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Abstract. Synchrony is one of the most common dynamical states emerging on networks. The speed of
convergence towards synchrony provides a fundamental collective time scale for synchronizing systems.
Here we study the asymptotic synchronization times for directed networks with topologies ranging from
completely ordered, grid-like, to completely disordered, random, including intermediate, partially disor-
dered topologies. We extend the approach of master stability functions to quantify synchronization times.
We find that the synchronization times strongly and systematically depend on the network topology. In
particular, at fixed in-degree, stronger topological randomness induces faster synchronization, whereas
at fixed path length, synchronization is slowest for intermediate randomness in the small-world regime.
Randomly rewiring real-world neural, social and transport networks confirms this picture.

1 Introduction and overview

We live in a world where everything is connected: we are
surrounded by global networks of communication, trans-
portation, trade, social relations and media. In addition,
due to the enormous progress in technology, we are now
able to decipher natural networks of high complexity. For
example, we get to know more details about the brain
or the human genome day by day. But understanding
the function of these networks requires a two-sided ap-
proach. Firstly, we need to know the basic structures of
these networks at both microscopic and macroscopic level.
Secondly, we have to map the rules which govern the dy-
namic interactions. Although all these networks seem to
be different at first sight, there are similarities such as ab-
stract patterns or simple organizing principles [1]. It is not
only the individual unit that matters but also the archi-
tecture of the connections. To uncover these rules, theo-
retical studies first focus on systems consisting of simple
units such as oscillators and of simple structures: all-to-all
coupled units, lattices, or mean field models. Although ex-
act results on synchronization in networks with a general
structure have been obtained recently [2–4], it is still not
well understood how the structure of a complex network
affects dynamical features of synchronization.

But a question which dates back to the sixties changed
this approach, namely: ‘what is the probability that
any two people, selected arbitrarily from a large pop-
ulation, such as that of the United States, will know
each other?’ [5]. A more interesting formulation, however,
takes into account that, while two persons may not know
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each other directly, they may share one or more mutual
acquaintances such that any two people are connected
through a chain of acquaintances. This concept, known
as ’six degrees of separation’, refers to the idea that ev-
eryone is on average approximately six steps away from
any other person on Earth. In 1998, this idea was con-
verted into a simple model of small-world networks [6].
The crucial point is that this model interpolates between
totally regular and totally random topologies.

Starting with a ring where units only communicate
with their direct neighbours, ring connections between
neighbours are cut and connected to randomly chosen
nodes somewhere else in the ring. An important quan-
tity which characterizes this network’s evolving architec-
ture is the ’average path length’ and formalizes the intu-
itive idea of degrees of separation. Due to the rewiring,
the path length between any pair of units drastically de-
creases. Simultaneously this architecture still exhibits high
local clustering, defined as the probability that two nodes
linked to a common node will also be linked to each
other. These two properties were suggested to be partic-
ularly supportive of synchronization. Indeed, several de-
tailed studies support this view by showing that at fixed
coupling strength small world networks tend to already
synchronize at lower connectivity than many other classes
of networks [2,6].

Synchronization is one of the most frequently observed
collective dynamics in many physical and biological sys-
tems [1,7,8]. Synchronization might be both advantageous
and desired, for instance in secure communication [9], or
detrimental and undesired, as during tremor in patients
with Parkinson disease or during epileptic seizures [10,11].
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Therefore, a broad area of research has
emerged [12–14], determining under which condi-
tions on the interaction strengths and topologies coupled
units actually synchronize and when they do not. These
results suggest some key properties about the topological
influence on the network synchronizability, i.e. the capa-
bility of a network to synchronize at all. They do not tell
much about the speed of synchronization given that a
network synchronizes in principle.

For any real system, however, it equally matters how
fast the units synchronize or whether the network inter-
actions fail to coordinate the units’ dynamics on time
scales relevant to the system’s function (or dysfunction),
cf. [15–18]. The applications range from consensus dynam-
ics of distributed decision-making problems for interact-
ing groups of agents [19] to neuroscience questions of how
fast the visual processing or olfactory discrimination could
be [20,21]. Yet this question is far from being understood
and currently under active investigation [22–27]. In par-
ticular it is largely unknown how fast small worlds syn-
chronize which leads us to our main question addressed
here: what is the typical time scale for synchronization,
i.e. how fast can oscillators coordinate their dynamics if
they are not directly interconnected but interact on large
networks of regular, random or small-world topology?

We address this question by computer simulations as
well as analytical predictions. All results are derived for
the simplest of all regular states, the synchronous periodic
state, in which all oscillators exhibit identical dynamics.
However, also other settings are imaginable: cluster states
in which two or more groups of synchronized oscillators
exist [28,29] or systems with inhomogeneities in the dy-
namical and topological parameters [30] can be treated
similarly.

We study the effect of topology on the synchronization
time of directed networks which exhibit different dynam-
ics: Kuramoto phase oscillators coupled via phase differ-
ences, higher-dimensional periodic Rössler systems cou-
pled diffusively as well as neural circuits with inhibitory
delayed pulse-coupling. Synchronization time is a mea-
sure of how quickly the network synchronizes after being
perturbed from a synchronized state. So far it has been
studied analytically for fully random networks only [24].
Firstly, comparing network ensembles with a fixed number
of edges, it is shown that those in the small-world regime
synchronize faster than regular networks but slower than
random networks. This is expected intuitively – the char-
acteristic path length is monotonically decreasing while
rewiring – and in accordance with the result for synchro-
nizability [2,6]. Hence, we fix the average characteristic
path length and again investigate the dependence of syn-
chronization time on the network’s topology. We find that
– for a fixed average characteristic path length – networks
in the small-world regime again synchronize slower than
random networks, but this time even slower than regu-
lar networks: we see a non-monotonic dependence on the
topological randomness. First results have been reported
in [22] and here we further systematically investigate these
studies and extend them to real-world networks. We com-

pare network ensembles with fixed topological quantities
like the betweenness centrality as well as generic ensem-
bles for Kuramoto, Rössler and pulse-coupled oscillators.
Moreover, we make analytical predictions of the synchro-
nization times for periodic Rössler systems and observe
remarkable similarities between the synchronization times
for the Kuramoto and pulse-coupled oscillators.

This article is organized as follows. In Section 2 we first
introduce the concept of synchronization time, the central
quantity of our studies. In Section 3 we explain the un-
derlying network structure and introduce the small-world
model adapted to directed networks. Section 4 outlines
the different types of considered dynamics. Here we de-
rive analytical predictions for the synchronization times
and extend the master stability function formalism [14]
to determine the synchronization speed. In Section 5 we
compare the analytical predictions for the synchronization
times and the results obtained by extensive computer sim-
ulations for network ensembles with fixed in-degree, with
fixed average path length and with fixed betweenness cen-
trality, followed by an analysis of generic network ensem-
bles. In Section 6 the study of synchronization times for
real-world networks – rewiring them towards fully ran-
dom networks – confirms our theoretical results. We close
in Section 7 with a summary and a discussion of further
work.

