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PARTIAL RESET IN PULSE-COUPLED OSCILLATORS∗
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Abstract. Pulse-coupled threshold units serve as paradigmatic models for a wide range of
complex systems. When the state variable of a unit crosses a threshold, the unit sends a pulse
that is received by other units, thereby mediating the interactions. At the same time, the state
variable of the sending unit is reset. Here we present and analyze a class of pulse-coupled oscillators
where the reset may be partial only and is mediated by a partial reset function. Such a partial
reset characterizes intrinsic physical or biophysical features of a unit, e.g., resistive coupling between
dendrite and soma of compartmental neurons; at the same time the description in terms of a partial
reset enables a rigorous mathematical investigation of the collective network dynamics. The partial
reset acts as a desynchronization mechanism. For N all-to-all pulse-coupled oscillators an increase
in the strength of the partial reset causes a sequence of desynchronizing bifurcations from the fully
synchronous state via states with large clusters of synchronized units through states with smaller
clusters to complete asynchrony. By considering inter- and intracluster stability we derive sufficient
and necessary conditions for the existence and stability of cluster states on the partial reset function
and on the intrinsic dynamics of the oscillators. For a specific class of oscillators we obtain a rigorous
derivation of all N − 1 bifurcation points and demonstrate that already arbitrarily small changes in
the reset function may produce the entire sequence of bifurcations. We illustrate that the transition
is robust against structural perturbations and prevails in the presence of heterogeneous network
connectivity and changes in the intrinsic oscillator dynamics.

Key words. biological neural networks, synchronization, pulse-coupled oscillators, partial reset,
cluster states
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1. Introduction. Networks of pulse-coupled units serve as paradigmatic models
for a wide range of physical and biological systems as different as cardiac pacemaker
tissue, plate tectonics in earthquakes, chirping crickets, flashing fireflies, and neurons
in the brain [13, 12, 49, 8]. In such systems, units interact by sending and receiving
pulses at discrete times that interrupt the otherwise smooth time evolution. These
pulses may be sound signals, electric and electromagnetic activations, as well as pack-
ets of mechanically released stress. Pulses are generated once the state of a unit crosses
a certain threshold value (e.g., the mechanical stress of a tectonic plate becomes suf-
ficiently large or the voltage across a nerve cell membrane becomes sufficiently high);
thereafter the state of the sending unit is reset.

Synchronization of oscillators is one of the most prevalent collective dynamics
in pulse-coupled systems [48, 22, 23, 9, 11, 32, 27, 28, 64]. Often not all units are
synchronized but form clusters consisting of synchronized subgroups of units which
in turn are phase-locked to other clusters [22, 66, 47, 6, 32, 31, 43, 53, 54].

In neuronal networks, synchronization and clustering of pulses constitute poten-
tial mechanisms for effective feature binding. In this paradigm, different information
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2120 CHRISTOPH KIRST AND MARC TIMME

aspects of the same object represented by activity of different nerve cells are pooled
together by temporal correlations and in particular due to synchronous firing [60, 61].
However, strong synchronized firing of nerve cells can also be detrimental: synchrony
is prominent during epileptic seizures [19, 45] and observed in the basal ganglia dur-
ing Parkinson tremor [18]. Here mechanisms for desynchronizing neural activity are
desirable [63, 44].

To study key mechanisms that may underlie (de)synchronization, e.g., in biologi-
cal neural networks, analytical tractable models of pulse-coupled oscillators are helpful
tools [52, 48, 41, 1, 22, 9, 67, 16]. Here the rise of the state variable of a free oscilla-
tory unit towards the threshold, the unit’s rise function, characterizes the subthreshold
dynamics. If after reception of a pulse the state variable of the unit stays below thresh-
old, it is said to receive subthreshold input, whereas excitation above the threshold
is suprathreshold. Mirollo and Strogatz [48] showed that biological oscillators always
synchronize their firing in homogeneous networks with excitatory all-to-all coupling
if the rise function has a concave shape. The synchronization mechanism they find
has two parts: (i) effective decrease of phase differences of units due to subthreshold
inputs, and (ii) instant synchronization due to suprathreshold inputs and subsequent
reset to a fixed value.

In general, suprathreshold excitation and a subsequent reset is a dominant mech-
anism for synchronization of pulse-coupled oscillators because input pulses that force
nonsynchronized units to cross threshold at nearby times are reset to the same value,
leaving the units in the same state or in very similar states afterwards. Although this
reset mechanism plays a crucial role in the synchronization process and the coordi-
nation of pulse generation times, its implications for the collective network dynamics
has, to our knowledge, not been investigated systematically so far: most existing
model studies reset the units with suprathreshold inputs to a fixed value independent
of the strength of suprathreshold excitation [7, 22, 41, 59, 66, 14, 16, 33]. This results
in a complete loss of information about the prior state of the units and makes the dy-
namics noninvertible. Some other studies consider the opposite extreme: a complete
conservation of suprathreshold inputs during pulse sending and reset [33, 9]. Here
we aim at closing this gap by presenting and analyzing a model where the reset (and
thus the loss of information about the prior state and the strength of suprathreshold
excitation) can be varied systematically.

This article is organized as follows: In section 2 we propose a simple model
of pulse-coupled oscillators with partial reset, where the response to suprathresh-
old inputs can be continuously tuned and is not an all-or-none effect. To isolate
the consequences of this partial reset, we focus on homogeneous systems of all-to-all
pulse-coupled oscillators with convex rise function. In section 3 we briefly present the
results of numerical simulations and find that the partial reset has a strong influence
on the collective network dynamics: Increasing the strength of the partial reset in-
duces bifurcations from the fully synchronous state via states with large clusters of
synchronized units through states with smaller clusters to complete asynchrony. We
study this transition rigorously by considering the existence and stability of periodic
cluster states with respect to intercluster properties in section 3.4 and to intracluster
properties in section 3.5. We derive conditions on the partial reset function and the
rise function to bound regions of existence and stability of cluster states. In sec-
tion 3.6 we present a rigorous derivation of N − 1 bifurcation points for a specific
class of oscillators. We demonstrate that the entire sequence of bifurcations may oc-
cur for arbitrarily small changes of the reset function, thus underlining the strong
impact of partial reset on collective network dynamics. In section 4 we numerically
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PARTIAL RESET IN PULSE-COUPLED OSCILLATORS 2121

illustrate that the transition is robust against structural perturbations and prevails
in the presence of heterogeneous network connectivity and rise functions with mixed
curvature. In section 5 we discuss our results and relate the simple partial reset model
to biophysically more realistic neuron models.

Specific aspects of the implications of linear partial resets on synchronization
properties for oscillators have been briefly reported in [37, 39].

2. Networks of pulse-coupled units with partial reset. We first propose
a class of pulse coupled threshold elements with partial reset and thereafter focus on
units that oscillate intrinsically.

2.1. Absorption rule and instant synchronization. We consider N thresh-
old elements, which at time t are characterized by a single real state variable ui(t)
with i ∈ {1, 2, . . . , N}. In the absence of interactions the state variables evolve freely
according to the differential equation

(2.1)
d

dt
ui = F (ui)

with a smooth function F : R → R specifying the intrinsic dynamics of the units. The
free dynamics is endowed with an additional nonlinear reset upon reaching a fixed
threshold θ from below,

(2.2) ui
(
t−
)
= θ ⇒ ui (t) = ρ,

where ρ < θ is the reset value and we used the notation ui (t
±) = lims↘0 ui (t ± s).

By an appropriate shift and rescaling of the state variable and its dynamics, we set
ρ = 0 and θ = 1 without loss of generality.

The units are δ-pulse coupled. If unit j reaches the threshold, a pulse of strength
εij ≥ 0 is sent instantaneously to units i and their membrane potential is increased
by an amount εij ,

(2.3) uj
(
t−
)
= θ ⇒ u

(1)
i = ui

(
t−
)
+ εij .

If a unit i crosses the threshold due to a pulse from unit j,

(2.4) ui
(
t−
)
+ εij ≥ θ,

it is said to receive suprathreshold input. As it crosses the threshold from below it
sends a pulse and is reset. Previous models usually reset these units in the same way
as if they reached the threshold without this recurrent input, also referred to as the
absorption rule (e.g., [48]),

(2.5) ui (t) ≥ θ ⇒ ui
(
t+
)
= ρ,

where the total suprathreshold input is lost. As a consequence two or more units
initially in different states ui and simultaneously receiving suprathreshold inputs will
all be reset to the same value ρ, making the absorption rule a strong instant syn-
chronizing element of the network dynamics. An alternative considered in previous
studies [41, 33] is total input conservation,

(2.6) ui (t) ≥ θ ⇒ ui
(
t+
)
= ρ+ (ui (t)− θ) ;

i.e., the total suprathreshold input charge ζ = ui (t) − θ is added to the potential ρ
after the reset.
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2122 CHRISTOPH KIRST AND MARC TIMME

2.2. Partial reset. Here we propose a more general model where the reset value
is given by a partial reset function R(ζ) that depends on the suprathreshold input
charge ζ = ui(t)− θ,

(2.7) ui(t) ≥ θ ⇒ ui
(
t+
)
= ρ+R (ui(t)− θ) .

We assume that suprathreshold inputs only have excitatory effects and thus give
the following definition.

Definition 2.1. A function R : R → R which is monotonically increasing and
satisfies R (0) = 0 is called a partial reset function.

For a linear partial response we set

(2.8) Rc (ζ) = cζ

with the remaining fraction 0 ≤ c ≤ 1 of suprathreshold input charge after the reset.
For c = 0 we recover the absorption rule (2.5), while c = 1 corresponds to total charge
conservation (2.6).

Motivation for this extension comes from neural networks. Neurons consist of
functionally different compartments, including the dendrite and the soma. While
synaptic input currents are collected at the dendrite, the electrical pulses are generated
at the soma. Additional charges not used to excite a spike may stay on the dendrite
and contribute to the membrane potential after being reset at the soma. Due to
intraneuronal interactions and the reset at the soma, a part of this suprathreshold
input charge may be lost.

Definition 2.2. A partial reset function R is said to be neuronal if 0 ≤ R(ζ) ≤ ζ
for all ζ ≥ 0.

