
 

Adhesion-Induced Discontinuous Transitions and Classifying Social Networks

Nora Molkenthin,1 Malte Schröder,2,1 and Marc Timme2,1
1Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany

2Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics,
Technical University of Dresden, 01069 Dresden, Germany

(Received 20 September 2017; revised manuscript received 8 June 2018; published 25 September 2018)

Transition points mark qualitative changes in the macroscopic properties of large complex systems.
Explosive transitions, exhibiting properties of both continuous and discontinuous phase transitions,
have recently been uncovered in network growth processes. Real networks not only grow but often also
restructure; yet common network restructuring processes, such as small world rewiring, do not exhibit
phase transitions. Here, we uncover a class of intrinsically discontinuous transitions emerging in network
restructuring processes controlled by adhesion—the preference of a chosen link to remain connected to its
end node. Deriving a master equation for the temporal network evolution and working out an analytic
solution, we identify genuinely discontinuous transitions in nongrowing networks, separating qualitatively
distinct phases with monotonic and with peaked degree distributions. Intriguingly, our analysis of empirical
data indicates a separation between the same two forms of degree distributions distinguishing abstract from
face-to-face social networks.
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Phase transitions mark qualitative changes in the col-
lective behavior of large complex systems by separating
regimes of distinct collective states. The change of the
global system state is induced by a control parameter
passing a critical value. Common examples include the
liquid-gas transition, where the fluid density drops dis-
continuously upon smoothly decreasing the pressure and
the transition between magnetic and nonmagnetic states in
ferromagnetic solids with increasing temperature.
Recent studies have revealed new forms of “explosive”

transitions in the macroscopic structure of networks [1–4].
The network ensembles in these examples originate from a
growth process, where links are added sequentially. While
initially deemed discontinuous, these transitions have since
been shown to be more subtle [5–9]. Despite strong
analogies to finite size and supercritical properties of
discontinuous phase transitions [5,10], they are in fact
continuous [11,12]. Some notable exceptions have been
found under specific conditions, for instance, for two-layer
networks, globally optimized link selection, or inhomo-
geneous node preferences [13–15]. Studies of models of
nongrowing networks with implicitly degree-dependent
rewiring [16] found different types of degree distributions.
The question about existence and type of phase transitions

has not been addressed. At the same time, a range of
processes that restructure rather than grow the system are
known to not exhibit phase transitions but instead show a
gradual crossover between the different network structures
[17–22]. Under which conditions phase transitions may
possibly emerge in nongrowing systems and whether they
could be discontinuous thus remains unknown to date.

FIG. 1. Network rewiring controlled by link adhesion. Rewir-
ing at each time step happens in two subsequent parts. First, a link
is randomly selected and one of its ends is cut according to its
adhesion preference q, setting the probability for cutting the
chosen link’s lower-degree end. As q → 0, the higher-degree
end is cut preferentially, as q → 1, the lower-degree side is cut
preferentially, and if q ¼ 0.5, both sides are cut with the same
probability. Second, the cut end of the link is reconnected to a
node of degree k with probability proportional to kþ 1 (prefer-
ential attachment).
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Here, we study a class of network restructuring processes
with explicit adhesion preference of a link to stay con-
nected to its end nodes (see Fig. 1). The resulting networks
exhibit a genuine discontinuous phase transition in their
macroscopic structure as an adhesion parameter changes.
A degree-dependent asymmetry of the node-link adhesion
induces a transition between classes of networks with
qualitatively different degree distributions, one monoton-
ically decaying with degree, the other peaked. Intriguingly,
the two classes consistently distinguish abstract (e.g.,
online) from face-to-face (e.g., offline) social networks
as we confirm by comparing analytical and simulational
results of our theory with structural network data for
empirical systems.
Degree-dependent network restructuring.—Consider a

basic restructuring process of a nongrowing temporal
network of N nodes and L links, starting from an arbitrary
interaction topology. In each time step t ∈ N0 of restructur-
ing (Fig. 1), a link in the network is chosen at random from
the uniform distribution among all links. One of the two
end nodes of that link is cut (“given up” by the unit it
connected to), with probability q choosing the lower-degree
node and with probability 1 − q the higher-degree node.
The cut end of the link reconnects to a different unit of
some degree k, randomly chosen with a probability dis-
tribution proportional to (kþ 1).
The resulting time evolution defines a stochastic ensem-

ble of temporal networks. After sufficiently long times, we
consistently observe convergence to a network ensemble
dependent only on q (unique attractor). Indeed, the degree
distributions become stationary and independent of the
initial network structure (Fig. 2). For low q the stationary
distribution is peaked; for higher q it is decaying. Below,
we evaluate the order parameter

