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Abstract. We design the interactions between oscillators communicating
via variably delayed pulse coupling to guarantee their synchronization on
arbitrary network topologies. We identify a class of response functions and
prove convergence to network-wide synchrony from arbitrary initial conditions.
Synchrony is achieved if the pulse emission is unreliable or intentionally
probabilistic. These results support the design of scalable, reliable and energy-
efficient communication protocols for fully distributed synchronization as
needed, e.g., in mobile phone networks, embedded systems, sensor networks and
autonomously interacting swarm robots.
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1. Introduction

Synchronization emerges in a variety of systems ranging from fireflies and neural networks
in biology, to coupled lasers, wireless communication and Josephson junctions in physics
and engineering [1–12]. Sometimes the goal of technological and medical systems is to
avoid synchrony, e.g., during Parkinson tremor or epileptic seizures [4–7]. In many other
systems, such as heart pacemakers [8], lasers [9], electric power grids [10] and communication
technologies [11], synchronous dynamics of the units in a network is actually often intended.
For instance, in the growing field of wireless embedded systems, a self-organizing approach to
achieve synchrony seems to be a promising way of arranging slots and frames for data packet
transmission without reference to a central unit [12–15]. Such self-organized dynamics should
quickly adjust to changes and be scalable to large networks [12, 13].

The Kuramoto model of continuously coupled phase oscillators provides a simple, widely
used paradigm for analyzing and designing synchronization [16]. Synchrony is indeed very
common in such systems, but it is not always achieved, as it depends on network size
and topology and also on the choice of initial conditions (cf [17]). Stochastic interactions
may further hinder the synchronization process. Instead of time-continuous coupling, modern
approaches to synchronization are often based on time-discrete pulse coupling. This approach
appears to be more promising and fits better with the nature of packet-based communication
used in wireless communication networks [12, 14, 15]. However, it remains an open problem
how to reliably achieve network-wide synchrony in such a general setting.

To ensure proper functioning, synchrony is required to emerge across the entire network
from arbitrary initial conditions, for arbitrary connected network topologies and for variably
changing interaction delays. Moreover, it should be robust against stochastic communication
errors. However, to our knowledge, so far there is no known pulse coupled oscillator system
that satisfies all these requirements simultaneously. In particular, theoretical results suffer from
constraints regarding at least one of the requirements: synchronization may be guaranteed only
in the absence of delays [18–20], only for specific network topologies [21–25] or only for a
certain subset of initial conditions [26–29].
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Figure 1. Synchronization on different network topologies. Centered phases
(φ̃i := (φi + 0.5 mod 1) − 0.5) at every pulse sending event at time tn, n ∈ N,
starting from random initial conditions in different Watts–Strogatz graphs [30]
(N = 100)4: (a) fully connected (rewiring prob. 0, degree 99), (b) random graph
(rewiring prob. 1, degree 50), (c) small world (rewiring prob. 0.05, degree 6) and
(d) circular grid (rewiring prob. 0, degree 6). Note the different time scales for
synchronization.

In this paper, we design the pulse interactions of oscillator networks and explicitly exploit
their stochastic features to guarantee global synchronization, simultaneously satisfying all the
requirements listed above. The designed model class is based on pulse coupling functions
that combine phase advancing and retarding with zero interaction (refractory period) close
to the synchronized state. Moreover, we exploit unreliable (or intentionally stochastic) pulse
communication [2, 3] as an essential feature to ensure synchronization from arbitrary initial
conditions. In this setting synchronization emerges via two collective steps: firstly, oscillators
arrange their phases to end up in an invariant subset of the state space. Secondly, within
this subset they decrease their phase differences to finally achieve synchronization. Our key
discovery is that a single pulse almost surely triggers a trackable chain of events that leads
to synchrony. The proposed coupling thereby guarantees network-wide synchronization, which
emerges for all (connected) network topologies in the presence of stochastic interactions from
arbitrary initial conditions (cf figure 1).

2. Designing stochastic pulse interactions

Consider a connected undirected network of N oscillators i ∈ I = {1, . . . , N } described by a
scalar phase φi ∈ [0, 1] that evolves freely via

d

dt
φi = 1. (1)

Whenever an oscillator’s phase passes threshold 1, it resets its phase to 0, i.e.