2 Synchronization time

We assume identical oscillators which means we get com-
plete synchronization in the end. The equation of motion
for the uncoupled oscillators looks like

dxi

dt
= F (xi), (1)

where the m-dimensional vector xi = {xi,1, . . . , xi,m}
refers to the components of each oscillator i ∈ {1, . . . , N}
and F : R

m �→ R
m defines the dynamics.

We describe the connection of N oscillators in a net-
work by a coupling matrix J that basically consists of zero
and non-zero elements to specify which oscillators are cou-
pled to which other ones. The matrix elements Jij are thus
given by

Jij =
{

σ/ki if j is connected to i �= j
0 otherwise, (2)

where σ is a global coupling constant and 1/ki a normal-
ization factor that guarantees a homogeneous total input

N∑
j=1

Jij = ki
σ

ki
= σ (3)

such that no specific oscillator receives distinguished cou-
plings.

Directly related to the coupling matrix J is the graph
Laplacian Λ defined as

Λij = Jij(1 − δij) − σδij , (4)
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Fig. 1. (Color online) Time scales of synchronization of oscillator networks for topological randomness q ∈ {0, 0.02, 1} (in-degree
fixed at k = 20). Top row (a) Kuramoto oscillators (σ = 1); (b) diffusively coupled periodic Rössler oscillators (a = 0.2, c = 5.7,
b = 1.7, σ = 2); (c) pulse-coupled oscillators (I = 1.01, γ = 1, σ = −0.2, Δ = 0.1). See equations (9)–(11) for the definitions
of the variable differences. Plotted in the right-hand column are the logarithmized decaying distances (see Eqs. (8), (18), (22)
and (41)).

where δij is the Kronecker-delta. Considering directed
networks its eigenvalues λi are complex and ordered as
0 = Re λ1 ≥ Re λ2 ≥ . . . ≥ Re λN . The number of zero
eigenvalues of the Laplacian matrix is equal to the num-
ber of strongly-connected components (SCCs) of the net-
work1. It is trivial then to conclude that if Re λ2 = 0,
the network is split in more than one SCC. Then, from a
dynamical point of view, it is impossible for the network
to achieve a complete synchronized state, which is only
possible for subnetworks with internal coherence. We are
considering networks with one SCC only throughout this
article, which means we have always Reλ2 > 0. Note that
for the pulse-coupled system in Section 4.3 the eigenvalues
are ordered according to their absolute values.

We describe the dynamics of the interaction with a
function H that is a vector function of dimension m of
the dynamical variables of two connected oscillators. Each
oscillator has the same interaction function. For example,
H for the Rössler oscillators is a 3 × 3 matrix that only
picks out the x-component to couple to the other oscilla-
tors. The coupled equations of motion become

dxi

dt
= F (xi) +

N∑
j=1

JijH(xi, xj), (5)

where Jij > 0 acts on each oscillator as a whole. Further-
more, note again that we only consider identical oscilla-
tors which means that the global coupling σ is the same
for each oscillator as well as the interaction function H.
Since we want to examine the case of identical synchro-
nization, the equations of motion become the same for all

1 A strongly-connected component is the maximal subnet-
work such that for each given pair of nodes (i, j) there is a
directed path from i to j and from j to i.

oscillators when the system is synchronized. In the syn-
chronous state all oscillators’ variables are equal to the
same dynamical variable:

x1(t) = x2(t) = . . . = xN (t) = s(t), (6)

where s(t) is a solution of (1) as long as H(s(t), s(t)) = 0,
which is the case for Kuramoto and Rössler oscillators.
The subspace defined by the constraint of setting all os-
cillator vectors to the same, synchronous vector is called
the synchronization manifold. We assume stability of this
state which means that small arbitrary perturbations to
each xj die out in the long time limit.

In addition to these dynamical systems with
continuous-time coupling we introduce pulse-coupled sys-
tems as well in Section 4.3.

We consider directed regular, small-world and random
networks which are characterized by increasing rewiring,
the topological randomness q. By tuning this parameter
we interpolate between regular ring networks (q = 0),
small worlds (low q � 1) and fully random networks
(q = 1) which is explained in detail in Section 3.

First simulations for three different kinds of oscilla-
tors (see Fig. 1) show that synchronization becomes an
exponential process after some short transients for all frac-
tions q ∈ [0, 1] of randomness. Thus the distance

d(t) = max
i,j

dist(xi(t), xj(t)) (7)

from the synchronous state decays as

d(t) ∼ exp(−t/τ) (8)

in the long time limit, where dist(x, x′) is a function mea-
suring the distance between the two appropriate phase
variables x and x′, taking into account the periodic
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q = 0 q = 0.1 q = 1

Fig. 2. (Color online) Rewiring directed networks, the in-
degree k for each node stays fixed: this can be observed here
for two reference nodes’ incoming edges depicted in blue and
red. (Here: N = 10, k = 4, q ∈ {0, 0.1, 1}).

boundary conditions. The characteristic time scale τ in (8)
is what we call the synchronization time in the following.
Note that there exist systems as well where the transient
until the exponential decay is not negligible [15,17,31].

As one can see in Figure 1 this decay is similar for
Kuramoto, Rössler and pulse-coupled oscillators. It de-
picts the differences of the phase variables (which we de-
fined in detail in Sect. 4) of ten randomly chosen oscillators
to the corresponding means denoted by [. ]:

ΔK,i(t) = Θi(t) − [Θj(t)]j , (9)

ΔR,i(t) = xi(t) − [xj(t)]j , (10)

ΔPC,i(t) = φ̃i(t) −
[
φ̃j(t)

]
j
, (11)

with

φ̃i(t) =
{

φi(t) if φi(t) ≤ 0.5
φi(t) − 1 if φi(t) > 0.5, (12)

‘K’ stands for Kuramoto, ‘R’ for Rössler and ‘PC’ for
pulse-coupled oscillators and these abbreviations will be
kept throughout this paper.

In contrast to the continuous-time dynamics of the
Kuramoto and Rössler oscillators, for the pulse-coupled
oscillators the phases are measured at discrete ‘spik-
ing’ times of a reference oscillator. For the 3-dimensional
Rössler oscillators only the x-coordinates are shown here.
The actual dynamical variables for all systems will be in-
troduced in Section 4.