m ¼ hki−1argmax½P̃ðkÞ� ð1Þ
given by the normalized mode (position of the maximum)
of the stationary degree distribution P̃ðkÞ and show that
the system exhibits a well-defined phase transition in the
thermodynamic limit where hki → ∞ and thus N → ∞.
To qualitatively understand how the transition emerges

and how it depends on adhesion and network topology,
we derive and analyze a master equation characterizing the
degree distribution PtðkÞ of the evolving network ensem-
ble. Consider the possible degree changes at a given time
step t ≥ 0. The one end node that sticks at the randomly
chosen link does not change its degree, whereas the other
end node reduces its degree by one. Subsequently, the node
that the link rewires to increases its degree by one. As a
consequence, the degree distribution of the temporal net-
work process satisfies the discrete-time master equation

Ptþ1ðkÞ ¼ PtðkÞ − ukPtðkÞ þ ukþ1Ptðkþ 1Þ
− lkPtðkÞ þ lk−1Ptðk − 1Þ: ð2Þ

The unwiring probability uk represents the probability of
decreasing the degree of one of the nodes with degree k
by rewiring away from it, and the linking probability lk
represents the probability of increasing the degree of a node
with degree k by rewiring to it.
As the temporal network evolution is a Markov chain

that is irreducible, i.e., every network in the ensemble can
be reached with positive probability, the stationary degree
distribution P̃ðkÞ is unique and given as the solution of
Eq. (2) with Ptþ1ðkÞ ¼ PtðkÞ ¼ P̃ðkÞ. We rewrite Eq. (2) at
the fixed point as a matrix equation
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where P̃ is a vector with entries P̃ðkÞ and M a matrix with
entries based on uk and lk. Adding to each row of the matrix
M the previous row and dividing by ui simplifies Eq. (3) to

(a) (b)

(c) (d)

FIG. 2. Qualitatively different steady-state degree distributions
for different q. (a),(b) For small q (q ¼ 0.1 in the examples), the
stationary degree distributions are peaked at k ¼ hki − 1, whereas
(c),(d) for larger q (q ¼ 0.5 in the example), they become
monotonically decreasing in k, thus peaking for k ¼ 0. The
transition is discontinuous (jumping from peak position hki to
zero) and robust against changes of initial conditions [Erdős-Rényi
initial networks, panels (a), (c); Barabási-Albert initial networks,
panels (b),(d)]. Example ensembles shown for initial networks of
N ¼ 212 nodes and hki ¼ 20. Darker colors indicate longer times,
and gray wide lines indicate the analytical prediction as time
t → ∞ (stationary distribution). Data are averaged across 100
realizations of the stochastic temporal network evolution; error
bars show standard deviation of the resulting distribution. Note the
different vertical scales in panel (d) compared to (c).
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Since the last row of M0 is identically zero, M0 does not
have full rank and there exists a stationary solution for
k ∈ f1;…; N − 1g, given by the eigenvector to the eigen-
value zero as

pðkÞ ¼
�Yk

m¼1

lm−1

um

�
: ð5Þ

We fix pð0Þ arbitrarily and then normalize P̃ðkÞ ¼ CpðkÞ
byC ¼ 1=

P
N−1
k¼0 pðkÞ for all k such that

P
N−1
k¼0 P̃ðkÞ ¼ 1 to

obtain the exact stationary degree distribution.
Asymmetric adhesion induces discontinuous transitions.—

To calculate the peak position kmax ¼ argmax½P̃ðkÞ� of the
degree distribution,we first consider the unlinking and linking
probabilities uk and lk. Since links are selected uniformly at
random, the probability of a link with an end node of degree k
being selected is k=L, where L ¼ Nhki=2 is the number of
links in the network. That node is chosen to be cut from the
link with probability q if k is smaller than the degree of the
other end node of the link and with probability 1 − q if it is
larger than that degree. For uncorrelated degrees of the two
end nodes, we obtain the approximation

uk ¼
k
L

�
qP>ðkÞ þ 1

2
P¼ðkÞ þ ð1 − qÞP<ðkÞ

�
; ð6Þ

where P>ðkÞ ¼ P
N−1
k0¼kþ1

ðk0=hkiÞP̃ðk0Þ, P¼ðkÞ ¼
ðk=hkiÞP̃ðkÞ, and P<ðkÞ ¼ P

k−1
k0¼1

ðk0=hkiÞP̃ðk0Þ are the
probabilities that a node neighboring a degree k node has
itself a degree larger than, equal to, or smaller than k.
Numerical results suggest that for networks where hki is
substantially smaller than N, the node degrees are indeed
sufficiently weakly correlated in the stationary state for
q ≤ 1=2.
The cut link rewires following preferential attachment