φi(t) = 1 ⇒ φi

(
t+

)
= lim

s↘0
φi(t + s) = 0 (2)

4 We used uniformly distributed random initial conditions, the delay τ n
i j is uniformly distributed in [0, 0.02].

Simulation is regarded as synchronized when bound dI 6 0.02 is reached, timeout at 2000 cycles, update function
as in (5) with h1(φ) = 0.2458φ + 0.0151 and h2(φ) = 0.276φ + 0.724.
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Figure 2. Model and definitions. (a) Pulse response function H(·), see (5). We
consider any strictly monotonically increasing function in the gray-shaded areas.
(b) Snapshot of the oscillators on the phase circle at time t . Indicated is the
permutation γi of the indices that yields the ordering of the oscillators, the
diameter dI as defined in (7) and the lower boundary set J (t) = {γ5, γ6}; see (12).
Note J (t) can have several elements.

and emits a pulse with probability

0 < psend < 1. (3)

The oscillator is then called to fire. In technical systems such stochastic interactions are present
due to noise and fading [31]. The time of the nth fire event in the network is denoted by tn. Each
pulse emitted by oscillator i is received by the neighboring oscillators j ∈Ni after a stochastic
delay τ n

i j ∈ [0, τmax]. Technical systems experience such delays due to varying processing times
and channel access delays [31]. We assume that delays arbitrarily close to the lower bound exist.
Upon reception of a pulse, a receiving oscillator j adjusts its phase according to

φ j

(
(tn + τ n

i j)
+
)
= H(φ j(tn + τ n

i j)). (4)

The pulse response function is defined via

H(φ) =


φ φ 6 τmax refractory,

h1(φ) τmax < φ 6 1
2 inhibitory,

h2(φ) 1
2 < φ 6 1 excitatory,

(5)

where h1 and h2 are smooth functions satisfying dh1
dφ

, dh2
dφ

> 0; h1(τmax) = τmax, h1

(
1
2

)
6 1

4 − τmax;

and h2(
1
2

+
)> 3

4 + 2τmax, h2(1) = 1, h2(φ) 6= φ, for all φ ∈ ( 1
2 , 1) (cf figure 2(a)). Consistency

of these conditions requires a maximum possible delay of τmax 6
1
8 . The phase of a receiving

oscillator is retarded if φ ∈ (τmax,
1
2 ] and advanced if φ ∈ ( 1

2 , 1). If φ ∈ [0, τmax], it is in the
refractory part of H(·). As is common for such systems (and motivated by real-world networks)
we assume that the system is started without pulses in transmission such that at all later times,
all pulses are generated by the system itself.

We define the distance of two phases by

d
(
φi , φ j

)
:= min

(
|φi − φ j |, 1 − |φi − φ j |

)
, (6)
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and set di j(t) = d(φi(t), φ j(t)). We define the diameter of I as the shortest phase interval that
contains all oscillators in I (cf figure 2(b)), i.e.

dI := 1 − max
(
{φγi+1 − φγi }

N−1
i=1 ∪ {φγ1 + 1 − φγN }

)
, (7)

where γi is the permutation of indices γi , i = 1, . . . , N , such that φγi 6 φγi+1 . In the remainder
of this paper, we show that the class of pulse coupling functions (5) with stochastic pulse
interactions (3) and stochastic delays guarantees network-wide synchrony from arbitrary initial
conditions and for arbitrary (connected) networks.

3. Synchronization is guaranteed

The synchronization process has two qualitatively different stages: after the system has reached
an invariant subset of state space, all oscillators synchronize their phases within that subspace.

3.1. Synchronization within an invariant subset

We start by showing that there is a subset in state space that is invariant under the stochastic
dynamics and that almost surely all states in this subset reach the fully synchronized state
asymptotically. We define this subset of state space to contain all states that satisfy dI 6
1
2 − τmax. In the following, we show that this is an invariant set.

Assume that the system has reached a state in this set at time t∗, i.e.

dI (t∗)6
1
2 − τmax . (8)

Then for all ( j, k) ∈ I 2 with d jk(t∗) = dI (t∗) and all i ∈ I , we have (cf also figure 2(b))

dI (t∗) = d j i(t∗) + dik(t∗) . (9)

The phases evolve uniformly (1) until either a pulse is emitted or received at te; thus
dI (te) = dI (t∗). If a pulse is emitted, equations (2) and (6) give dI (t+

e ) = dI (t∗). If a pulse,
generated by oscillator i at time tn, is received by oscillator j at te = tn + τ n

i j , we observe
φi(t+

e ) = φi(te) ∈ [0, τmax] due to (1) and the refractory part of H (·) (5). We consider di j(t+
e ) =

d(φi(te), H(φ j(te))) for three different cases (cf also figure 2(a)):

(i) for φ j(te) ∈ [0, τmax], we have: H(φ j(te)) = φ j(te) ⇒ di j(t+
e ) = di j(te).