3 Network topology

We adapt the standard small-world model of Watts and
Strogatz [6] to directed networks [32]. We start with regu-
lar ring networks where each unit i receives directed links
from its ki/2 nearest neighbors on both sides (k is chosen
to be even). Here the in-degree ki = k ∀i is the same for all
units. We randomly cut each outgoing edge with probabil-
ity q and rewire it to a node chosen uniformly at random
from the whole network (avoiding double edges and self-
loops). We do, however, allow the edge to be rewired back
to its original position. An important observation here is
that as q varies the in-degree of each node (and with it the
average in-degree of the network) is still k (see Fig. 2).
This is due to the fact we only rewire outgoing egdes.
Furthermore the entries Jij ≥ 0 of the coupling matrix

are multiplied by a global coupling constant σ and nor-
malized to guarantee that each oscillator i is getting the
same input as has already been mentioned in Section 2.
The matrix elements Jij are therefore Jij = σ/ki if there
is a connection from j to i �= j, Jij = 0 if there is no
connection and Jii = 0 for the diagonal elements (2).

To analyze the purely topological impact on the syn-
chronization times, we study the network dynamics in its
simplest setting: we consider strongly-connected networks
with fixed in-degree k and homogeneous total input cou-
pling strengths (encoded in the coupling matrix J (2))
such that full synchrony is achieved from sufficiently close
initial conditions for all coupling strengths σ [25].

The directed small-world networks behave as in the
original Watts-Strogatz model. The small-world regime (q
small) is characterized by a large clustering coefficient2
〈C(q, k)〉 and a small average path length3 〈L(q, k)〉. Here
〈 . 〉 denotes averaging over network realizations at given
q and k.

To quantitatively fix the small world regime we take

〈L(q, k)〉
L(0, k)

< 0.5 and
〈C(q, k)〉
C(0, k)

> 0.85 (13)

throughout this study. The results below are not sensitive
to a change of these values.

As the topological randomness q is changed from 0 to
1 the network interpolates between regular and random
topologies. This structural change induces changes in the
corresponding graph Laplacian’s spectrum and thus has
a direct influence on the synchronization speed as is ex-
plained in detail in Section 4.

4 Oscillator dynamics on networks

We consider various oscillator types, intrinsic dynamics
and coupling schemes: phase oscillators coupled via phase
differences, neural circuits with inhibitory delayed pulse-
coupling and higher-dimensional periodic systems coupled
diffusively. In the three following subsections we introduce
the theory of these different types of oscillators and add
remarks on the simulations, the chosen initial conditions
and the numerical measurement of the synchronization
time.

4.1 Kuramoto oscillators

Consider N Kuramoto oscillators [33] that interact on a di-
rected network. Here the dynamical variable of each oscil-
lator is xi := θi ∈ S

1 = 2πR/N, i.e. a one-dimensional
phase, with its interaction function H(θi, θj) := sin(θj −
θi). Therefore the dynamics of phases θi(t) of oscillators i

2 C(q, k) denotes the actual divided by the possible number
of directed triangles containing a given node i, averaged over
all i.

3 L(q, k) denotes the length of the shortest directed path
between a given pair of nodes (i, j), averaged over all (i, j).
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with time t satisfy

dθi

dt
= ω +

∑
j

Jij sin(θj − θi) for i ∈ {1, . . . , N}, (14)

where ω is the natural frequency of the oscillators.
The fully synchronous state defined in (6) here takes

the form
θi(t) ≡ θj(t) =: θ(t). (15)

As the synchronous periodic orbit analyzed is isolated
in state space, the relaxation time continuously changes
with possible inhomogeneities, so the qualitative results
obtained below are generic and also hold in the presence
of small heterogeneities, cf. [30].

Furthermore, starting from random initial phases in
the range [0, π] the synchronization dynamics shows a fast
transient. After this fast initial evolution all phases are
quite similar and the sine function in (14) can be well
approximated by its argument. Linearizing (14) close to
the synchronous state (15) phase perturbations defined as

δK,i(t) := θi(t) − θ(t) (16)
evolve according to

dδK,i

dt
=
∑

j

ΛijδK,j(t) for i ∈ {1, . . . , N}. (17)

Here the stability matrix coincides with the graph
Laplacian defined in (4).

Close to every invariant trajectory the eigenvalue λ2

of the stability matrix Λ that is second largest in real
part dominates the asymptotic decay in the long time
limit

dK(t) ∼ exp(−t/τK). (18)

The distance dK(t) is given by (7) where dist(θ, θ′) for
Kuramoto oscillators is the circular distance between the
two phases θ and θ′ on S

1.
λ2 here determines the asymptotic synchronization

time which is given by

τK = − 1
Re λ2

. (19)

This feature was recently shown to hold also more gener-
ally for network systems where the stability matrix is not
necessarily proportional to the graph Laplacian [1,23,34].

4.2 Rössler oscillators

Consider a network of Rössler oscillators, both in the
chaotic and in the periodic regime. Each elementary oscil-
lator is described now by three variables {x(t), y(t), z(t)}.
The collective dynamics of N coupled, identical Rössler
oscillators (i ∈ {1, 2, . . . , N}) is governed by the equations

ẋi = −yi − zi +
N∑

j=1

Jij(xj − xi),

ẏi = xi + ayi,

żi = b + zi(xi − c), (20)

where a, b and c are fixed parameters.
To study the Rössler system in the periodic regime we

set the parameters to a = 0.2, b = 1.7, c = 5.7. Analo-
gously setting the parameters to a = 0.2, b = 0.2, c = 5.7
the chaotic attractor is gained.

The evolution of perturbations is characterized by
measuring the Euclidean distances

dij(t) =
√

(xi(t)−xj(t))2+(yi(t)−yj(t))2+(zi(t)−zj(t))2

(21)
between the states of all N(N − 1)/2 possible pairs of
oscillators (i, j). The asymptotic synchronization time is
then determined via the decay of the maximal distance

dR(t) = max
i,j

dij(t). (22)

A general approach to determine the synchronization time
for continuous systems described by (5) – alternative to
the one taken for the Kuramoto oscillators, which does
not work for the Rössler oscillators – is to extend the mas-
ter stability function (MSF) formalism introduced in [14].
Note that this approach does not work for the pulse-
coupled oscillators, where the phases are measured at dis-
crete times. So far this formalism has only been used
to determine the stability of networks of coupled oscil-
lators [35,36] and nearly all studies have focussed on sym-
metric undirected networks (see [37] for an exception).

Defining infinitesimal perturbations to the syn-
chronous state (6) in the system described by equation (5)
as

δR,i = xi(t) − s(t) (23)

we get the variational equation

dδR,i

dt
= DF (s)δR,i −

N∑
j=1

ΛijDH(s, s)δR,i, (24)

where the matrix Λ is the graph Laplacian defined in (4),
DF (s) and DH(s, s) are the Jacobians evaluated along
the trajectory s(t).