2.3. The avalanche process. Since the interaction is instantaneous, a pulse
generated by unit j may lift other units above threshold simultaneously. These then
generate a pulse on their own, and so on. This leads to an avalanche of pulses
(cf. Figure 2.1): Units reaching the threshold at time t due to the free time evolution
define the triggering set

(2.9) Θ(0) =
{
j | uj

(
t−
)
= θ
}
.

The units j ∈ Θ(0) generate spikes which are instantaneously received by all the
connected units i in the network. In response, their potentials are updated according
to

(2.10) u
(1)
i := ui

(
t−
)
+
∑

j∈Θ(0)

εij .

The initial pulse may trigger certain other units k ∈ Θ(1) =
{
k | uk (t−) < θ ≤ u

(1)
k

}
to spike, etc. This process continues n ≤ N steps until no new unit crosses the
threshold. At each step m ∈ {2, 3, . . . , n} the potentials are updated according to

(2.11) u
(m+1)
i := u

(m)
i +

∑
j∈Θ(m)

εij ,

where

Θ(m) =
{
k | u(m−1)

k < θ ≤ u
(m)
k

}
.
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Fig. 2.1. Model dynamics. (a) Sample traces of three units with (i) network connectivity εji =
εki > 0. (ii) At time t = t1 unit i reaches the threshold θ and its membrane potential is reset to ρ. It
generates a pulse which is sent to the units j and k. (iii) Unit j receives the pulse and its membrane
potential is increased to uj(t

−
1 )+εji; the pulse is subthreshold. (iv) Unit k receives a suprathreshold

pulse, uk(t
−
1 ) + εkj ≥ θ, and its membrane potential is set to R(ζ) = R

(
uj(t

−
1 ) + εkj − θ

)
using

the partial reset function R. (b) Sample avalanche process with Θ = {1, 2, 3} and n = 3 in (i) an
N = 4 all-to-all network εij = (1− δij )ε. (ii) Unit i = 1 reaches the threshold Θ(0) = {1} and sends

a pulse to the other units (arrows). Their potentials are updated to u
(1)
i = ui(t

−) + εi1, causing

unit i = 2 to generate a pulse, Θ(1) = {2}. (iii) The pulse is received by the other units yielding a

potential u
(2)
i = u

(1)
i + εi2 which brings unit i = 3 above threshold Θ(2) = {3}. (iv) The potentials

become u
(3)
i = u

(2)
i + εi3 and no further unit crosses the threshold, Θ(3) = ∅. (v) The avalanche

stops and units that received suprathreshold input are reset to ui(t) = ρ+ R
(
u
(3)
i − θ

)
.

The potentials immediately after the avalanche Θ =
⋃n

q=0 Θ
(q) of size a = |Θ| are

obtained via

(2.12) ui
(
t+
)
=

{
ui (t

−) +
∑

j∈Θ εij , i /∈ Θ,

ρ+R
(
ui (t

−) +
∑

j∈Θ εij − θ
)
, i ∈ Θ,

using the partial reset R for units having received suprathreshold inputs.
Note that there is an ambiguity in fixing the precise order of potential updates

and resets during an avalanche. Our choice is motivated by neuroscience for the
situation where the time scale of the action potential (and subsequent reset) is much
faster than the time scale of the synaptic input currents. These in turn should be
faster than the time scale of the mechanism reducing the suprathreshold input, e.g.,
the refractory period (cf. the forthcoming publication [38]). Our model (2.12) then is
the limit where all of these time scales become small compared to the time scale of
the intrinsic interaction-free dynamics.

For nonzero partial reset functions, potential differences of oscillators involved
in a single avalanche will in general not be fully synchronized after the reset. Thus
despite the fact that units are generating pulses simultaneously they can have different
phases afterwards. We therefore distinguish between phase synchrony where units
have identical phases and the weaker condition of pulse synchrony, which corresponds
to simultaneous firing only but allows differences in the phases. When examining the
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2124 CHRISTOPH KIRST AND MARC TIMME

system with a higher time resolution, phase synchronized units will stay synchronized,
whereas pulse synchronized units fire within a short time interval.

2.4. Phase representation of pulse-coupled oscillators with partial re-
set. In the remainder of this article we will concentrate on units with strictly positive
F > 0 in (2.1). Then the individual units become oscillatory as the strictly monoton-
ically increasing trajectory ui(t) of a unit i starting at ui(0) = 0 reaches the threshold
after a time T and is reset to zero again. By an appropriate rescaling of time we set
T = 1. Defining a phase-like coordinate (cf. [48]) via

(2.13) φi (t) = U−1 (ui (t)) :=

∫ ui(t)

0

1

F (u)
du,

the interaction free dynamics simplify to

(2.14)
d

dt
φi(t) = 1.

By definition U−1 is strictly monotonically increasing and has a strictly monotonically
increasing inverse U . By our choice of normalization they obey U−1 (0) = 0 = U (0)
and U−1 (1) = 1 = U (1). Note that the function U (φ) captures the intrinsic rise
of the membrane potential towards the threshold, and hence φi ∈ S1 = R/Z for the
phases of the individual units.

Definition 2.3. A smooth function U : [0,∞) → [0,∞) is called a rise function
if it is strictly monotonic increasing U ′ > 0 and is normalized to U (0) = 0 and
U (1) = 1.

Definition 2.4. Given a rise function U and a partial reset function R, we
define for ε ≥ 0 the (subthreshold) interaction function Hε :

[
0, U−1 (θ− ε)

)
→ S1 by

(2.15) Hε (φ) := H (φ, ε) := U−1 (U (φ) + ε)

and the suprathreshold interaction function Jε :
[
U−1 (θ − ε) ,∞

)
→ S1 by

(2.16) Jε (φ) := J (φ, ε) := U−1 (R (U (φ) + ε− θ)) .

The pulse-coupling in the potential representation caused by an avalanche Θ at
time t, equation (2.12), then carries over to the phase picture as

(2.17) φi
(
t+
)
=

⎧⎨
⎩
H
(
φi (t

−) ,
∑

j∈Θ εij

)
, i /∈ Θ,

J
(
φi (t

−) ,
∑

j∈Θ εij

)
, i ∈ Θ.

We remark that H−1
ε = H−ε.

3. Network dynamics. To identify the effects of the partial reset on the collec-
tive network dynamics, we first focus on homogeneous networks consisting of N units
with all-to-all coupling and without self-interaction, i.e.,

(3.1) εij = (1− δij)ε,

i, j ∈ {1, 2, . . . , N}. We impose the condition
∑

j εij = (N − 1)ε < θ− ρ = 1 to avoid
self-sustained avalanches of infinite size.
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The analysis of Mirollo and Strogatz [48] shows that in this situation (with a
slightly different avalanche process) synchronization from almost all initial conditions
is achieved when the rise function is concave (U ′′ < 0) and the absorption rule (R ≡ 0)
is used. In fact, their result can be generalized to the partial reset model used here
and any partial reset function R that is nonexpansive (e.g., R′ ≤ 1). For expansive R
the synchronized state no longer has to be the global attractor of the dynamics and
typically irregular dynamics is observed. The proof of synchronization for nonexpan-
sive partial resets and the analysis of the bifurcation to the irregular dynamics are
presented in a forthcoming study [38].

In this article we concentrate on convex rise functions U , i.e.,

(3.2)
d2

dφ2
U (φ) > 0.

This property holds for a large class of conductance-based leaky-integrate-and-fire
(LIF) neurons and a class of quadratic-integrate-and-fire (QIF) neurons (cf. Appen-
dix B). Studying convex rise functions is further motivated by the fact that for these
rise functions we already observe a rich diversity of collective network dynamics with
a strong dependence on the partial reset R. However, our results also apply to more
general rise functions and in particular to sigmoidal shapes as often found for neurons
[20, 24].

3.1. Numerical results: A sequence of desynchronizing bifurcations.
Systematic numerical investigations indicate a strong dependence of the network dy-
namics on the partial reset R. In particular, we find synchronous states, cluster states,
asynchronous states, and a sequential desynchronization of clusters when increasing
the partial reset strength, e.g., by increasing the parameter c when using R = Rc.

Starting in the synchronized state and then applying a small perturbation to the
phases we observe that the synchronized state is stable for sufficiently small c (Figure
3.1(I)). When the partial reset strength is increased, the synchronized state becomes
unstable, and we observe smaller clusters in the asymptotic network dynamics (Figure
3.1(II)), where the final cluster state depends on the precise form of the perturbation.
The maximally observed cluster sizes depend on the value of c (Figure 3.2). For
sufficiently large c only the asynchronous splay state, i.e., a state with maximal cluster
size a = 1, is observed (Figure 3.1(III)).

Starting from random initial conditions, we find that for sufficiently small c the
synchronous state coexists with a variety of cluster states and the asynchronous state
(Figure 3.2). Increasing c, the states involving larger clusters become unstable until
finally all random initial conditions lead to the asynchronous state.

What is the origin of this rich repertoire of dynamics, and which mechanisms
control the observed transition of sequential desynchronizing bifurcations? To answer
these questions, we analytically investigate the existence and stability of periodic
states involving clusters of arbitrary sizes a ≤ N . The following analysis reveals that
the sequence of bifurcations is controlled by two effects: subthreshold inputs that
are always synchronizing, and suprathreshold inputs that are either synchronizing or
desynchronizing, depending on the partial reset strength.

