupled swing
equations). We thereby provide first steps towards a tool that
may be useful for engineers inferring the network topology of
real-world systems. This tool could for example be applied in
distribution grids, e.g., to locate a faulty line or determine the
status of switches if documentation is unavailable.

The proposed method requires knowledge about the full
model of the underlying dynamical system,making it applica-
ble to systems whose dynamics can at least be approximately
modeled by the required functional forms. One major open

question is how to infer topology from time series sampled
from a subset of variables in the absence of any nonlinear
dynamical systems’ model. Furthermore, although there is
no hard limit, in practice both finite memory and the expo-
nential decay of the perturbation amplitude limit the maximal
reconstructable network size (and thus number of variables).
As discussed in section II, the dimensionality of the linear
system which has to be optimized scales linearly with the
number of measurements. Simultaneously, the perturbation
amplitudes decay exponentially with the largest non-zero
eigenvalue real part. Above some network size (or number
of variables), the information contained in a single pertur-
bation hence may not suffice to reconstruct the topology
accurately. Assessing the theoretical approach with experi-
mentally obtained data also remains a task for future research.

There remain many open questions. From the application
point of view, it would be interesting to set up a laboratory
experiment or see this inferencemethodology applied to a real
distribution power grid. Themethod itself should be advanced
to cover a broader spectrum of local dynamics f and g, and
by overcoming the limit of effectively reconstructable net-
work sizes, e.g., by using measurements of multiple perturba-
tions. Finally, a long-term project could combine model-free
approaches [19], the inference of hidden nodes [21] and
our approach of determining inaccessible variables into one
coherent and powerful inference framework. However, the
introduced method may already contribute to the analysis of
coupled dynamical systems whose topology previously could
not be retrieved due to the inaccessibility of some dynamical
variables.

AVAILABILITY OF CODE
Python code to infer the network topology and differ-
ences in the hidden variable and a short discussion of
numerical properties and challenges is made available
at https://github.com/Network-Dynamics/network-inference-
with-hidden-variables.
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