For the above Rössler system with diffusive coupling
via the x-coordinate the Jacobian matrices for this block
are given by

DF (x, y, z) =

⎛
⎝0 −1 −1

1 a 0
z 0 x − c

⎞
⎠ (25)

and

DH(x, y, z) =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ . (26)

The transformation δ′
R = O−1δR, where O is a matrix

whose columns are the set of the Laplacian’s eigenvectors,
diagonalizes the set of equations (24) and hence leads to
a set of decoupled blocks of the form

dδ′
R,i

dt
= [DF (s) − λiDH(s, s)] δ′

R,i, (27)



618 The European Physical Journal B

2 1 0

0.5

0

0.5

real part Α

im
ag

in
ar

y
pa

rt
Β

5 4 3 2 1 0

1

0

1

real part Α

im
ag

in
ar

y
pa

rt
Β

a

b

0.47

0.2

0.13

0.58

0.3

0

Fig. 3. (Color online) Master stability functions (30) for the
Rössler oscillators. (a) Periodic regime (parameters set to a =
0.2, b = 1.7, c = 5.7). (b) Chaotic regime (parameters set
to a = 0.2, b = 0.2, c = 5.7; the black contour shows the
MSF equal to zero, i.e. separates the stable from the unstable
region).

with the λi being the eigenvalues of the Laplacian matrix
Λ. The above-given Jacobians evaluated in the synchro-
nized state s(t) are the same for each block, hence the
blocks only differ by the scalar multiplier λi.

Thus these blocks could be evaluated all at once by
setting

dδ′
R,i

dt
= [DF (s) − (α + iβ)DH(s, s)] δ′

R,i (28)

in dependence on the complex coupling parameter α + iβ.
The imaginary part β may be interpreted as a ‘rotation’
taking place between the several decaying eigenmodes of
the system [38].

The system actually synchronizes if

h1,i = lim
t→∞

1
t

log
|δ′

R,i(t)|
|δ′

R,i(0)| < 0 (29)

for all i ∈ {2, . . . , N}. Here h1,i is the largest Lyapunov
exponent corresponding to the mode of eigenvalue λi (see
e.g. [39]).

To obtain the asymptotic synchronization time we ex-
tract the largest Lyapunov exponent h1,i with the mini-
mal absolute value out of the N − 1 maximal exponents,
namely

h1,max = max
i≥2

h1,i. (30)

This is also called the master stability function and plotted
in Figure 3 for the periodic and chaotic Rössler oscillators.
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real axis, eigenvalues for k = 50 and q ∈ {0, 0.02, 1} with colors
as above.

We calculate the largest Lyapunov exponent following the
numerical procedure described in [36]. It is evident that
the λ1 = 0-mode is parallel to the synchronization mani-
fold while all the other modes are transverse to it. The syn-
chronization time for the Rössler oscillators is then given
by

τR = − 1
h1,max

. (31)

h1,max dominates the decay towards the synchronized
state, but note the nonlinear dependence on the eigen-
values of the Laplacian matrix (27). Only for the simple
1-dimensional Kuramoto oscillators there is a direct rela-
tion, since here there is linear and unbounded coupling,
i.e. the larger the global coupling the faster the synchro-
nization speed.

In order to find a value for the global coupling pa-
rameter σ – encoded in Λ according to (4) – that leads
to synchronization, one calculates the whole spectrum of
possible eigenvalues (see Fig. 4) to guarantee that each
one is located in the stable region, i.e. in the region where
the MSF takes only negative values. Note that the MSF
for uncoupled periodic Rössler oscillators is zero, while
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the MSF for uncoupled chaotic Rössler oscillators is pos-
itive. This means that the minimal global coupling con-
stant needed to achieve synchronization is always larger
for the chaotic Rössler oscillators than for the periodic
ones.

4.3 Pulse-coupled oscillators

Moreover, we investigated the collective dynamics of
pulse-coupled neural oscillators [17,40], which do not ex-
actly fit the general description in Section 2. In this case
the dynamical oscillator variables are the membrane po-
tentials Vi(t) and delayed discrete output pulses satisfying

dVi

dt
= I − γVi +

N∑
j=1; j �=i

∑
m∈Z

Jijδ (t − (tj,m + Δ)) . (32)

Here, each potential Vj relaxes towards I > 1 and is reset
to zero whenever it reaches a threshold at unity,

Vj(t−) = 1 ⇒ Vj(t) := 0, tj,m := t, and m �→ m + 1.
(33)

At these times tj,m neuron j sends a pulse that after a de-
lay Δ > 0 changes the potential of post-synaptic neurons i
in an inhibitory (negative) manner according to (32) with
σ < 0 in (2).

Equivalent to these ordinary differential equations
there is a simplified approach which represents the state
of a one-dimensional oscillator not by its membrane po-
tential, but by a phase that encodes the time to the next
spike in the absence of any interactions. The state of an
individual oscillator j is then represented by a phase-like
variable φj ∈ (−∞, 1] that increases uniformly in time,

dφj/dt = 1. (34)

Upon crossing the firing threshold, φj(t−) = 1, at time t
an oscillator is instantaneously reset to zero, φj(t) = 0,
and a pulse is sent. After a delay time Δ this pulse is
received by all oscillators i connected to j and induces an
instantaneous phase jump given by

φi((t + Δ)+) = U−1 (U(φi(t + Δ) + Jij) .

Here, the coupling strengths from j to i are taken to be
purely inhibitory (σ < 0 in (2)) and normalized according
to (3). The rise function U , which mediates the interac-
tions, can be derived from (32) [41], and turns out to be
monotonic increasing, U ′ > 0, concave (down), U ′′ < 0,
and represents the subthreshold dynamics of individual
oscillators. Note that the function U need to be defined
on the entire range of accessible phase values. In particu-
lar, inhibitory coupling can lead to negative phase values
φi < 0.

The synchronous state s(t) defined in (6) here takes
the form

φi(t) = φ0(t) (35)

for all i, which is a self-consistent solution assuming that
all neuronal oscillators fire at the same time. Here all os-
cillators display identical phases φ0(t) on a periodic orbit
such that φ0(t + T ) = φ0(t) with the period

T = Δ + 1 − α (36)

where
α = U−1(U(Δ) + σ). (37)

Note that here in contrast to the Kuramoto oscillators the
period is different from the one of a free oscillator [4].

A perturbation

δPC(0) =: δPC = (δPC,1, . . . , δPC,N ) (38)

to the phases is defined as

δPC,i = φi(0) − φ0(0). (39)

The initial condition for the phases of the pulse-coupled
oscillators is a random perturbation δPC from the globally
synchronized state δPC = 0. The perturbation’s compo-
nents δPC,i are each drawn independently from a uniform
distribution on [−δ, δ]. The condition δ < Δ

2 derived in [24]
(recall that Δ is the delay time) ensures that the globally
synchronized state is stable. This guarantees that all the
neurons fire before any spikes are received.