3.2. Strategy of the analysis. We split our analysis of the dynamics into two
parts. First we assume that all avalanches are invariant, i.e., the given clusters do
not decay into smaller subclusters. This assumption allows us to group all oscillators
firing in a single avalanche together into a single “meta-oscillator” with increased firing
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2126 CHRISTOPH KIRST AND MARC TIMME

Fig. 3.1. Desynchronization transition in a network with parameters N = 50, ε = 0.0175,

U = Ub, b = −3, R = Rc for different values of the partial reset strength: (I) c = 0.025 < c
(N)
cr ,

(II) c = 0.5 ∈ (
c
(N)
cr , c

(2)
cr

)
, and (III) c = 0.7 > c

(2)
cr . Plotted are (a) the phases φi (tr) of all units at

pulse generation times tr of the rth spike of a reference unit (cf. return map (3.9)), (b) the potential
traces of all units, and (c) the raster plots marking the times of pulse generation of each unit i.
The network is started in the synchronous state, and then a small perturbation is applied at a time
indicated by arrows.

strength and an effective self-interaction. The analysis of the homogeneous all-to-all
network (εij = (1 − δij)ε) of N oscillators with avalanche sizes as, s ∈ {1, 2, . . . ,m},∑

s as = N then reduces to analyzing a network of m meta-oscillators with coupling
strengths

(3.3) εij = (1 − δij)εi + δijεii

and εi = aiε, εii = (ai − 1)ε. Thus we employ symmetry and reduce the analysis of
cluster states to the dynamics of the corresponding quotient network [29].

In a second step we derive conditions under which an avalanche of a certain size
will indeed not decay into smaller groups.
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PARTIAL RESET IN PULSE-COUPLED OSCILLATORS 2127

Fig. 3.2. Sequential desynchronization transition in a network of N = 50 units (U = Ub,
b = −3, ε̃ = 0.0175). Cluster sizes a observed in the asymptotic network dynamics of 500 simula-
tions for each c ∈ {0, 0.025, . . . , 1} starting from a perturbed synchronous state ( •; cf. Figure 3.1)
or from random phases distributed uniformly in [0, 1) ( ◦). The shaded area marks the sequential
desynchronizing transition, and the solid line shows the exact theoretical prediction (3.32) continu-

ously interpolating the N − 1 bifurcation points c
(a)
cr , a ∈ {2, 3, . . . , N}, above which clusters of size

a become unstable. The gap for cluster sizes 43 < a < 50 at 0 < c < c
(2)
cr appears, as cluster states

involving these avalanche sizes do not exist according to Lemma 3.3.

3.3. Notation: State space, firing, and return map. A state of a network
of N pulse-coupled oscillators is completely specified by a phase vector

(3.4) Φ = (φ1, φ2, . . . , φN ) ∈ SN = S1 × · · · × S1︸ ︷︷ ︸
N times

,

where φi ∈ S1 = R/Z are the phases of the individual units. Since the time evolution
in between avalanches is a pure phase shift (2.14), it is convenient to consider a
Poincaré section S of SN with states just before the firing of one or more oscillators,
i.e.,

(3.5) S =
{
Φ ∈ SN | ∃j ∈ {1, . . . , N} , φj = 1

}
.

It is convenient to relabel the oscillators after each avalanche such that 1 = φ1 ≥
φ2 ≥ · · · ≥ φN−1 ≥ φN > 0. To specify the state of the network completely, we recall
the permutation π−1 used for relabeling of the oscillators. The largest phase φ1 = 1
thus belongs to the oscillator i = π(1), the second largest φ2 to i = π(2), etc. Thus
an equivalent description of the state space S is given by

(3.6) Sp =
{
((φ2, . . . , φN ) , π) ∈ SN−1 × SN | 1 ≥ φ2 ≥ · · · ≥ φN−1 ≥ φN ≥ 0

}
.

Here SN is the group of all permutations of N elements. We use the convention that
all index labels i are taken modulo the network size N , e.g., labels i and i+N denote
the same oscillator.

The Poincaré map of the network dynamics for the Poincaré section S is the firing
map K that maps the state Φ ∈ S of the network just before the sth firing time ts of
an avalanche to the state just before the next avalanche that occurs at time ts+1:

(3.7) K
(
Φ
(
t−s
))

= Φ
(
t−s+1

)
∈ S.
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2128 CHRISTOPH KIRST AND MARC TIMME

Having determined the next avalanche Θ from a state Φ ∈ S, the map K is a compo-
sition of the avalanche map (2.17) and a subsequent shift of all phases to a state in S.
Note that the firing map is fully determined by the pair (Θ, σ), which is a function
of Φ. We denote a phase shift of size σ by

(3.8) S (φ, σ) := Sσ (φ) := φ+ σ.

The equivalent firing map acting on the state space Sp is denoted by Kp. For the
phase part we write

Kp
Φ

((
ψ
(0)
2 , . . . , ψ

(0)
N

)
, π(0)

)
=
(
ψ
(1)
2 , . . . , ψ

(1)
N

)
.

To track the network dynamics we consider a mapping of the state just before a fixed
reference oscillator k fires in an avalanche at time tr to the state just before this
oscillator fires again at tr+1:

(3.9) M
(
Φ
(
t−r
))

= Φ
(
t−r+1

)
.

M is called the return map and is the Poincaré map of the system on the section
{Φ ∈ S | φk = 1}. Again the equivalent return map acting on Sp is denoted by Mp.
The number m of avalanches occurring in the application of the return map is a
function of the initial phase vector Φ = Φ (t−r ) and thus the return map M is a
composition of m firing maps K. Hence M is completely specified by an ordered
firing sequence

(3.10) F = F (Φ) = {(Θs, σs)}ms=1 ,

where the pairs (Θs, σs) specify the avalanche set Θs and subsequent shift σs of the
sth firing map.

Given a firing sequence (3.10), we set as = |Θs| and, in the case of homogeneous
networks with coupling (3.1), εs = asε. A composition of shift and interaction maps
is denoted as

(3.11)
m⊙
s=1

(Sσs ◦Hεs) (φ) := Sσm ◦Hεm ◦Sσm−1 ◦Hεm−1 ◦· · ·◦Sσ2 ◦Hε2 ◦Sσ1 ◦Hε1 (φ) .

3.4. Existence and stability of asynchronous periodic states in meta-
oscillator networks.

Definition 3.1. An asynchronous periodic state of a network of N pulse-coupled
oscillators is a state Φ ∈ S which is invariant under the return map, i.e., M (Φ) = Φ,
and with avalanche sizes as = 1, s ∈ {1, 2, . . . , N}, i.e., each oscillator generates a
pulse separately.

Initially assume that all clusters stay forward invariant, i.e., do not decay into
smaller subclusters during the network dynamics (cf. section 3.2), and thus consider
networks of meta-oscillators with effective coupling matrix (3.3). A periodic cluster
state in the original model thus becomes a periodic asynchronous state in the reduced
effective meta-network. In the following we derive conditions for the existence of the
asynchronous state and its stability in a meta-network.

Lemma 3.2. Consider a network (2.14)–(2.17) of N oscillators with pulse cou-
pling matrix (3.3) and neuronal partial reset. Let Σ = (σ1, . . . , σN ) ∈ R

N and define
L : RN × S1 → R

N by

Li(Σ, φ) :=
N+i−1⊙
s=i+1

(Sσs ◦Hεs) ◦ Sσi ◦ Jεii(φ)
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for i ∈ {1, 2, . . . , N}. Then the asynchronous state exists if and only if there is a
solution Σ∗ ∈ R

N to the equation

(3.12) L(Σ, 1) = (1, 1, . . . , 1)

that satisfies σ∗
r > 0 for all r ∈ {1, 2, . . . , N}.

Proof. Assume there is a solution Σ∗, σ∗
i > 0. Set

φ∗1 = 1, φ∗i =
(
H−1

ε1 ◦ S−1
σ∗
1

)
◦
(
H−1

ε2 ◦ S−1
σ∗
2

)
◦ · · · ◦

(
H−1

εi−1
◦ S−1

σ∗
i−1

)
(1)

for i ∈ {2, . . . , N}. Using that Σ∗ is a solution to (3.12), we have
⊙N−1

r=1

(
Sσ∗

r
◦Hεr

)
◦

Sσ∗
N
◦ JεNN (1) = 1 and φ∗N = Sσ∗

N
◦ JεNN (1) > 0 since σ∗

N > 0. Further using εi > 0
and σ∗

r > 0, the phases are ordered according to φ∗1 = 1 > φ∗2 > · · · > φ∗N > 0 and
Φ∗ = (φ∗1, φ

∗
2, . . . , φ

∗
N ) ∈ S.

Starting from the state Φ∗, the first pulse of oscillator i = 1 results in potentials

u
(1)
1 = R (ε11), u

(1)
i = U (φ∗i ) + ε1, i ∈ {2, 3, . . . , N}. Since R (εii) ≤ εii ≤ εi <

εi+U(φ) for all φ > 0 and Hεi(φ) < Hεi(ψ) for φ < ψ, we have u
(1)
1 < u

(1)
N < u

(1)
N−1 <

· · · < u
(1)
2 . Further

u
(1)
2 = U (φ∗2) + ε1 = U

((
H−1

ε1 ◦ S−1
σ∗
1

)
(1)
)
+ ε1 = U (1− σ∗

1) < 1

as σ∗
1 > 0. Thus oscillator i = 1 fires without triggering any further oscillators,

yielding an avalanche set Θ1 = {1}. In addition the oscillators have to be shifted
by σ∗

1 to obtain φ2 = 1. Thus the first pair in the firing sequence is ({1} , σ∗
1).

Applying the same arguments to the new phases Φ∗(1) = K (Φ∗) yields ({2} , σ∗
2) for

the second pair. Repeating these steps N times, one obtains a firing sequence

F (Φ∗) = {({r} , σ∗
r )}

N
r=1 .

Thus

Mi (Φ
∗) =

N⊙
r=i+1

(
Sσ∗

r
◦Hεr

)
◦ Sσ∗

i
Jεii ◦

i−1⊙
r=1

(
Sσ∗

r
◦Hεr

)
(φ∗i )

=

N⊙
r=i+1

(
Sσ∗

r
◦Hεr

)
◦ Sσ∗

i
Jεii(1)

=
(
H−1

ε1 ◦ S−1
σ∗
1

)
◦
(
H−1

ε2 ◦ S−1
σ∗
2

)
◦ · · · ◦

(
H−1

εi−1
◦ S−1

σ∗
i−1

)
(1)

= φ∗i ,

using (3.12) in the third row. Hence M (Φ∗) = Φ∗ and the asynchronous state Φ∗ is
invariant under the return map.