(ii) for φ j(te) ∈ (τmax,
1
2 ], we have: τmax < H(φ j(te)) < φ j(te) ⇒ di j(t+

e ) < di j(te).

(iii) for φ j(te) ∈ (1
2 , 1), we have: 1 > H(φ j(te)) > φ j(te) ⇒ di j(t+

e ) < di j(te).

In total, the phase advancing, retarding and refractory parts of the interaction function H(·)

ensure that di j does not increase. As all other phases do not change, we conclude that for all
k ∈ I , dik(t+

e )6 dik(te). Thus via (9) we conclude that dI (t+
e )6 dI (t∗). Repeating this argument

inductively for the next events, it follows that if (8) holds

dI (t)6 dI (t∗) for all t > t∗. (10)

We now show that the diameter dI of all states in the invariant subset, defined via (8), decreases
to zero almost surely, i.e.

P
[

lim
t→∞

dI (t) > 0 | dI (t∗)6
1
2 − τmax

]
= 0 . (11)
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Figure 3. Phase distances decrease if not synchronized. (a) Zoom on the phase
circle around 0. In this example, oscillator i is leading at tn, oscillator j is
last and k ∈N j is neighboring j . Oscillator k emits a pulse that oscillator j
receives at tr , adjusting its phase at t+

r . (b) Example of an event sequence that
leads to a diameter change. At tn oscillator k emits a pulse with an arrival
time tr ∈ (tn, tn + τmax] at oscillator j . If τ n

k j ∈ (0, ε) the pulse is received before
oscillator j fires at tm and its phase is advanced.

The proof is as follows: if the diameter repeatedly decreases, (11) follows. Thus, we assume for
the rest of the proof that there is a time tK such that for all t > tK we have dI (t) = dI (tK ) =:
c > 0 and show that this leads to a contradiction. Therefore, we consider the lower boundary set
(cf also figure 2(b))

J (t) := { j ∈ I : ∃ i ∈ I s.t. φi(t) − φ j(t) = dI (t)

∨ φi(t) + 1 − φ j(t) = dI (t)}.
(12)

We show that—under the assumption—it first does not gain elements, i.e. for any oscillator
j we have: if j 6∈ J at t > tK , then j 6∈ J at any t ′ > t (see appendix A.1 for technical
details). Secondly, J almost surely loses elements: any oscillator repeatedly emits signals
(appendix A.2). Hence, any oscillator j in J repeatedly receives signals, and since dI = c > 0
and the delays have positive probability to be arbitrarily small, there is a positive probability
that φ j is not in the refractory part of H(·). Therefore, oscillator j has positive probability to
drop out of J (appendix A.3); see figure 3 for illustration. Repeating these two arguments we
find that almost surely there is a t ′ > tK with J (t ′) = ∅, which is a contradiction to (12).

Consequently, for every positive diameter with (8), the lower boundary set cannot increase
and has a positive probability to decrease. Thus, no fixed point with dI > 0 exists and together
with (10) this yields (11).

3.2. The invariant subset is absorbing

In a second step, we show that for arbitrary initial conditions the system almost surely reaches
a state in the invariant subset considered above. In particular, we prove that there is a time t∗
(with probability 1) such that (8) and thus also (11) holds.

To this end, we start with an empty set S and form a chain of events that lets S absorb
oscillators while dS fulfills (8). We finally show that S = I holds with positive probability. As
the argument is independent of the phase positions of the oscillators and only depends on a
firing pattern, every emitted pulse has a positive probability of starting this absorption process.