A sufficiently small perturbation δPC asymptotically
converges exponentially with time to a constant vector.
Subtracting the asymptotic phase shift,

δ′
PC(t) := δPC(t) − lim

s→∞ δPC(s), (40)

the distance

dPC(nT ) := max
i

|δ′PC,i(nT )| (41)

from the synchronous state (δ′PC,i ≡ 0) decays as

dPC(nT ) ∼ exp
(
− nT

τPC

)
(42)

as n → ∞, defining a synchronization time τPC.
To understand how the speed of synchronization de-

pends on the dynamical and network parameters, we an-
alyze how perturbations δPC to the synchronous state
evolve in time. Following [4] we first define a nonlinear
stroboscopic map

δPC(nT ) = G(δPC

(
(n − 1)T )

)
(43)

for the perturbations. Note that δPC(T ) = δPC(0) since
no spikes are received before all the oscillators reach the
phase threshold for the first time. Hence we first apply the
map G in the first period when spikes are received i.e. for
n ≥ 2.

Considering the first order approximation of this
period-T map one gets a linear iterative map A given by

δPC,i(nT ) =
N∑

j=1

AijδPC,j

(
(n − 1)T

)
, n ≥ 2, (44)
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for the perturbations δPC,i(nT ) of spike times close to the
synchronous orbit of period T = ln

(
I/(I − 1)

)
.

The matrix elements Aij are defined as

Aij =

⎧⎨
⎩

pi,m − pi,m−1 if j is connected to i �= j
pi,0 if j = i
0 otherwise

(45)

where the variables pi,m (m ∈ {1, . . . , ki}) encode phase
jumps evoked by all pulses up to the mth one received [4].
Since the matrix elements (45) are differences of these
pi,m, matrix elements Aij and Aij′ with j �= j′ have in
general different values depending on the order of incom-
ing signals.

This multi-operator problem [42] is induced by the
structure of the network together with the pulsed inter-
actions, in particular, by the order of the components of
δ(0). For networks with homogeneous, global coupling dif-
ferent matrices A can be identified by an appropriate per-
mutation of the oscillator indices. But in general this is
impossible. However, here we focus on the integrate-and-
fire dynamics where the matrix A becomes independent
of the rank order of the perturbations [24]. Here U takes
the form

U(φ) :=
I

γ
(1 − e−γφ). (46)

In order to obtain the matrix elements Aij we first calcu-
late

U ′(φ) = Ie−γφ (47)

and
U−1(y) =

1
γ

ln
(
1 − yγ

I

)−1

. (48)

Furthermore we calculate

U−1(U(Δ) + Jij) =
1
γ

ln
(
e−γΔ − γ

I
Jij

)−1

(49)

and
U ′(U−1(U(Δ) + Jij)) = Ie−γΔ − γJij . (50)

This leads to

pi,m :=
U ′(U−1(U(Δ) +

∑m
l=1 Jijl

))
U ′(U−1(U(Δ) + Jij))

=
Ie−γΔ − γ

∑m
l=1 Jijl

Ie−γΔ − γJij
(51)

where the sum
∑m

l=1 Jijl
with m ∈ {1, . . . , ki} counts up to

the mth signal received by neuron i during the considered
period.

For homogeneous inhibitory coupling, σ/k < 0 for each
existing connection, the elements of the stability matrix
are given by

Aij =

⎧⎨
⎩

a0/k if j is connected to i �= j
1 − a0 if j = i
0 otherwise

(52)

with
a0 =

γσ

Ie−γΔ + γσ
. (53)

Note A is a stochastic matrix and all diagonal entries sat-
isfy Aii > 0. Hence the matrix is aperiodic which implies
that the eigenvalue a1 = 1 is the largest and is unique.

We let vi for i = 1, 2, . . . , N be the eigenvectors of A
with corresponding eigenvalues |a1| > |a2| ≥ . . . ≥ |aN |.
The eigenvector corresponding to the eigenvalue a1 = 1
is v1 = (1, 1, . . . , 1)T since the row-sums of A are equal
to one. Recall that this means the distance vector dPC(n)
does not tend to zero as n → ∞, but instead to a uniform
phase shift (40)

lim
s→∞ δPC(s) =: δ∞ (54)

which has all components equal, (δ∞)i = δ∞ for all i
(i.e. all the neurons are at the same phase and hence in a
globally synchronized state). Furthermore, recall that the
distance from the globally synchronized state is given by

dPC(nT ) := max
i

|δ′PC,i(nT )| (55)

as defined in (41). Using the fact that a1 = 1, v1 =
(1, 1, . . . , 1)T and rewriting δPC as a linear combination
of the basis of eigenvectors gives

δ′
PC(nT ) = δPC(nT ) − δ∞ =

N∑
i=2

βia
n
i vi. (56)

Then, since a2 is the second largest eigenvalue, taking the
infinity norm in (56) gives

dPC(nT ) = max
j

∣∣∣∣∣∣
(

N∑
i=2

βia
n
i vi

)

j

∣∣∣∣∣∣

= |β2a
n
2 |max

j

∣∣∣∣∣∣
(

v2 +
N∑

i=3

βi

β2

(
ai

a2

)n

vi

)

j

∣∣∣∣∣∣
∼ |β2| |a2|n max

j
|v2,j | (57)

where ∼ means ‘is asymptotically equal to (as n → ∞)’.
Taking the logarithm gives

log (dPC(nT )) ∼ n log |a2| . (58)

On the other hand dPC(n) asymptotically defines the syn-
chronization time by

dPC(nT ) ∼ exp
(
− nT

τPC

)
(59)

which after taking the logarithm gives

log(dPC(n)) ∼ − nT

τPC
. (60)

Comparing (58) with (60) leads to

τPC = − T

log |a2| . (61)
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Fig. 5. (Color online) Comparing the synchronization times of different network ensembles, the small-world regime does not
appear to be special. (a) Solid lines indicate network ensembles with fixed in-degree k = 50, with fixed average path length
〈L〉 = 3.5 and with fixed betweenness centrality 〈B〉 = 0.35. The small world regime (13) is located between the red dashed
lines. (b)–(d) Analytical predictions based on equations (18), (22) and (41) (solid lines) and simulation results (symbols with
standard deviations) for synchronization times of Kuramoto (blue, circle), Rössler (green, triangle) and pulse-coupled oscillators
(red, square) for the sketched ensembles. 100 realizations were carried out in order to average over networks (and in simulations
additionally over perturbations).

We numerically find the second largest eigenvalue of the
matrix A and use this to calculate the analytical synchro-
nization time (61). To minimize the influence of specific
rewired networks and perturbations we average over 100
realizations to obtain the average synchronization time
〈τPC〉. As for the Kuramoto system, the prediction of syn-
chronization times based on the eigenvalues of the matrix
A well agrees with those obtained from direct numerical
simulation (Fig. 5).