Conversely, a periodic asynchronous state yields a solution to (3.12), since each
oscillator fires separately, and thus there is a phase shift σi > 0 after each pulse
generation of the oscillators i ∈ {1, 2, . . . , N}. Invariance of the periodic asynchronous
state then shows that in fact Σ = (σ1, σ2, . . . , σN ) is a solution to (3.12). Hence there
is no periodic asynchronous state if the solution does not exist. If there is a solution
with σ∗

i ≤ 0, let s be the smallest index such that σ∗
s ≤ 0. Starting in the state Φ∗
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2130 CHRISTOPH KIRST AND MARC TIMME

the first firing of oscillator i = s will cause oscillator i = s + 1 to fire in the same
avalanche since its potential at this point is given by

u
(1)
s+1 = U

[
s−1⊙
r=1

(
Sσ∗

r
◦Hεr

) (
φ∗s+1

)]
+ εs

= U
[
H−1

εs ◦ S−1
σ∗
s
(1)
]
+ εs = U (1− σ∗

s ) ≥ 1,

i.e., {s, s+ 1} ⊂ Θs and the system is not in a periodic asynchronous state.
Corollary 3.3. In a network (2.14)–(2.17) of N oscillators with homogeneous

all-to-all coupling matrix (3.1), an asynchronous (splay) state exists.
Proof. Let

L(σ) :=

N−1⊙
s=1

(Sσ ◦Hε) ◦ Sσ ◦ J0(1).

Now since L(0) = U−1 (ε(N−1)) < 1 and ∂
∂σL(σ) ≥ 1 the intermediate value theorem

ensures the existence of a σ∗ > 0 satisfying L (σ∗) = 1. Σ∗ = (σ∗, . . . , σ∗) is a solution
to (3.12). As εii = 0, no oscillator receives suprathreshold input in the asynchronous
state, i.e., ζ = 0, and this result is independent of the partial reset function R as
R (0) = 0 (cf. Definition 2.1).

In Figure 3.2 we observe no cluster states involving avalanches of sizes 43 to 49.
This is precisely because (3.12) has no solutions when setting εi = aiε, εii = (ai− 1)ε
for a1 ∈ {43, 44, . . . , 49} and any further 0 < ai ∈ N, i ≥ 1, and m such that∑m

s=1 as = 50.
Note that Lemma 3.2 holds for any rise function U . If there are q different positive

solutions to (3.12), there coexist q different periodic asynchronous states. A convex
U ensures that the solution is unique because L (Σ, 1) then becomes invertible for
all Σ ∈ R

N . Another consequence of convexity is that given the existence of an
asynchronous state in a meta-oscillator network it is linearly stable, as the following
theorem shows.

Theorem 3.4. Consider a network (2.14)–(2.17) of N oscillators with pulse
coupling matrix (3.3) and neuronal partial reset. If a periodic asynchronous state
exists, it is linearly stable.

Proof. Existence of the asynchronous state (Φ∗, id) ∈ Sp with Φ∗ = (φ∗2, . . . , φ
∗
N )

implies invariance under the return map Mp,

(3.13) Mp (Φ∗, id) = (Φ∗, id) .

For the intermediate states we set(
Φ(s), π(s)

)
:= (Kp)

s
(Φ∗, id) , s ∈ {0, 1, 2, . . . , N} .

If oscillator i generates a pulse, all oscillators j �= i receive the same input εi and
oscillator i receives an input εii ≤ εi. Hence, using R(ζ) ≤ ζ, we find that the
oscillators do not change their firing order and π(s) is a cyclic permutation to the left
π(s)(i) = i− s.

To show that the asynchronous state is linearly stable, we add a small perturbation

Δ(0) =
(
δ
(0)
1 , . . . , δ

(0)
N−1

)
to the asynchronous state such that initially the phases are

given by

Ψ(0) :=
(
φ
(0)
1 , . . . , φ

(0)
N−1

)
= Φ∗ +Δ(0)
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and follow its time evolution. We neglect terms of O
(
(Δ(0))2

)
indicated by a dot

above the equality sign (
.
=). We take the perturbation to be sufficiently small such

that the oscillators still fire asynchronously, i.e., the avalanches are of size as = 1 and
the order of the events is preserved. After s firing events the phases are

Ψ(s) = Kp
Φ

(
Ψ(s−1), π(s−1)

)
.
= Kp

Φ

(
Φ(s−1), π(r−1)

)
+Δ(s) = Φ(s) +Δ(s),

where

Δ(s) = A(s)Δ(s−1)

is the phase perturbation before the next firing and A(s) is the Jacobian matrix of Kp
Φ

at
(
Φ(s−1), π(s−1)

)
:

(3.14) A
(s)
ij =

dKp
i

dφj

(
Φ(s−1), π(s−1)

)
.

Setting σ = 1−H
(
ψ2, επ(1)

)
, the phase part of the firing map for N ≥ 3 is

(3.15) Kp
Φ (Ψ, π) =

⎛
⎜⎜⎜⎜⎝

H
(
ψ3, επ(1)

)
+ σ

H
(
ψ4, επ(1)

)
+ σ

. . .
H
(
ψN , επ(1)

)
+ σ

J
(
1, επ(1)π(1)

)
+ σ

⎞
⎟⎟⎟⎟⎠

T

.

Inserting (3.15) into (3.14) gives

(3.16) A(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a(s)2 a
(s)
3 0 . . . 0

−a(s)2 0 a
(s)
4

. . .
...

...
...

. . .
. . . 0

−a(s)2 0 . . . 0 a
(s)
N

−a(s)2 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with

(3.17) a
(s)
i =

d

dφ
Hεs

(
φ
(s−1)
i

)
=

U ′
(
φ
(s−1)
i

)
U ′
(
Hεs

(
φ
(s−1)
i

)) .
Since εj > 0 it follows that Hεj (φ) = U−1 (U(φ) + εj) > φ. Thus a

(s)
i < 1 since U is

convex. Also U ′ > 0 and hence

(3.18) 0 < a
(s)
i < 1.

Now the Eneström–Kakeya theorem (cf. Appendix A and [25, 36, 4, 34]) applied to
the matrix A(s) shows that with these properties the spectral radius ρ

(
A(s)

)
of A(s)

satisfies

ρ
(
A(s)

)
≤ r(s) = max

i∈{1,...,N−1}
a
(s)
i < 1.
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2132 CHRISTOPH KIRST AND MARC TIMME

Fig. 3.3. Stability of the asynchronous state (Theorem 3.4). (a) Graph of a network of N = 2
oscillators with connectivity εij = (1 − δij) εj and 0 < ε2 < ε1. (b) Firing of oscillator i = 1. For

the oscillator i = 2 with initial phase ψ
(0)
2 = φ

(0)
2 + δ(0) smaller than in the invariant asynchronous

state φ
(0)
2 (gray), the input advances the phase ψ

(0)
2 more in comparison with the advance of φ

(0)
2

in the asynchronous state due to the convexity of the rise function U . (c) After the interaction a
subsequent shift completes the firing map K. In total the derivation from the asynchronous state δ(1)

has become smaller. (d) Firing of oscillator i = 2. Phases which are perturbed to larger values than
the asynchronous state are less advanced by inputs due to convexity of the rise function. (d) In total
the return map M decreases the phase perturbations

∣
∣δ(2)

∣
∣ <

∣
∣δ(0)

∣
∣. This stabilizing dynamics of

the asynchronous state due to the convexity of the rise function generalizes to larger networks as
proven in Theorem 3.4.

Thus

(3.19)
∥∥∥Δ(nN)

∥∥∥ =
∥∥∥∥∥
(

N∏
r=1

A(s)

)n

Δ(0)

∥∥∥∥∥ ≤
N∏
r=1

ρ
(
A(s)

)n ∥∥∥Δ(0)
∥∥∥→ 0 as n→ ∞,

and the asynchronous state is linearly stable. For N = 2, ρ
(
A(s)

)
= a2 < 1.

This result is illustrated in Figure 3.3: Due to the convexity of the rise function,
oscillators perturbed to larger (smaller) phases compared to the asynchronous state
are less (more) advanced by input pulses pulling the perturbed phases back to the
invariant asynchronous dynamics.

Combining Corollary 3.3 and Theorem 3.4 we obtain the following.
Corollary 3.5. In a network (2.14)–(2.17) of N oscillators with homogeneous

all-to-all coupling matrix (3.1), neuronal partial reset R, and convex rise function U ,
the periodic asynchronous (splay) state exists and is linearly stable.

3.5. Impact of partial reset on intracluster stability. In the state of syn-
chronous firing, all units in an all-to-all coupled network receive a suprathreshold
input pulse of strength (N − 1) ε, suggesting a rather strong influence of the partial
reset R onto the network dynamics. Indeed, as shown in Figure 3.2, for the partial
reset Rc one observes a sequential destabilization of clusters starting at large cluster
sizes when increasing the reset strength c. In this subsection we study this behavior
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analytically and explain the observed transition. The strategy is to focus on a single
cluster of size a1 and derive general conditions which ensure the stability of this clus-
ter under the return map. As the return map depends on the firing sequence F we
use best- and worst-case scenarios to obtain bounds for the stability of cluster states.
We introduce a property of a rise function that allows us to estimate the worst- and
best-case return maps by simpler return maps that do not depend on all details of the
firing sequence F . For a special class of rise functions, we find that a full analytical
treatment is possible.

Definition 3.6. A firing sequence F is admissible if there is a state Φ ∈ S which
has firing sequence F = F(Φ). It is called trigger invariant if it is admissable and if

for all oscillators i ∈ Θ
(0)
1 = {j ∈ {1, 2, . . . , N} | φj = 1} triggering the first avalanche

of the state Φ = (φ1, . . . , φN ) (cf. (2.9)) the return map satisfies Mi(Φ) = 1. Thus for

a trigger invariant firing sequence F with m intermediate avalanches Θ
(0)
1 ⊂ Θ

(0)
m+1.

The set of all trigger invariant firing sequences is denoted by T . The subset of F ∈ T
with initial avalanche size a1 = |Θ1| is denoted by Ta1 .