New Journal of Physics 14 (2012) 073031 (http://www.njp.org/)

http://www.njp.org/


7

i

a

−0.5

0

0.5

0

0.2 | S
 |

b

d
S

0.4

n
0 5 10 15 20

5

10

Figure 4. Synchronization process. (a) Phases (φ̃i := (φi + 0.5 mod 1) − 0.5) at
event times tn for random initial conditions on a random network (N = 10, rewire
prob. 1, degree 5) (see footnote 4). The dotted lines indicate a phase difference of
less than 1

2 − τmax. All oscillators between these lines are combined in the set S.
(b) The corresponding dS and |S| at event times tn. Within the gray-shaded area:
|S| < N ; hence dS can increase. As soon as |S| = N , i.e. S = I , dI decreases (cf
section 3.1).

Hence, as t → ∞, the probability for (8) not to hold is zero and

P [t∗ < ∞] = 1 . (13)

See appendix B for details of the proof of (13).
Combining our statements, (13) guarantees that for an arbitrary connected network, there is

a point in time t∗ such that the condition (8) is fulfilled and the system has reached the invariant
set. Consequently, the convergence guarantee (11) ensures global synchrony which yields (14),
as phrased in our main result:

Theorem 1. Arbitrary connected networks of pulse coupled oscillators of the form (1)–(5)
started from arbitrary initial conditions synchronize almost surely, i.e.

P
[

lim
t→∞

max
i, j∈I

di j(t) = 0

]
= 1. (14)

The two-step synchronization process is visualized in figure 4.

4. Relevance of stochastic pulses

To derive our main result (14), which shows guaranteed network-wide synchronization of
oscillators from arbitrary initial conditions and independent of the network topology, we
explicitly designed the pulse interactions (3)–(5).

In particular, the unreliable stochastic nature of the pulse transmission, psend < 1, plays
a constructive key role in the synchronization process, lacking which synchronization would
be impossible for certain networks. For instance, consider a star graph (cf figure 5(c)) with
N > 4, τmax < 1

8 and deterministic pulse emission psend = 1. Assume the initial phases of
the outer oscillators to be (roughly) equally spaced in [0, 1] and the central node 1 having
φ1(0) = 0. Every pulse from a non-central node then decreases φ1 to H(φ1)6

1
4 − τmax as the

pulse is always received before φ1 > 1
2 . Hence, the central node will never emit any pulse, the
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Figure 5. Rapid convergence. The mean and standard deviation of the
convergence time T to synchrony (see footnote 4) depending on (a) the network
size N in the Erdös–Rényi graphs (connection probability plink and psend = 0.5)
and (b) the emission probability psend in a star graph (N = 11, inset (c)).
Additionally, we show the fraction ρ of randomly sampled initial conditions that
synchronized (see footnote 4). As psend → 1 the synchronization time increases.
For finite simulation time the numerically determined ρ drops already for psend

close to 1. For deterministic pulse emission psend = 1, some initial conditions do
not synchronize at all.

outer oscillators stay effectively uncoupled and thus synchronization cannot emerge. This is
in contrast to the stochastic scenario where the outer oscillators are prevented from emitting a
pulse at every cycle, giving the central node the possibility of firing (cf also (A.1)).

5. Time scales for synchronization and robustness

The theorem provides a synchronization guarantee but does not provide information on the time
a system needs for convergence. In general, this synchronization time depends on the choice
of H(·), τmax and psend, the underlying graph and the realization of the stochastic components.
Numerical studies, however, demonstrate that synchronization is typically fast across systems
(cf e.g. figures 1 and 4). Moreover, convergence time actually shrinks with network size
(cf figure 5). For instance, figure 5(a) shows that convergence toward synchronization is
accomplished within only a few cycles on the Erdös–Rényi random graphs. Remarkably,
the convergence time and the number of emitted pulses per oscillator rapidly decrease with
network size: in highly connected large networks, a few pulses are sufficient to elicit a cascade
that aggregates all the phases within the invariant set (condition (8)) and thereby speeds up
convergence. To give an example, for time scales typical in mobile phone networks [32], 100
devices could agree on common time slots required for communication on times as short as a
few milliseconds. As user locations change on larger time scales, this consideration validates
our approach with static graphs.