5 The synchronization times for several
network ensembles

Here we study the dependence of the synchronization time
on the topological randomness q and on the in-degree k.
Following the original approach of Watts and Strogatz we

first examine ensembles with a fixed in-degree k and then
generalize to other generic network network ensembles.
The results for different dynamics and different ensembles
k(q) are depicted in Figure 5. The synchronization times
are studied with the emphasis on their behaviour in the
small world regime which is defined by equation (13) and
highlighted in Figure 5 as the shaded region.

Analytical predictions for the synchronization times
in (19), (31) and (61) are averaged over 100 network real-
izations and depicted in Figure 5 as solid lines. Simulation
results for the synchronization times are averaged over 100
realizations of networks and perturbations.

For the Kuramoto and pulse-coupled oscillators, de-
termining the eigenvalues of the stability matrices of net-
works yields synchronization time estimates that well
agree with those found from direct numerical simulations.
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Only for the Rössler oscillators the synchronization
times obtained from the numerical measurement of the de-
caying maximal distances (8) show small but systematic
deviations from the analytically predicted ones. These de-
viations may be due to inaccuracies in determining the
Euclidean distances that oscillate (see the decaying x-
coordinates only in Fig. 1b).

5.1 Networks with fixed in-degree

This subsection is dedicated to the dependence of average
synchronization time 〈τ (q, k)〉 on the topological random-
ness q for standard Watts-Strogatz ensembles of networks
with fixed in-degree k.

We see in Figures 1 and 5b that 〈τ (q, k)〉 is mono-
tonically decreasing with the topological randomness q
and systematically depends on the network topology: reg-
ular ring networks (q → 0) are typically relatively slow to
synchronize. We find that increasing q towards the small-
world regime induces shorter and shorter network syn-
chronization times, with small worlds synchronizing a few
times faster than regular rings. Further increasing the ran-
domness q induces even much faster synchronization, with
fully random networks (q → 1) synchronizing fastest (two
orders of magnitude faster than small worlds in our ex-
amples). Thus in network ensembles with fixed in-degree
small worlds just occur intermediately during a monotonic
increase of synchronization speed, but are not at all topo-
logically optimal regarding their synchronization time.

One could try to explain this dependence heuristically
by the decrease of the average characteristic path length.
Indeed, the dependence of 〈L (q, k)〉 on q is also monoton-
ically decreasing in a similar fashion. It is intuitive that
as the characteristic path length decreases, oscillators can
communicate more efficiently and this leads to faster and
more efficient synchronization.

5.2 Ensembles with fixed average path length
or betweenness centrality

We therefore systematically study the synchronization
time for generalized Watts-Strogatz ensembles of net-
works, specified by a function k(q), where the average
path length 〈L〉 is fixed while the degree of randomness
q varies. We fix the average characteristic path length
〈L (q, k)〉 = 3.5 as this gives us a wide range of q values.
However, the results below are not sensitive to a change of
this specific value, cf. also [22]. We do not take k < 10 as
the networks are in general no longer strongly connected
for larger q values. For each of these in-degrees k a value
of the topopolgical randomness q(k) is determined. Note
that the standard deviations are larger for smaller q val-
ues. This is because we are rewiring a small number of
edges here (Nk/q on average) and rewiring one edge more
or less may have a strong effect on L(q, k) as it may add
a long-range connection where there was not one previ-
ously. Note that k decreases in a non-linear fashion as
q increases for networks with 〈L (q, k)〉 = 3.5. When we

increase q, we decrease the in-degree k. Thus, it might
be expected that the amount of coupling each oscillator
receives also decreases. This would affect the synchroniza-
tion time [23]. We remove this factor by keeping the input
each oscillator receives fixed (3) as q varies. By doing this,
we have reduced the effect of changing the in-degree k on
the synchronization time. Surprisingly, the synchroniza-
tion time of network ensembles with fixed average char-
acteristic path length non-monotonically depends on the
topological randomness (Fig. 5c). In particular, networks
with intermediate randomness in the small-world regime
synchronize slowest.

Since faster synchronization times are apparently not
only related to the decrease of the average path length,
we investigated the dependence on other topological ob-
servables which have been suggested to control whether or
not a network actually synchronizes [13,43–47]. Represen-
tatively, an ensemble with fixed betweenness centrality4 is
shown in (Fig. 5d). Ensembles with fixed clustering coef-
ficient show a similar dependence, but also cover only a
small range of q values.

5.3 Synchronization time of generic network ensembles

How does synchronization speed vary with randomness
for more general ensembles k(q)? A systematic study of
the synchronization time as a function of both in-degree k
and randomness q (Fig. 6) reveals an interesting nonlinear
dependence.

Firstly, it confirms that for all networks with fixed in-
degree k the synchronization time is monotonic in the ran-
domness q and the small world regime at intermediate
randomness is not specifically distinguished.

Secondly, the two-dimensional function 〈τ(q, k)〉 im-
plies that ensembles of networks with fixed path lengths
all exhibit a non-monotonic behavior of the synchroniza-
tion time, with slowest synchronization for intermediate
randomness.

Thirdly, considering graph ensembles characterized by
any other smooth function k(q), q ∈ [0, 1], shows that
this is a general phenomenon and the specific choice of an
ensemble k(q) is not essential.

In fact, as illustrated in Figure 6, for any generic net-
work ensemble k(q) (including ensembles with fixed in-
degree, fixed path length and fixed betweenness centrality
as special choice) the synchronization speed 〈τ(q, k(q))〉
is either intermediate or slowest, but never fastest at in-
termediate randomness, in particular in the small-world
regime. It is remarkable that this seems to hold universally
as the synchronization times are similar for Kuramoto
oscillators (Fig. 6a), periodic (Fig. 6b) and chaotic [22]
Rössler oscillators and pulse-coupled oscillators (Fig. 6c).

4 B(k, q) of node i (see e.g. [48]) measures the number of
directed shortest paths that pass through this node, averaged
over all nodes i.
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Fig. 6. (Color online) Universal nonlinear dependence of syn-
chronization time on in-degree k and topological randomness
q. No generic ensemble k(q) exhibits fastest synchronization
in the small-world regime. (a) Kuramoto oscillators: (modi-
fied from [22]), (b) Rössler oscillators, (c) pulse-coupled oscilla-
tors; logarithmic color scales. Parameters chosen as in Figure 1.
Synchronization times are obtained from equations (19), (31)
and (61).

5.4 Relation between Kuramoto and pulse-coupled
oscillators

Comparing the synchronization times for Kuramoto and
pulse-coupled oscillators in Figure 6 both show a striking
similarity: Could the synchronization times be mapped on
each other?