Let us focus on a single avalanche of size a1 in the network dynamics. To ensure
that all units in this avalanche fire together again after the return map is applied, all
units in this avalanche which were triggered to fire by a ∈ {1, 2, . . . , a1− 1} preceding
spikes, i.e., with phases in

ITa =
[
U−1 (1− aε) , 1

]
,

have to be triggered again after applying the return map. Given a firing sequence
F = {(εr, σr)}mr=1 the return map for oscillators i ∈ Θ1 in the first avalanche is given
by

MF(φ) =
m⊙
r=2

(Sσr ◦Hεr ) ◦ Sσ1 ◦ Jε1 (φ) .

Hence the conditions

(3.20) MF
(
ITa
)
⊂ ITa

for all a ∈ {1, . . . , a1 − 1} and all admissible firing sequences F ∈ Ta1 ensure a cluster
of size a1 will not split up under return. By finding the most synchronizing and most
desynchronizing firing sequences F ∈ Ta1 , i.e., the best- and worst-case scenarios,
these conditions yield upper and lower bounds for the stability of a cluster of size a1
under the return map.

Lemma 3.7. Consider a network (2.14)–(2.17) of N oscillators with homogeneous
all-to-all coupling matrix (3.1).

Set

wa1
a = inf

F∈Ta1

MF
(
U−1 (1− aε)

)
and

ba1
a = sup

F∈Ta1

MF
(
U−1 (1− aε)

)
.

Then the conditions

(3.21) wa1
a ≥ U−1 (1− aε)
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for a ∈ {1, 2, . . . , a1 − 1} are sufficient and

(3.22) ba1
a ≥ U−1 (1− aε)

are necessary for a cluster of size a1 to be invariant under return.
Proof. ∂

∂φMF(φ) > 0, and thus conditions (3.20) are equivalent to

(3.23) MF
(
U−1 (1− aε)

)
≥ U−1 (1− aε)

for a ∈ {1, 2, . . . , a1 − 1} and all admissible F ∈ Ta1 .
Finding the wa1

a and ba1
a for general U and R can be done numerically using opti-

mization techniques. However, there are two classes of rise functions (cf. Definition 3.8
and Lemma 3.9 below) which allow further analytical investigation as the effect of their
worst- and best-case return maps can be estimated. Most of the commonly used rise
functions, as, e.g., the rise function of the LIF neuron or the conductance-based LIF
neuron, fall under one of these classes (cf. Appendix B).

The idea is to study the change of phase differences due to the application of the
interaction function. Two oscillators initially at phases φ and φ+Δφ receiving a pulse
of strength ε will have a new phase difference

(3.24) ΔH (φ,Δφ, ε) := Hε (φ+Δφ) −Hε (φ) ,

where the domain of ΔH is given by

D :=
{
(φ,Δφ, ε) | 0 ≤ ε ≤ 1, 0 ≤ φ ≤ 1, 0 ≤ Δφ ≤ U−1 (1− ε)− φ

}
.

Definition 3.8. A rise function U is increasing the change of phase differences
(icpd) if and only if

(3.25)
∂

∂φ
ΔH (φ,Δφ, ε) ≥ 0 for all (φ,Δφ, ε) ∈ D.

Conversely, it is decreasing the change of phase differences (dcpd) if and only if

(3.26)
∂

∂φ
ΔH (φ,Δφ, ε) ≤ 0 for all (φ,Δφ, ε) ∈ D.

As shown in Appendix B.2 the icpd (dcpd) property is related to the third deriv-
ative of U . If the rise function is icpd or dcpd, the change in phase differences after
application of the return map can be bounded as shown in the following lemma and
illustrated in Figure 3.4(a)–(c) for icpd rise functions.

Lemma 3.9. Let εr, σr ≥ 0, r ∈ {1, 2, . . . ,m}, ε =
∑m

r=1 εr, σl ≥ 0. Choose a
σu ≥ 0 such that

m⊙
r=1

(Sσr ◦Hεr ) (φ) ≤ Hε ◦ Sσu (φ)

and let φ ≥ ψ. Then for an icpd rise function U

Sσl
◦Hε (φ)− Sσl

◦Hε (ψ) ≤
m⊙
r=1

(Sσr ◦Hεr ) (φ)−
m⊙
r=1

(Sσr ◦Hεr ) (ψ)

≤ Hε ◦ Sσu (φ)−Hε ◦ Sσu (ψ) .(3.27)
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Fig. 3.4. Rise functions with increasing change (icpd) and no change of phase differences.
(a)–(c) Icpd rise function. An initial phase difference Δ(0) changes to Δ(1) after applying a com-
bination of interaction maps Hεr (up arrows, colored blue in online version) of total strength
ε =

∑m
r=1 εr and shifts Sσr (right arrows, colored green in online version) such that the final

maximal phase values are identical. (a) For icpd rise functions the difference Δ(1) is the smallest
when the interaction is applied in total before the shifts, i.e., Hε ◦Sσl , and (c) largest when applied
after the shifts Sσu ◦Hε. (b) All other maps

⊙m
s=1 (Hεs ◦ Sσs) produce phase differences which lie

in between these extremal values (cf. Lemma 3.9). (d)–(f) The rise function Ub is icpd and dcpd,
i.e., the phase difference Δ(1) is independent of the order in which the interactions and shifts are
applied.

For U that is dcpd, (3.27) holds replacing ≤ with ≥.
Proof. Consider icpd rise functions first: To show the first inequality of (3.27) we

use induction on m. The statement is clearly true for m = 1. Assume it is true for
m ≥ 1. Then

Sσl
◦Hε (φ) − Sσl

◦Hε (ψ)

= Hεm+1 ◦Hε−εm+1 (φ)−Hεm+1 ◦Hε−εm+1 (ψ)

= ΔH
(
Hε−εm+1 (ψ) , Hε−εm+1 (φ)−Hε−εm+1 (ψ) , εm+1

)
≤ ΔH

(
Hε−εm+1 (ψ) ,

m⊙
r=1

(Sσr ◦Hεr ) (φ)−
m⊙
r=1

(Sσr ◦Hεr ) (ψ) , εm+1

)

≤ ΔH

(
m⊙
r=1

(Sσr ◦Hεr ) (ψ) ,

m⊙
r=1

(Sσr ◦Hεr ) (φ)−
m⊙
r=1

(Sσr ◦Hεr ) (ψ) , εm+1

)

=

m+1⊙
r=1

(Sσr ◦Hεr ) (φ)−
m+1⊙
r=1

(Sσr ◦Hεr ) (ψ) ,

where we used the induction hypothesis and ∂
∂ΔφΔH > 0 (cf. (3.24)) in the third line,

and in the fourth line the icpd property and the fact that Hε−εm+1 (ψ) ≤
⊙m

r=1 (Sσr ◦
Hεr ) if

∑m+1
r=1 εr = ε, σi ≥ 0. Substituting ≤ with ≥, we obtain the result for dcpd

rise functions.
For the second inequality we also use induction overm. The statement is trivially

D
ow

nl
oa

de
d 

11
/3

0/
21

 to
 1

41
.3

0.
17

.1
07

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2136 CHRISTOPH KIRST AND MARC TIMME

true for m = 1. Let it be true for m ≥ 1 and let σu ≥ 0 such that
⊙m+1

r=1 (Sσr ◦
Hεr ) (φ) ≤ Hε ◦ Sσu (φ). Then

Hε ◦ Sσu (φ)−Hε ◦ Sσu (ψ)

= Hεm+1 ◦Hε−εm+1 ◦ Sσu (φ)−Hεm+1 ◦Hε−εm+1 ◦ Sσu (ψ)

= ΔH
(
Hε−εm+1 ◦ Sσu (ψ) , Hε−εm+1 ◦ Sσu (φ)−Hε−εm+1 ◦ Sσu (ψ) , εm+1

)
≥ ΔH

(
Hε−εm+1 ◦ Sσu (ψ) ,

m⊙
r=1

(Sσr ◦Hεr ) (φ)−
m⊙
r=1

(Sσr ◦Hεr ) (ψ) , εm+1

)

≥ ΔH

(
m⊙
r=1

(Sσr ◦Hεr ) (ψ) ,

m⊙
r=1

(Sσr ◦Hεr ) (φ)−
m⊙
r=1

(Sσr ◦Hεr ) (ψ) , εm+1

)

=

m+1⊙
r=1

(Sσr ◦Hεr ) (φ) −
m+1⊙
r=1

(Sσr ◦Hεr ) (ψ) ,

where in the third line we used the implication

(3.28)

m+1⊙
s=1

(Sσs ◦Hεs) (φ) ≤ Hε ◦Sσu (φ) ⇒
m⊙
s=1

(Sσs ◦Hεs) (φ) ≤ Hε−εm+1 ◦Sσu (φ)

to apply the induction hypothesis. In the fourth line we again used ∂
∂ΔφΔH > 0,

(3.28), and the icpd property. Substituting ≥ with ≤, we obtain the result for dcpd
rise functions.

Using the previous result we can estimate the effect of worst- and best-case return
maps on avalanches of a certain size and thus determine bounds on the network
parameters which ensure invariance or decay of states that involve these cluster sizes.

Theorem 3.10. Consider a homogeneous excitatory all-to-all network of N
pulse-coupled oscillators evolving according to (2.14)–(2.17) with neuronal partial re-
set R.

For icpd rise functions U the conditions

U−1 (R ((a1 − 1)ε))− U−1 (R ((a1 − 1)ε− aε))

≤ U (1− (N − a1)ε)− U−1 (1− (N − a1)ε− aε)(3.29)

for all a ∈ {1, 2, . . . , a1− 1} are sufficient to ensure the invariance of an a1-avalanche
under return. Necessary conditions are

U−1 (R ((a1 − 1)ε) + (N − a1)ε)− U−1 (R ((a1 − 1)ε− aε) + (N − a1)ε)

≤ 1− U−1 (1− aε) .(3.30)

Likewise, for dcpd rise functions U , sufficient conditions are (3.30) and necessary
conditions (3.29) for an a1-avalanche to not split up under return.