[23] and rewires to a new node with probability propor-
tional to (kþ 1). The offset of 1 prevents a node from
being removed if its degree falls to zero. So the (linking)
probability of reconnecting to a node of degree k is

lk ¼
kþ 1P

N
i¼1ðki þ 1Þ ¼

kþ 1

Nhkþ 1i : ð7Þ

To understand how the peak position changes, we calculate
the values of q≕ qcðkÞ where the maximum of the degree
distribution changes from k to kþ 1 in the steady-state

ensemble. We then demonstrate that qcðkÞ → 1=2 for all
k ≤ hki in the limit as hki → ∞ and thus N → ∞ such that
the order parameter discontinuously jumps at that value
of q. Figure 3 displays finite system results and illustrates
the scaling as hki and N grow. For finite systems, the point
qcðkÞ is defined by the condition that the two consecutive
probabilities become equal P̃ðkÞ ¼ P̃ðkþ 1Þ.
Using P>ðkÞ þ P¼ðkÞ þ P<ðkÞ ¼ 1 and writing the

probabilities P>ðkÞ¼½1−P¼ðkÞ�=2þδ>ðkÞ and P<ðkÞ¼
½1−P¼ðkÞ�=2þδ<ðkÞ, where δ>ðkÞ¼−δ<ðkÞ, Eqs. (5)–(7)
yield the equation

1 ¼ P̃ðkÞ
P̃ðkþ 1Þ ¼

ukþ1

lk
¼ 2hkþ 1i

hki
�
1

2
þ ½2qcðkÞ − 1�δ>ðkÞ

�

ð8Þ

for qcðkÞ. For qc ¼ 1=2 the right hand side is larger than
one for all finite hki. We thus consider the deviation

(a)

(b) (c)

FIG. 3. Phase transition in temporal network rewiring. (a) The
relative position of the maximum m ¼ hki−1argmax½P̃ðkÞ� of the
stationary degree distribution P̃ðkÞ as a function of adhesion
asymmetry parameter q for different network sizes with
N > hki ≫ 1, where hki=N ¼ const. (b) The distance ϵðkÞ from
the transition point Eq. (9) algebraically decays to zero in the
thermodynamic limit for all k ≤ hki, see the examples for
k=hki ¼ f0; 1=2; 1g, thus indicating a discontinuous transition
at qc ¼ 1=2. The scaling ϵðkÞ ∼ hk−1i agrees with the analytical
approximation Eq. (10) and the exact prediction Eq. (11).
(c) Phase diagram in parameter space q vs hki indicates
separation between decaying (m ¼ 0) and peaked (m > 0) degree
distributions (white and shaded regions, resp.). The analytical
prediction (solid line) shows qcð0Þ from Eqs. (11) and (9); disks
show the result from direct numerical simulations for N ¼ 1024.
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ϵðkÞ ¼ 1=2 − qcðkÞ ≥ 0; ð9Þ

such that Eq. (8) results in

ϵðkÞ ¼ 1

4hkþ 1iδ>ðkÞ : ð10Þ

This provides strong evidence for a discontinuous phase
transition, because in the limit hki → ∞ we have ϵðkÞ → 0
for all k as long as δ>ðkÞ > 0. We make additional progress
by noting that δ>ðkÞ changes sign at the median k̄ of the
distribution. For the typical (though not universal) ordering
of the mode kmax, median k̄, and mean hki of a unimodal
distribution with positive skewness [24,25] kmax ≤ k̄ ≤ hki,
we thus find that indeed δ>ðkmaxÞ > 0 and qcðkÞ < 1=2,
consistent with the transitions observed in the simulations
of finite systems [Fig. 3(a)]. As a result, the peak position
changes discontinuously fromm¼ðkmax=hkiÞ¼0 tom ¼ 1
at qc ¼ 1=2 in the limit of hki → ∞ and thus N → ∞.
For k ¼ 0 we specifically have P>ð0Þ¼1 and P¼ð0Þ¼0

and consequently δ>ð0Þ ¼ 1=2 such that we obtain the
exact expression

ϵð0Þ ¼ 1

2hkþ 1i : ð11Þ

Direct numerical simulations show that the same scaling
holds for ϵðkÞ across values of k ∈ f0;…; hkig; compare
Fig. 3(b).
The approximate scaling form Eq. (10), the exact

result Eq. (11), and the numerical analysis summarized
in Fig. 3 jointly indicate a discontinuous phase transition at

qc ¼ 1=2 in the limit hki → ∞, and thus N → ∞. We
emphasize that the order parameter changes abruptly from
m ¼ 1 for all q < 1=2 to m ¼ 0 for q > 1=2 as the
adhesion parameter q continuously varies across its critical
value from below.
Transition line separates abstract from personal