Therefore let us investigate how perturbations δ(t)
evolve in both systems: For the Kuramoto oscillators we
have

δK(t) = eRe λ2tδ(0) (62)

while perturbations in the pulse-coupled system propagate
like

δPC(nT ) = |a2|n δ(0). (63)

Obtaining similar synchronization times for both dynam-
ics demands these perturbations to evolve in the same way.
Setting nT := t the crucial eigenvalues should satisfy

Re λ2 =
log |a2|

T
. (64)

Comparing the structure of the two relevant matrices
A (52) and Λ (4), we obtain the following relation for
the respective eigenvalues a2 and λ2:

λ2 =
cK

cPC
a2 − 1 (65)

where the quotient cK/cPC depends on the system param-
eters

cK =σK (66)

cPC =
γσPC

Ie−γΔ + γσPC
. (67)

Note that σK > 0 while σPC < 0. Setting the parameters
in the way that this quotient and the period T (T is close
to one anyhow) are both equal to one, we get

1 + log |a2| = Re a2 provided |a2| ≈ 1, Re a2 ≈ 1. (68)

This means that synchronization times obtained for net-
works of pulse-coupled oscillators and for the same struc-
tured networks of Kuramoto oscillators are equal if the
second largest eigenvalue of matrix A satisfies Re a2 ≈ 1
and |a2| ≈ 1, in the sense that |log |a2|| � 1. This is in
general the case for large networks, for which the stochas-
tic matrix A has N eigenvalues with real parts in [−1, 1].

6 Real-world networks

For Watts-Strogatz small-world model networks we have
found that the synchronization speed is either intermedi-
ate or slowest, but never fastest in the small world regime.
Moreover, keeping the in-degree fixed, the model networks
synchronize the faster the more random they are. To sup-
port that this monotone relation also holds in much more
generality we considered various real-world networks: an
air transport network [49], a social network [50], a neural
network [51], an organisational network [52] and a human
travel network [53].

Randomizing is performed by rewiring the existing
connections with rewiring probability p ∈ [0, 1]. Note that
the rewiring probability p and the topological randomness
q are two different quantities. Here we start with the origi-
nal real-world network (p = 0), which may be in the small-
world regime already. The rewiring process is performed
as explained in Section 3: only the outgoing edges of the
directed links are rewired, which means that each node’s
in-degree stays constant during the rewiring. Having con-
sidered networks with the same in-degrees for all nodes
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Fig. 7. (Color online) Real-world networks consistently synchronize several times slower than their randomized counterparts
(air transport network: the US airports with the largest amount of traffic [49], social network: inmates in prison [50], neural
network: C. Elegans [51], organisational network: research team in a manufacturing company [52], human travel network: based
on the trajectories of dollar bills [53]). (a) Clustering coefficients 〈C〉. (b) Average path lengths 〈L〉. (c) Synchronization times
〈τ 〉. (d) Synchronization times 〈τ 〉 relative to the average path length 〈L〉. Inset: the synchronization times for C. Elegans
divided by the average path length 〈L〉 show slightly non-monotonic behaviour. All quantities are averaged over 100 network
realizations.

so far, these in-degrees may vary in real-world networks:
But due to the rewiring routine the network’s initial in-
degree distribution is kept constant during rewiring. Thus
it is not uncommon that a network may split from only
one strongly-connected component (SCC) in the begin-
ning to several ones [25]. If splitting occurs the rewiring is
repeated until the resulting network consists of one SCC
only again. All measured quantities are averaged over 100
network realizations.

The studied real-world networks show small-world
behaviour: gradually randomizing these networks, their
clustering coefficients and their average path lengths
monotonically decrease (Fig. 7a and 7b). Only the cluster-
ing coefficient of the human travel network partly shows
a non-monotonic behaviour. This network is extremely
large (464670 nodes) in comparison to the other networks
(≈100–500 nodes).

We found that all real-world networks consistently
synchronized several times slower than their randomized
counterparts (Fig. 7c). For all networks, the synchroniza-

tion times monotonically increase with increasing random
rewiring. For all but the neural circuit of C. Elegans [51],
this holds even for ensembles with fixed average path
length; for the latter we observed non-monotonic depen-
dence with slowest synchronization for intermediate ran-
domness (Fig. 7d).

7 Conclusion

We investigated the effect of topology on the speed of syn-
chronization of various oscillator types, intrinsic dynamics
and coupling schemes: phase oscillators coupled via phase
differences, higher-dimensional periodic systems coupled
diffusively as well as neural circuits with inhibitory de-
layed pulse-coupling and consistently found qualitatively
the same results. We derived analytical predictions for the
asymptotic synchronization times, including an extension
of the master stability function to determine how fast the
system actually synchronizes. We compared the synchro-
nization speed for different network ensembles:
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Firstly, we found that for networks of fixed in-degree
k, the average synchronization time 〈τ〉 is monotonically
decreasing with the topological randomness q. Comparing
different fixed-k ensembles small-world networks always
synchronize quicker than regular networks.

Secondly, the intuitive idea that this is due to the
decrease in average characteristic path length 〈L(q, k)〉
does not provide a complete explanation: Instead of fix-
ing the in-degree, we fixed the average characteristic path
length. For such ensembles networks in the small-world
regime synchronize slower than regular networks and the
synchronization speed non-monotonically depends on the
topological randomness q. The in-degree k is monotoni-
cally decreasing with q and so does the clustering coeffi-
cient 〈C(q, k)〉. So neither of these topological properties
alone gives an obvious explanation and the phenomenon
results from an interplay between several network prop-
erties. For example, the faster synchronization of regular
networks than of small-world networks may be due to the
in-degree k being large. This is not because the total cou-
pling strength Jij = kσ is high, as we kept this fixed
for all (k, q)-pairs, but may be because the oscillators re-
ceive the coupling effect from a large number of oscillators.
However, we also see fast synchronization for random net-
works where k is small and so the same total coupling
amount is received from far fewer interacting oscillators.
So the explanation for the non-monotonic dependence is
non-trivial.

Thirdly, we investigated the dependence on other topo-
logical observables apart from small-world properties: net-
work ensembles with fixed betweenness centrality have
been displayed as an example, but yet a simple expla-
nation for the nonlinear dependence is missing.

Further, we studied the full nonlinear dependence of
the synchronization time on the in-degree k and the topo-
logical randomness q for generic network ensembles. We
found that fastest synchronization is essentially impossible
in the small-world regime, except for highly artificial en-
sembles. This statement holds for all observed dynamics.
In particular, the synchronization times for the Kuramoto
and pulse-coupled oscillators are strikingly similar.

It would be interesting to extend the analysis started
in Section 5.4 to find out under which conditions the syn-
chronization times for Kuramoto oscillators could be ap-
proximated by or even analytically mapped on the times
for the pulse-coupled oscillators. Additionally an under-
standing or even an analytical description of the curves of
same synchronization times in Figure 6 is extremely help-
ful for finding further relations between the topology and
the dynamics of complex networks. In particular, it is an
interesting question to understand the behaviour of the
second largest eigenvalue of the Laplacian as a function of
q for fixed k and N . First results indicate that this might
follow a simple power law with exponent close to 1 for
values of q > 1/N .