Proof. Using Lemma 3.9 we find for an icpd rise function and F ∈ Ta1

MF(1)−MF
(
U−1 (1− aε)

)
=

m⊙
r=2

(Sσr ◦Hεr ) (Sσ1 ◦ Jε1 (1))−
m⊙
r=2

(Sσr ◦Hεr )
(
Sσ1 ◦ Jε1

(
U−1 (1− aε)

))
≤ H(N−a1)ε ◦ Sσu ◦ Jε1 (1)−H(N−a1)ε ◦ Sσu ◦ Jε1

(
U−1 (1− aε)

)
= 1−H(N−a1)ε ◦ Sσ ◦ Jε1

(
U−1 (1− aε)

)
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Fig. 3.5. Sequential desynchronization in a network (N = 100) with icpd rise function UCB
LIF

(Eeq = 1.1, Esyn = 3) and linear partial reset Rc. (a) Observed cluster sizes of periodic states after a
time t = 10000. For each c value 100 simulations were started in the synchronous state with a small
perturbation added. The upper line shows the bounds on a obtained from (3.30) in Theorem 3.10,
above which a-clusters are unstable. The lower line is the bound obtained via (3.29), below which
a-clusters are ensured to be stable. The shaded area marks the transition region where states other
than the synchronous and asynchronous state are observed. In the dark-shaded region (colored blue
in the online version of this article) we find no periodic asymptotic dynamics. The dashed lines
show the theoretical bounds for the transition region. (b) Aperiodic dynamics for c1 = 0.18.

with

(3.31) σu = U−1 (1− (N − a1) ε)− U−1 (R (a1 − 1) ε) ,

and thus wa1
a = H(N−a1)ε◦Sσu ◦Jε1

(
U−1 (1−aε)

)
in (3.21) yielding conditions (3.29).

Similarly we find for (3.22), ba1
a = 1−H(N−a1)ε◦Jε1 (1)+H(N−a1)ε◦Jε1

(
U−1 (1−aε)

)
,

which yields the necessary conditions (3.30). For dcpd rise functions the expressions
for wa1

a and ba1
a are interchanged.

We used Theorem 3.4 to determine for a convex LIF rise function UCB
LIF (cf. (B.5)

and (B.7)) and linear partial reset Rc the regime where avalanches of different sizes
become unstable under return. The most strict condition in (3.29) is that for a = 1,
which yields an implicit equation for the lower bounds on the critical c values below
which the invariance of a1-avalanches is ensured. The upper bound is obtained by
(3.30) also using a = 1. Both bounds are plotted in Figure 3.5 and are in good
agreement with the numerical data.

Near the lower transition point c
(N)
crit the system shows aperiodic behavior when

starting close to the synchronous state. An explanation for this dynamics is the
competition of two counteracting mechanisms: (i) Large avalanches become unstable
under return and thus tend to desynchronize the phases, which results in a split of
the avalanche into smaller stable avalanches. (ii) The solution to (3.12) for these
asynchronously firing smaller clusters involves σ∗

r ≤ 0; i.e., the smaller avalanches
tend to absorb each other and resynchronize the system, yielding again larger un-
stable avalanches. Note that here irregular dynamics arise via a mechanism that
differs from network heterogeneity [16] or using balanced excitatory and inhibitory
interactions [71].

3.6. Extensive sequence of desynchronizing bifurcations—a solvable ex-
ample. Figure 3.4(d)–(f) illustrates that the rise function Ub is both icpd and dcpd.
In fact,

ΔHb (φ,Δφ, ε) := Hb (φ+Δφ, ε)−Hb (φ, ε) = Δφebε
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is independent of φ and hence

∂

∂φ
ΔHb (φ,Δφ, ε) = 0.

Thus for Ub equality holds in (3.27) and the best- and worst-case return maps become
identical. This property allows us to obtain exact analytical results.

Proposition 3.11. Consider a homogeneous excitatory all-to-all network of N
pulse-coupled oscillators evolving according to (2.14)–(2.17) with convex rise function
Ub ( b < 0) and neuronal partial reset Rc.

Then for each 2 ≤ a ≤ N there exists a critical reset strength c
(a)
cr such that for

all c > c
(a)
cr avalanches of size greater than or equal to a are unstable under return and

avalanches of size smaller than a are stable. For c ≤ c
(N)
cr all avalanches are stable

under return. The critical reset strengths are determined from the equation

(3.32) eb(1−[(N−a)+c(a)
cr (a−1)]ε) =

(
e−bc(a)

cr ε − 1
)

(e−bε − 1)

and satisfy 0 < c
(N)
cr < c

(N−1)
cr < · · · < c

(2)
cr < 1.

Proof. Since Ub is icpd and dcpd, equality holds in (3.27), i.e., for F ∈ Ta1

(3.33) ΔMF (Δφ) := 1−MF (1−Δφ) = 1− Sσl
◦H(N−a1)ε ◦ Ja1ε (1−Δφ) .

Thus the return map for the phase differences depends only on the avalanche size
a1 and is independent of the precise form of the other avalanches ai, i > 1, and
intermediate shifts σi. Explicitly

ΔMF (Δφ) =
ebε(N−a1+c(a1−1))

1− eb

(
e−bc

(
eb +

(
1− eb

)
Δφ
)c − 1

)
for all F ∈ Ta1 . A straightforward calculation shows that ΔMF has the properties

(3.34) ΔMF (0) = 0,
d

dΔφ
ΔMF (Δφ) ≥ 0, and

d2

dΔφ2
ΔMF (Δφ) ≤ 0.

Thus if the condition

(3.35) ΔMF
(
1− U−1 (1− ε)

)
≤ 1− U−1 (1− ε)

is met, all other conditions for 1 ≤ a < a1 in (3.29) are also satisfied. On the other
hand almost all perturbations will cause the avalanche to be triggered by a single
oscillator. Thus if condition (3.35) is not satisfied, i.e., ΔMF (Δφ) > Δφ for all
Δφ ≥ U−1 (1 − ε) − 1, the avalanche will split up after a finite number of iterations
of the return map. Thus (3.35) is a necessary and sufficient condition for stability of

an a-cluster under the return map. We are interested in the critical strengths c
(a)
crit

for which an a-cluster becomes unstable, and hence we use the equality in (3.35) and

basic algebra to obtain the implicit expressions (3.32) for the c
(a)
cr .

Since we have assumed (N − 1) ε < 1, b < 0, and c ∈ [0, 1] we see that the
left-hand side of (3.32) lies in the interval (0, 1) and decreases monotonically with
increasing c. The right-hand side is 0 for c = 0 and increases monotonically with c
until it becomes 1 for c = 1. Thus by continuity for all 2 ≤ a ≤ N there always exists
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Fig. 3.6. Synchronization and desynchronization of avalanches in networks with convex rise
function and partial reset. (a) Subthreshold inputs synchronize the oscillators. The phase difference
of a cluster before pulse reception Δφ+ is decreased to Δφ− afterwards, i.e., Δφ+ < Δφ−. (b) Weak
partial reset (e.g., c ≈ 0 for Rc) synchronizes phase differences: Δφ+ < Δφ−. (c) Due to the
convexity of the rise function a strong partial reset (c ≈ 1) expands the phase differences Δφ+ >
Δφ−. Clusters lose stability if the mechanism in (c) becomes dominant over the stabilizing effect (a).

a solution 0 < c
(a)
cr < 1 to this equation. Note that the special case a = 2 is explicitly

solvable for c
(2)
cr and yields

(3.36) c(2)cr =
1

bε
log
(
1 + e−b(N−2)ε+b

(
1− e−bε

))
.

For fixed 0 ≤ c < 1 the left-hand side of (3.32) is strict monotonically decreasing

as a increases, whereas the left-hand side is independent of a, and thus 0 < c
(N)
cr <

c
(N−1)
cr < · · · < c

(2)
cr < 1.

The theoretical prediction (3.32) for the desynchronization transition is plotted
in Figure 3.2 and is in excellent agreement with the numerically observed transition.

Remark 3.12. Note that (3.32) involves all relevant network parameters. In

particular, choosing b→ −∞ in (3.36) shows that c
(2)
cr can be made arbitrarily small.

This implies that the entire sequence of desynchronizing bifurcations may occur over

an arbitrary small interval
[
c
(N)
cr , c

(2)
cr

]
.

Remark 3.13. We also remark that the number of bifurcation points in this

sequence is N − 1. At each bifurcation point c
(a)
cr all periodic states with at least one

cluster of size a and all other cluster sizes less than or equal to a, i.e., an extensive
combinatorial number of states, become unstable simultaneously.

The mechanisms underlying the desynchronization transition are opposing syn-
chronization and desynchronization dynamics in the network, as illustrated in Fig-
ure 3.6: Due to the convexity of the rise function (a) subthreshold inputs are al-
ways synchronizing and stabilize the avalanche, whereas depending on the strength of
the partial reset suprathreshold inputs in an avalanche can either (b) synchronize or
(c) desynchronize the phases. Thus for a weak partial reset (e.g., Rc with c ≈ 0) states
with large avalanches are stable. When the partial reset is stronger it desynchronizes
the cluster and, depending on the avalanche size, it may outweigh the synchroniza-
tion effect due to subthreshold inputs. Larger avalanches receive less synchronizing
subthreshold input from other oscillators and simultaneously produce a larger supra-
threshold input than smaller ones. Thus they lose invariance under return first when
increasing the partial reset strength.
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4. Robustness of the desynchronization transition. The desynchroniza-
tion transition is robust against structural perturbations in the coupling matrix and
the rise function U .

4.1. Coupling strength inhomogeneity. With respect to perturbations in
the coupling matrix εij , numerical experiments show that the transition is observed
when using coupling strengths from a uniform distribution on an interval [εmin, εmax]
for a interval length Δε = εmax−εmin as large as 20% of the average coupling strength
ε̄ = (εmax − εmin) /2. When Δε becomes larger, usually complex spike patterns and
nonperiodic states are observed.

The coupling inhomogeneity destabilizes clusters since also subthreshold inputs
of different strengths desynchronize units initially at the same phase. In fact, already

the lower bound c
(a)
crit obtained for homogeneous networks via Theorem 3.10 using the

coupling strength ε̄ overestimates the stability of the clusters. The regime where we
observe aperiodic dynamics becomes larger in comparison to homogeneous networks
with the same average coupling strength. This is due to clusters with asymptotic
phases which are close to an absorption (i.e., where σ∗

i ≈ 0 for some i). A per-
turbation in the coupling now enables the absorption, and the restless competition
between desynchronization and synchronization (cf. section 3.5) induces the aperiodic
dynamics.