Additionally, we investigate how the randomness of pulse interactions affects synchro-
nization time. We consider a star graph that is not guaranteed to synchronize for deterministic
pulse emission, psend = 1, and where synchronization heavily depends on psend; see figure 5(b).
In fact, for psend = 1, only 60% of the initial conditions reach full synchrony within 2000 cycles,
while the others stay in asynchronous states akin to our counterexample above. Lowering psend

from unity, the fraction of initial states reaching full synchrony within that given cutoff time
rapidly increases to one, while the synchronization time of those reaching synchrony rapidly
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Figure 6. Robust global synchronization (on an Erdös–Rényi graph, N = 100,
plink and psend = 0.5). (a) Phase evolutions for noisy phase rates (15) with
σ = 0.01 and µ = 1. The synchronization process is robust to frequency jitter.
Due to noise, coinciding phases are replaced by an almost synchronous state
with small diameter dI . (b) The corresponding histogram of the dI and its relative
frequency f (dI ) (evaluated over 100 cycles) in the steady state5 for σ = 0 and
σ = 0.01, µ = 1. (c) Maximum phase difference dmax of the steady state averaged
over 1000 realizations of a total of different Erdös–Rényi graphs (N = 100,
plink and psend = 0.5), stochastic processes and initial conditions. For small noise
levels the system synchronizes to low diameters dI < 0.01 and is hence robust
against phase and parameter noise.

drops. This suggests that relatively low pulse emission probabilities are sufficient to keep up
the synchronization performance while at the same time the total number of transmitted pulses
is decreased substantially. As pulse interactions consume energy in both the sender and the
receiver, this is an advantageous property of our model concerning energy efficiency.

The synchronization process provides certain robustness effects and is not sensitive to
phase perturbations. To study the robustness of the system we add noise to the intrinsic
frequencies of the oscillators which captures both noise in phase and oscillator frequency. For
technical real-world systems, drifts in frequencies usually occur. Therefore, we assume that
instead of (1), the phase rates dφi (t)

dt = ωi(t) follow an Ornstein–Uhlenbeck process [33],

ω̇i = µ (1 − ωi) + σ ξi(t) , (15)

with independent white noise processes ξi(t) obeying 〈ξi(t), ξ j(t ′)〉 = δi jδ(t − t ′). These
systems cannot maintain coinciding phases (cf figures 6(a) and (b)), but synchronize to low
diameters for small σ and µ (cf figures 6(a)–(c))5.

We further remark that the probability that an evoked pulse decreases the phase spread
increases with increasing dI and thus further enhances robustness against noise and frequency
drifts (see section 3).

5 We use a Euler approximation with time discretization 1t = 10−3 [33]. As seen in figure 5(a), 〈T 〉 is about 1
cycle for N = 100; correspondingly, we assume that a steady state is reached for t ∈ [900, 1000] and define the
maximum phase difference for a simulation run via dmax := maxtn∈[900,1000] maxi, j∈I di j (tn).
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6. Conclusions

In summary, we designed a stochastic pulse interaction for coupled oscillator networks to
analytically guarantee that any such system almost surely synchronizes. This general result
holds for any connected network, for arbitrary initial conditions and for any degree of
randomness of the pulse emission, 0 < psend < 1. Our results do not depend on the details of
the interaction function, but do rely on the coaction of the inhibitory, excitatory and refractory
parts.

Early studies [34] (cf also [35]) on communication systems with delayed interactions
found that full synchrony cannot (always) be achieved in the presence of distributed delays.
At first glance, our result seems to contradict this finding. The discrepancy is resolved by noting
that [34] allows signals that are always maximally delayed. We bypass this effect by both using
a refractory period and assuming that arbitrarily small delays have positive probability.

Intriguingly, the stochastic nature of pulse emission, intuitively thought of as hindering
synchrony (cf [2, 3]), provides two advantageous features simultaneously: it enables a
synchronization guarantee and, at the same time, as fewer pulses are needed to be sent and
received, it reduces operational communication efforts. From an application perspective, it
nicely describes the nature of wireless communication networks where stochastic errors are
omnipresent.

Complementary numerical studies (figure 5) indicate that synchrony is indeed achieved
within a few cycles and emerges even faster for larger networks.

Synchronization is guaranteed for the assumptions discussed in this paper. A generalization
of these assumptions is possible, such as for delays within an interval [τmin, τmax], τmin > 0, or
directed networks. Assumptions on homogeneous phase rates and reoccurring delays arbitrarily
close to the lower delay interval bound are vital for analytical guarantees. However, numerical
simulation results show that this result is robust against parameter and phase noise.