social networks.—Interestingly, a wide range of social
networks exhibit one of these two specific types of degree
distributions—decaying or peaked—theoretically identi-
fied above. Moreover, the theoretical transition line exactly
separates the collection of networks into those with close
personal contacts and those created through more abstract,
indirect, or online-only interactions; compare Fig. 4.
We have compared the degree distributions resulting

from the simple model to those obtained from 33 social
networks, as reported in Refs. [26] and [31–39]. The
systems range from networks of direct personal interactions
with face-to-face contacts in various private and educa-
tional contexts or reported friendships of humans and of
dolphins, to more abstract social interactions, including
online social networks as well as offline, but hierarchically
determined, social relations (see the Supplemental Material
[40] for more details). The average degree hki was
computed from each data set thus leaving q as the only
free parameter. A least-squares fit to each degree
distribution yields the best-suitable q for each network.
Intriguingly this even led to good quantitative agreement of
the degree distributions [see Figs. 4(b)–4(e); see also the
Supplemental Material [40]].
We were amazed to observe that all networks in which

personal, typically face-to-face, relationships define links
exhibit a peaked degree distribution, whereas all networks
in which abstract, i.e., online, relationships define links,

c
d

b

(b)

(e)

(a)

(c)

(d)

e

c

FIG. 4. Social networks in the phase diagram. (a) The phase transition (dark blue line) theoretically derived from the simple network
restructuring model separates all personal (dark blue) from all abstract (light green) social networks studied. The topologies of 33
different networks were extracted from data collected in [26]. For each network i, the optimal parameter qi given the average degree hkii
(and network size Ni) as extracted from the network data are placed in the phase diagram. The inset magnifies a densely covered area of
high school social networks. (b)–(e) Examples of social networks illustrating decaying and peaked degree distributions; the solid curves
indicate the single-parameter fit of the entire distributions. (b) Online community “Hamsterster” [27], (c) University Rovina email
exchange [28], (d) interactions in an exhibition [29], and (e) and friendships among schoolchildren [30].
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exhibit decaying degree distributions; see Fig. 4. Indeed,
a permutation test assigning the labels “abstract”
and “personal” to the degree distributions randomly yields
the same classification only in one out of ð33

8
Þ ≈ 1.4 × 107

cases.
Discussion and conclusions.—Studies of network struc-

ture forming processes have previously uncovered explo-
sive transitions in a range of network growth processes [10]
whereas most restructuring processes for fixed size net-
works exhibit gradual crossovers between random and
regular graphs with no distinct transition. Notably, the
rewiring mechanisms in the latter types of processes are
independent of any properties of the nodes or links [17–22].
Here, we revealed a discontinuous phase transition in

network structural features in a simple model class of
temporal networks that do not grow but exhibit degree-
dependent link adhesion. As the underlying microscopic
mechanisms rely on a simple local cutting and rewiring
process, they imply self-organization of the networks’ large-
scale structures. Driven by the tendency of a link to stick
to a node (adhesion) depending on that node’s degree, a
discontinuous phase transition emerges between two types
of degree distributions—peaked and decaying—when
smoothly varying this tendency via a control parameter.
Intriguingly, the same two types of degree distributions

are observed for a wide range of social networks.
Moreover, among the 33 topologies of social networks
analyzed, all those networks established through personal
contacts exhibit peaked and all those with more abstract,
indirect, or impersonal contacts exhibit decaying degree
distributions. The results thus suggest that the simple,
abstract model, that is a priori unrelated to specific and
widely heterogeneous social dynamics, surprisingly serves
as a good indicator for the separation between networks
with more personal and more abstract social relations.
Several general constraints as well as social mechanisms

might be supporting this binary classification. The primary
mechanisms underlying the model restructuring process are
based on the model ingredient that sustaining a link is node
dependent. From the perspective of a node in a socioeco-
nomic setting, such as trade or friendships, this may be
interpreted as the bilateral effort (e.g., time, money, or
motivation) to keep a connection. Such constraints on the
number of sustainable links may lead a node to cut ties with
less beneficial connections (i.e., a less involved friend or a
less influential business partner), similar to our model
settings that otherwise are far from fully capturing the
intricacies across social networks.
Taken together, the results presented above not

only highlight severe theoretical consequences of link
adhesion—inducing a discontinuous transition for restruc-
turing networks in the first place—and yield novel insights
into structural phase transitions in temporally evolving
networks [41–43]. They may also serve as a starting
point for future investigations about the mechanisms and

the influence of constraints in evolving socioeconomic
systems.
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