4.2. Sigmoidal rise functions. Typically rise functions in biological or phys-
ical systems are neither purely concave nor purely convex. In particular intrin-
sic neuronal dynamics is often best described with a sigmoidal rise function. The
quadratic-integrate-and-fire or exponential-integrate-and-fire neuron [21, 24] (cf. also
Appendix B) constitute major examples. In networks with sigmoidal rise functions
a combination of the effects inherent to concave and convex rise functions influences
the network dynamics: synchronization of units to larger clusters due to the concave
part (cf. [48, 38]) and stabilization of states with asynchronously firing clusters due to
the convex part (cf. Theorem 3.4). Numerical studies show that for strictly neuronal
partial resets and rise functions with dominant concave part, synchronized firing of
oscillators in the asymptotic state is typically found. In contrast, if the convex part
is larger, it is more likely to find clusters of smaller sizes and the asynchronous state.
Indeed, for general rise functions U we still obtain the stability matrix A in (3.16),
but the nonzero entries (3.17) can become larger than 1 in the regime where U is
concave. Thus if the concave part becomes dominant, the eigenvalues are no longer
bounded by 1 and asynchronous cluster states become unstable.

In Figure 4.1 a desynchronization transition for the sigmoidal rise function UCB
QIF

and linear partial reset Rc is shown. In the synchronous state oscillators do not receive
any intermediate subthreshold pulses between successive firing, and the return map
for an oscillator with phase φ can be written as

M{{1,...,N},σ}(φ) = U−1 (R (U(φ) + (N − 1)ε− 1)) + 1− U−1 (R ((N − 1)ε))

for any partial reset R and any rise function U . After a perturbation the avalanche is
typically triggered by a single unit, and thus the synchronous state becomes unstable
if M{{1,...,N},σ}(φ) < φ for all φ ∈

[
1 − U−1 (1 − ε) , 1

]
, which yields the condition

(3.29) for a1 = N . This can be used to determine the onset of a desynchronization
transition in the general case, as shown in Figure 4.1 (dashed line). The stability of
smaller avalanches a1 < N can still be estimated with the help of Theorem 3.10 if
the rise function is dcpd but not necessarily convex. Conditions for the sigmoidal rise
functions UQIF and UCB

QIF to be dcpd are given in Appendix B.
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Fig. 4.1. Sequential desynchronization transition in networks of neural oscillators with a sig-
moidal rise function. Shown are the dynamics of a homogeneous network (N = 100, ε = 0.002)
with linear partial reset Rc and (e) sigmoidal rise function UCB

LIF (Esyn = 2, α = −1, β = 1).
Starting with synchrony and inducing a small perturbation (arrow) the network shows (a) aperiodic
dynamics for c = c1 = 0.45, (b) clustering for c = c2 = 0.46, and (c) asynchronous dynamics for
c = c3 = 0.54. Note the oscillations of the phase which do not appear for purely convex rise functions
(cf. Figure 3.5). (d) Cluster sizes of periodic states observed in the dynamics at t = 5000 starting
from 200 perturbed synchronous states for each value of c. Shaded area marks the transition region
with states other than solely synchronous or asynchronous. The dark-shaded region (colored blue in

online version) marks the occurrence of aperiodic dynamics. The dashed line indicates critical c
(N)
crit

determined from (3.23) for a1 = N above which synchronous firing becomes unstable.

Desynchronization due to a partial reset has three components: Translation
of phase differences into potential differences via the rise function U , the relative
change of potential differences due to the partial reset R after suprathreshold excita-
tion, and back-translation of this potential difference into phase differences via U−1

(cf. Figure 3.6(c)). For convex rise functions the slope in the reset zone IR =[
0, U−1 (R ((N − 1)ε))

]
is always smaller than in the suprathreshold zone IT =[

U−1 (1 − (N − 1)ε) , 1
]
. As a consequence the phase differences in IT are trans-

lated via U to larger potential differences, and the potential differences after reset
become larger phase differences during the back translation U−1. This causes an
effective phase desynchronization even for partial resets that are nonexpansive, as
depicted in Figure 3.6(c).

For general rise functions and nonexpansive partial resets, the destabilization of a
cluster state due to a partial reset thus can occur only if the slopes in IT are sufficiently
larger than those in IR. In fact if this ratio becomes too small, the transition may
not be observed completely for nonexpansive partial reset, e.g., for Rc in the range
c ∈ [0, 1], and can be shifted to partial resets that have to be expansive (e.g., for
c > 1).

Finally note that, in contrast to convex rise functions, for sigmoidal rise functions
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we always observe “damped oscillations” in the Poincaré phase plots Figure 4.1(b,c).
The amplitudes of these oscillations become larger when the slope of the rise function
at the point of inflection becomes smaller. We therefore attribute these oscillations
to subthreshold inputs received by oscillators near the inflection point of the rise
function.

5. Discussion. In summary, we proposed a model of pulse-coupled threshold
units with partial reset. This partial reset, an intrinsic response property of the local
units, acts as a desynchronization mechanism in the collective network dynamics. It
causes an extensive sequence of desynchronizing bifurcations of cluster state networks
of pulse-coupled oscillators with convex rise function. This sequential desynchroniza-
tion transition is robust against structural perturbations in the coupling strength and
variations of the local subthreshold dynamics.

Previous studies have not particularly focused on the collective implications of
partial or graded resets. In network models with pulses that are extended in time,
typically a full conservation of the input is considered [68, 70, 30]. Models with
instantaneous responses to inputs consider fully dissipative reset (R (ζ) ≡ 0 in our
model) [48, 27, 7, 59, 65, 64], fully conservative reset (R (ζ) = ζ) [9, 11], as well as
both extremes [33] without discussing particular consequences of the reset mechanism.
Here we closed this gap and showed that in fact the reset mechanism influences the
synchronization processes.

Partial reset in pulse-coupled oscillators keeps the collective network dynamics
analytically tractable and at the same time describes additional physically or biolog-
ically relevant dynamical features of local units. In neurons, for instance, synaptic
inputs are collected in the dendrite and then transmitted to the cell body (soma).
At the soma the integration of the membrane potential takes place and spikes are
generated. Remaining input charges on the dendrite not used to trigger a spike at the
soma may therefore contribute to the potential after somatic reset [17, 58, 10].

Such features are effectively modeled by the simple partial reset introduced here.
In particular, spike time response curves (that may be obtained for any tonically firing
neuron [51, 56, 50, 26]) encode the shortening of the interspike intervals (ISI) following
an excitatory input at different phases of the neural oscillation. An excitatory stimulus
that causes the neuron to spike will maximally shorten the ISI in which the stimulus
is applied. Additionally, the second ISI that follows is typically affected as well, e.g.,
due to compartmental effects. It is exactly this shortening of the second ISI that
is characterized by appropriately choosing a partial reset function in our simplified
system. The details of such a description and consequences for networks of more
complicated neuron models are studied separately [38]. For instance, networks of two-
compartment conductance-based synaptically coupled neurons indeed exhibit similar
desynchronization transitions when varying the coupling between soma and dendrite,
which in our simplified model controls the partial reset.

The desynchronization due to the partial reset, i.e., due to local processing of
suprathreshold input, differs strongly from that induced by previously known mecha-
nisms based on, e.g., heterogeneity, noise, or delayed feedback [70, 69, 44, 40, 55, 16].
Possibly, this desynchronization mechanism may also be helpful in modified form to
prevent synchronization in neural activity such as in Parkinson tremor or in epileptic
seizures [63, 62].

In this work we developed a partial reset for suprathreshold inputs and consid-
ered purely homogeneous and globally excitatory instantaneously coupled systems. In
networks with delayed excitatory interactions the full reset mechanism is responsible
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for the collapse of state space volume to a lower dimension, explaining the occurrence
of unstable attractors [5]. Changing to an invertible partial reset, the flow becomes
locally invertible and the unstable attractors become saddle points with possible het-
eroclinic connections that entail switching dynamics (cf. [39]).

For inhibitory couplings one can define a lower threshold [15] below which in-
hibitory inputs become less effective, i.e., a partial inhibition. In models of neurons,
for instance, this could characterize shunting inhibition [3]. If two units simultane-
ously receive inhibitory inputs below a lower threshold, a zero partial inhibition, i.e.,
setting the state of the units to a fixed lower value, is strongly synchronizing in anal-
ogy to a full reset after suprathreshold excitation. Our findings suggest that, similar
to a partial reset, a less synchronizing nonzero partial inhibition may also have a
strong influence on the collective network dynamics. Our partial reset model might
also find applications in studying network dynamics of neurons with postinhibitory
rebound [57]. These neurons get more excitable when hyperpolarized by inhibitory
inputs, e.g., due to the opening of slowly inactivating calcium channels. After the
release from sufficiently strong inhibition the neurons generate a spike and thereafter
may still exhibit stronger excitability. In our simple model this enhanced excitability
then could be modeled using a partial reset mechanism for inhibition.

In biologically more detailed neuronal network models, both excitatory and in-
hibitory couplings as well as complex network topologies play important roles in gen-
erating irregular [71] and synchronized spiking dynamics [2]. It would therefore be an
interesting task to study the impact of partial resets in such networks.

Appendix A. The Eneström–Kakeya theorem.

A.1. Spectral-radius and matrix-norm. Let A = aij be an n × n matrix.
The spectral radius ρ of an A is defined as [34]

(A.1) ρ(A) = max
‖x‖=1

‖Ax‖ = max
i=1,...,n

|λi| ,

where ‖‖ denotes a norm and {λi}ni=1 are the complex eigenvalues of A. If ‖−‖ is any
matrix norm (see [46]), the inequality

(A.2) ρ(A) ≤ ‖A‖

is valid and in fact ρ(A) = inf ‖A‖, where the infimum is taken over all matrix
norms [34]. Here we only need the maximum-absolute-column-sum norm of A defined
as

(A.3) ‖A‖ = max
j=1,...,n

n∑
i=1

|aij | .