In this article we focused on systems with fixed size N .
In the Watts-Strogatz ensemble the scaling of quantities
such as the average path length L or the clustering coeffi-
cient C with the system size depends heavily on q [6], e.g.

L ∼ N for q = 0 and L ∼ log N for q = 1. Therefore, it
would be an interesting question to study how the results
illustrated in Figure 6 change with N and what would be
the appropriate definition of the small-world regime and
other generalized ensembles with given structural features
as a function of the system size.

We found that small worlds in general never synchro-
nize fastest. Specifically, in networks with fixed average
path length, synchrony is consistently fast for regular
rings, fastest for completely random networks, and slowest
in the intermediate small world regime (Fig. 5). It is an
astonishing result that this holds across various oscillator
types, intrinsic dynamics and coupling schemes: phase os-
cillators coupled via phase differences, higher-dimensional
periodic systems coupled diffusively as well as neural cir-
cuits with inhibitory delayed pulse-coupling.

In particular, small-world topologies are not at all spe-
cial and may synchronize orders of magnitude slower than
completely random networks. So generically the small-
world regime either exhibits slowest synchronization or
just exhibits no extremal properties regarding synchro-
nization times.

Given the variety of the investigated dynamical sys-
tems our results indicate that this is a universal phe-
nomenon.

Our investigations of real-world networks support this
view. Although the considered networks may be in the
small world regime already, rewiring still strongly in-
creases the synchronization speed, even for ensembles with
fixed average path length. It remains an open question
why rewiring typically implies faster synchronization.
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grateful for the hospitality of the Hausdorff Research Institute
for Mathematics in Bonn.

References

1. A. Arenas et al., Phys. Rep. 469, 93 (2008)
2. M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101

(2002)
3. M.G. Earl, S.H. Strogatz, Phys. Rev. E 67, 036204 (2003)
4. M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89, 258701

(2002)
5. J. Travers, S. Milgram, Sociometry 32, 425 (1969)
6. D. Watts, S.H. Strogatz, Nature 393, 440 (1998)
7. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, A

universal concept in nonlinear sciences (Cambridge Univ.
Press, Cambridge, UK, 2001)

8. S.H. Strogatz, Sync: The emerging science of spontaneous
order (Penguin Books, London, UK, 2004)

9. I. Kanter, W. Kinzel, E. Kanter, Europhys. Lett. 57, 141
(2002)

10. Yu. Maistrenko et al., Phys. Rev. Lett. 93, 084102 (2004)
11. T. Netoff et al., J. Neurosci. 24, 8075 (2004)
12. S.H. Strogatz, Nature 410, 268 (2001)
13. T. Nishikawa et al., Phys. Rev. Lett. 91, 014101 (2003)



626 The European Physical Journal B

14. L.M. Pecora, T. Carroll, Phys. Rev. Lett. 80, 2109 (1998)
15. A. Zumdieck et al., Phys. Rev. Lett. 93, 244103 (2004)
16. R. Zillmer et al., Phys. Rev. E 76, 046102 (2007)
17. S. Jahnke, R.-M. Memmesheimer, M. Timme, Phys. Rev.

Lett. 100, 048102 (2008)
18. R. Zillmer, N. Brunel, D. Hansel, Phys. Rev. E 79, 031909

(2009)
19. R. Olfati-Saber, Proceedings of the American Control

Conference (IEEE, Los Alamitos, CA, USA, 2005), p. 2371
20. N. Uchida, Z.F. Mainen, Nature Neurosci. 11, 1224 (2003)
21. S. Thorpe, D. Fize, C. Marlot, Nature 381, 520 (1996)
22. C. Grabow et al., Europhys. Lett. 90, 48002 (2010)
23. M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 92, 074101

(2004)
24. M. Timme, T. Geisel, F. Wolf, Chaos 16, 015108 (2006)
25. M. Timme, Europhys. Lett. 76, 367 (2006)
26. G.X. Qi et al., Phys. Rev. E 77, 056205 (2008)
27. G.X. Qi et al., Europhys. Lett. 82, 38003 (2008)
28. U. Ernst, K. Pawelzik, T. Geisel, Phys. Rev. Lett. 74, 1570

(1995)
29. U. Ernst, K. Pawelzik, T. Geisel, Phys. Rev. E 57, 2150

(1998)
30. M. Denker et al., Phys. Rev. Lett. 92, 074103 (2004)
31. R. Tönjes, N. Masuda, H. Kori, Chaos 20, 033108 (2010)
32. G. Fagiolo, Phys. Rev. E 76, 026107 (2007)
33. J. Acebron et al., Rev. Mod. Phys. 77, 137 (2005)
34. J.A. Almendral, A. Diaz-Guilera, New J. Phys. 9, 1211

(2007)

35. K.S. Fink et al., Phys. Rev. E 61, 5080 (2000)
36. L. Huang et al., Phys. Rev. E 80, 36204 (2009)
37. D.U. Hwang et al., Phys. Rev. Lett. 94, 138701 (2005)
38. L.M. Pecora et al., Chaos 7, 520 (1997)
39. E. Ott, Chaos in Dynamical Systems (Cambridge

University Press, New York, 1993)
40. R. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50, 366

(1990)
41. M. Timme, F. Wolf, T. Geisel, Chaos 13, 377 (2003)
42. M. Timme, F. Wolf, Nonlinearity 21, 1579 (2008)
43. S. Lee, P. Kim, H. Jeong, Phys. Rev. E 73, 016102 (2006)
44. K. Goh et al., Phys. Rev. Lett. 96, 018701 (2006)
45. A. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116

(2005)
46. A. Arenas, A. Diaz-Guilera, C.J. Perez-Vicente, Phys. Rev.

Lett. 96, 114102 (2006)
47. C. Zhou, J. Kurths, Chaos 16, 015104 (2006)
48. L.C. Freeman, Sociometry 40, 35 (1977)
49. V. Colizza, R. Pastor-Satorras, A. Vespignani, Nature 3,

276 (2007)
50. M.A.J. Van Duijn et al., J. Math. Sociol. 27, (2003)
51. T.B. Achacoso, W.S. Yamamoto, AY’s Neuroanatomy of

C. Elegans for Computation (CRC Press, Boca Raton, FL,
1992)

52. R. Cross, A. Parker, The Hidden Power of Social Networks
(Harvard Business School Press, Boston, MA, 2001)

53. D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462
(2006)


	Introduction and overview
	Synchronization time
	Network topology
	Oscillator dynamics on networks
	The synchronization times for several network ensembles
	Real-world networks
	Conclusion
	References