In future studies, the guaranteed synchronization process described here may be applied
to real world systems where synchronization is desired, ranging from pacemaker networks and
neuron-like central pattern generators to interacting swarming robots and other wireless sensor
networks [12, 14, 15, 36].
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Appendix A. Proofs of (11)

A.1. J does not gain elements

Firstly, an oscillator k /∈ J (tr) can only become part of the lower boundary set during a
reception event at time tr . Then either the pulse has to force the phases of all oscillators in
J (tr) above φk , or φk itself to the lower bound. Note that the pulse generating oscillator i has
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φi(tr) ∈ [0, τmax]. In the first situation we must have for all j ∈ J (tr), φ j(tr) ∈ ( 1
2 , 1] and with (5),

φ j(t+
r ) > φ j(tr). Thus, dI (t+

r ) < dI (tr), which is in contradiction to our assumption of constant
dI (t). Thus, the only potential situation in which an oscillator k becomes a member of J is when
φk(tr) ∈ (τmax,

1
2 ]. We then have for all j ∈ J (tr) φ j(tr) ∈ (1 − c, 1] ∪ (0, τmax] and φk(t+

r ) > τmax,
since dh1

dφ
> 0. Therefore, for all j ∈ J (t+

r ) we have dk j(t+
r ) > 0 and hence k 6∈ J (t+

r ). In total this
yields J (t ′) ⊂ J (tK ) for all t ′ > tK .

A.2. Every oscillator fires repeatedly

Due to the intrinsic rotation (1) oscillator i can be prevented from firing only if it receives pulses
when φi ∈ (τmax,

1
2 ] from its neighborsNi to sufficiently retard its phase. As each pulse is emitted

with probability psend < 1, for the nth fire time of oscillator i , t i
n, we have P

[
t i
n = ∞

]
6 (psend)

M

for any M ∈ N and thus

P
[
t i
n < ∞

]
= 1. (A.1)

A.3. |J | decreases with positive probability

Take tn > tK and k ∈NJ (tn) := ∪ j∈J (tn)N j with ε := dk j(tn) > 0 for all j ∈ J (tn) and φk(tn) = 1
(cf figure 3(a)). If dI (tn) > 0, such k and tn exist almost surely as the network is connected and
due to (A.1). Further, there is a positive probability that the pulse emitted by oscillator k at tn

is received by j ∈ J (tn) ∩Nk in the next event at time tr ∈ (tn, tn + ε) (cf figure 3(b)). For this
oscillator j we have φ j ∈ [1 − c, 1) and thus φ j(t+

r ) > φ j(tr). By assumption, dI is constant and
since J does not gain elements (see appendix A.1) we must have d jl(t+

r ) > 0 for all l ∈ J (t+
r ),

thus j 6∈ J (t+
r ).

Appendix B. Proof of (13)

Take a subset S ⊂ I of connected oscillators, define dS(t) analogous to (7) with dS(t0)6
1
2 − τmax at some time t0. Such an S always exists as dS = 0 for S = {i}, i ∈ I . If S = I, we
are done. Thus consider the case when the complement Sc := I\S is not empty. For any finite
time interval there is a positive probability that all oscillators in Sc do not fire. Within such a
time interval, we therefore treat S as an independent subset with no interactions between Sc

and S. Then arguments similar to those that led to (11) ensure a positive probability that at
some time t ′ > t0 we have dS(t ′)6 τmax. Next, with a positive probability an oscillator k of
the edge set ∂S := {i ∈ S : Sc

∩Ni 6= ∅} fires at tn > t ′ and no other pulse is sent or received
within the time interval [tn, tn + τmax]. If at time tr ∈ [tn, tn + τmax] an oscillator i ∈Nk receives
this pulse, the conditions on h1 and h2, together with τmax 6

1
8 , ensure that if φi(tr) ∈ [0, 1

2 ], then
φi(t+

r )6 1
4 − τmax and otherwise if φi(tr) ∈ ( 1

2 , 1), φi(t+
r )> 3

4 + 2τmax. As φk(tn + τmax) ∈ [0, τmax]
this yields at time tn + τ +

max

dNk∪{k} 6
1
2 − 2τmax. (B.1)

Defining S′ := S ∪Nk we obtain that

dS′ 6 dS + dNk∪{k} 6
1
2 − τmax. (B.2)
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Thus, now the larger set S′ satisfies the conditions for the above argument and repeated
applications thereof show that there is a positive probability that after a finite number of such
steps we obtain an S with S = I . Hence, there is a positive probability that for any initial
conditions after finitely many steps (8) holds. This yields (13).
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