A.2. Companion matrices. An (n+1)× (n+1) companion matrix C has the
standard form

(A.4) C =

⎛
⎜⎜⎜⎝

0 . . . 0 −c̃0
1 0 −c̃1

. . .
...

0 1 −c̃n

⎞
⎟⎟⎟⎠

with characteristic polynomial

(A.5) p̃n+1(z) = det (z −C) = c̃0 + c̃1z + · · ·+ c̃nz
n + zn+1.
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A.3. The Eneström–Kakeya theorem. The Eneström–Kakeya theorem1 [25,
36, 35, 4, 34] can be stated in the following form.

Theorem A.1. Let pn(z) =
∑n

j=0 cjz
j with cj > 0; then for all λ with pn (λ) = 0

|λ| ≤ max
0≤i<n

{
ci
ci+1

}
=: β.

Proof. Note first that β > 0. We set

(A.6) p̃n+1(z) :=
(z − 1)pn(βz)

cnβn
= zn+1 +

n∑
i=0

c̃iz
i,

where

c̃i =

{
ci−1−βci
cnβn−i+1 , 1 ≤ i ≤ n,
−c0
cnβn , i = 0.

Using the definition of β one observes that c̃j ≤ 0. Comparing (A.5) with (A.6) the

companion matrix of p̃n+1 is given by (A.4). Since 1 +
∑n+1

j=1 c̃j = p̃n+1(1) = 0 it

follows that ‖C‖ =
∑n+1

j=1 |c̃j | = −
∑n+1

j=1 c̃j = 1 when using the maximum-absolute-
column-sum norm (A.3), and hence from (A.2)

ρ(C) ≤ 1.

Thus for all λ̃ with pn+1

(
λ̃
)
= 0 we have |λ̃| ≤ ρ(C) ≤ 1. For a λ with pn

(
λ
)
= 0 it

follows from the definition of p̃n+1 that p̃n+1

(
λ̃
)
= 0 for λ̃ = λ

β and thus |λ| ≤ β.

Corollary A.2. Let A be a matrix of the form (cf. (3.16))

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−an a1 0 . . . 0

−an 0 a2
. . .

...
...

...
. . .

. . . 0
−an 0 . . . 0 an−1

−an 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

with ai > 0; then

ρ(A) ≤ max {ai}ni=1 .

Proof. By a permutation of rows and columns we can cast A into a matrix
B = bi,j with nonzero entries bi,(i+1) = ai, i ∈ {1, . . . , n − 1}, and bi,n = −an, i ∈
{1, . . . , n}. This does not change the spectral radius. The similarity transformation to

C = Q−1BQ with Q = diag (q1, . . . , qN−1) and q1 = 1, qi =
∏i−1

j=1 aj , i ∈ {2, . . . , n},
also preserves the spectral radius, and C has the form of a companion matrix (A.4)
with ci =

∏n
j=i+1 ai > 0, i ∈ {0, . . . , n−1}. Thus ρ(A) = ρ(C) ≤ max0≤i<n

{
ci

ci+1

}
=

max1≤i≤n {ai}.

1In 1893 the Swedish actuary and mathematics historian Gustaf Eneström published this result
of roots of certain polynomials with real coefficients in a paper on pension insurance (in Swedish)
[25]. This result is now often called the Eneström–Kakeya theorem, since S. Kakeya published a
similar result in 1912–1913 [36]. But Kakeya’s theorem contained a mistake, which was corrected by
A. Hurwitz in 1913 [35].
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Appendix B. Rise functions.

B.1. Rise functions for integrate-and-fire models. In this section we derive
the rise functions for single variable models of the form

d

dt
v = F (v) + Iin(t).

We distinguish between potential independent inputs Iin(t) = P (t) with P (t) =∑
s εsδ (t − ts) and the conductance-based approach Iin (t) = gsynP (t) (Esyn − v(t)),

Esyn > 1. More generally, if Iin(t) = Q(v(t))P (t) and Q(t) > 0, the transformation

(B.1) u(t) =
1

M

∫ v(t)

0

1

Q(v)
dv, M =

∫ 1

0

1

Q(v)
dv

yields

(B.2)
d

dt
u = F̂ (u) +

1

M
P (t), F̂ (u) =

1

M

F (v (u))

Q(v(u))
,

i.e., a potential independent input Iin. Thus if the rise function U for Iin(t) = P (t) is
known, the conductance-based rise function UCB is calculated with the help of (2.13)
as

(B.3) UCB (φ) =
ln
(
1− E−1

synU (φ)
)

ln
(
1− E−1

syn

) .

The leaky-integrate-and-fire (LIF) model [42] is given by F (u) = −glu + Iext,
which yields

(B.4) ULIF (φ) = Eeq

(
1− e−glTLIFφ

)
,

where TLIF = − 1
gl
ln (1− Eeq) and Eeq = Iext

gl
+ El > 1. This yields

(B.5) UCB
LIF (φ) =

ln
(
1− E−1

synULIF (φ)
)

ln
(
1− E−1

syn

) .

For the quadratic-integrate-and-fire (QIF) model [24] with F (u) = g2 (Er −
u) (Et − u) + Iext, one obtains for Isyn(t) = P (t)

(B.6) UQIF (φ) =
α− tan (arctan (α) − φ (arctan (α)− arctan (β)))

α− β
,

where α = Er+Et

γ , β = α− 2
γ , γ =

√
4Iext
g2

− (Et − Er)2 > 0. Hence

(B.7) UCB
QIF (φ) =

ln
(
1− E−1

synUQIF (φ)
)

ln
(
1− E−1

syn

) .

Note that depending on the integrate-and-fire model and coupling type, convex,
concave, and sigmoidal shapes are possible (cf. Table B.1). We remark that as Esyn →
∞ we recover the potential independent model from the conductance-based version,
i.e., UCB → U , and the conditions for the different properties of UCB become the
conditions for U in Table B.1.
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Table B.1

Properties of different rise functions. η = Esyn (α− β).

U
Parameter
domain

Concave Convex Sigmoidal icpd dcpd

ULIF Eeq > 1
√

- -
√

-

UCB
LIF

Esyn > 1,
Eeq > 1

Esyn > Eeq Esyn < Eeq - Esyn ≥ Eeq Esyn ≤ Eeq

UQIF

0 ≤ α <∞,
−∞ < β ≤ 0,

α > β
β = 0 α = 0 β < 0 < α -

α ≤ 1,
−1 ≤ β

UCB
QIF

Esyn > 1,
0 ≤ α <∞,
−∞ < β ≤ 0

-
0 ≤ 1+

α (α− 2η)

0 > 1+
α (α− 2η)

-
α2 ≤ η

η−α−α−1 ,

β2 ≤ η−α+β
η−α−β−1

Ub b ∈ R \ {0} b < 0 b > 0 -
√ √

B.2. Icpd and dcpd rise functions. Usually it is difficult to verify the icpd
or dcpd property of a rise function as given in Definition 3.8. Here we show that it is
closely related to the third derivative of U .

We first note that ΔH obeys the relations ΔH (φ, 0, ε) ≡ 0 and ΔH (φ,Δφ, 0) ≡
Δφ and hence ∂

∂φΔH (φ,Δφ, 0) = 0 and

∂

∂φ
ΔH (φ,Δφ, ε) =

∫ ε

0

∫ Δφ

0

∂

∂φ

∂

∂ε

∂

∂Δφ
ΔH

(
φ, Δ̃φ, ε̃

)
dΔ̃φdε̃.

Thus U is icpd if

(B.8)
∂3

∂φ∂ε∂Δφ
ΔH (φ,Δφ, ε) ≥ 0 for all (φ,Δφ, ε) ∈ D.

Using ≤ instead of ≥ yields an analogous condition for dcpd U . By definition of ΔH
(B.8) yields the condition

∂3

∂φ∂ε∂Δφ
ΔH (φ,Δφ, ε) = 3

U ′′ (H (φ+Δφ, ε))
2
U ′ (φ+Δφ)

2

U ′ (H (φ+Δφ, ε))
5

− U ′′ (φ+Δφ)U ′′ (H (φ+Δφ, ε))

U ′ (H (φ+Δφ, ε))
3

− U ′ (φ+Δφ)
2
U ′′′ (H (φ+Δφ, ε))

U ′ (H (φ+Δφ, ε))
4

≥ 0 for all (φ,Δφ, ε) ∈ D.

Substituting H (φ+Δφ, ε) → φ and φ+Δφ→ ψ, one obtains

(B.9) U ′′′ (φ) ≤ 3
U ′′ (φ)

2

U ′ (φ)
− U ′′ (ψ)U ′′ (φ)U ′ (φ)

U ′ (ψ)
2 for all 0 ≤ ψ ≤ φ ≤ 1

as a nonlocal sufficient condition for a rise function to be icpd. The condition for
dcpd U is given when replacing ≤ by ≥.

Now note that if (B.9) is satisfied locally for φ = ψ, the sign of the derivative

∂

∂ψ

(
3
U ′′ (φ)

2

U ′ (φ)
− U ′′ (ψ)U ′′ (φ)U ′ (φ)

U ′ (ψ)
2

)
= U ′′ (φ)U ′ (φ)

(
2
U ′′ (ψ)

2

U ′ (ψ)
3 − U ′′′ (ψ)

U ′ (ψ)
2

)D
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is determined by U ′′(φ) since the term in brackets on the right-hand side at φ = ψ is
positive using inequality (B.9) and U ′ > 0. Hence, if U is concave, a sufficient local
condition for a rise function to be icpd is

U ′′ (φ) ≤ 0 and U ′′′ (φ) ≤ 2
U ′′ (φ)

2

U ′ (φ)
for all 0 ≤ φ ≤ 1.

Conversely a local condition for a convex rise functions to be dcpd is given by

U ′′ (φ) ≥ 0 and U ′′′ (φ) ≥ 2
U ′′ (φ)

2

U ′ (φ)
for all 0 ≤ φ ≤ 1.

Different properties of commonly used rise functions are summarized in Table B.1.
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