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Data-driven load profiles and the dynamics of
residential electricity consumption
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Holger Kantz 7 & Marc Timme8,9✉

The dynamics of power consumption constitutes an essential building block for planning and

operating sustainable energy systems. Whereas variations in the dynamics of renewable

energy generation are reasonably well studied, a deeper understanding of the variations in

consumption dynamics is still missing. Here, we analyse highly resolved residential electricity

consumption data of Austrian, German and UK households and propose a generally applic-

able data-driven load model. Specifically, we disentangle the average demand profiles from

the demand fluctuations based purely on time series data. We introduce a stochastic model

to quantitatively capture the highly intermittent demand fluctuations. Thereby, we offer a

better understanding of demand dynamics, in particular its fluctuations, and provide general

tools for disentangling mean demand and fluctuations for any given system, going beyond the

standard load profile (SLP). Our insights on the demand dynamics may support planning and

operating future-compliant (micro) grids in maintaining supply-demand balance.

https://doi.org/10.1038/s41467-022-31942-9 OPEN

1 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, D-14412 Potsdam, Germany. 2 DLR Institute for
Networked Energy Systems, Oldenburg, Germany. 3 School of Mathematical Sciences, Queen Mary University of London, London, UK. 4 Faculty of Science
and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway. 5 Institute for Automation and Applied Informatics, Karlsruhe Institute for
Technology, Karlsruhe, Germany. 6 The Alan Turing Institute, London, UK. 7Max Planck Institute for the Physics of Complex Systems, D-01187
Dresden, Germany. 8 Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical
University of Dresden, 01062 Dresden, Germany. 9 Lakeside Labs, 9020 Klagenfurt am Wörthersee, Austria. 10These authors contributed equally: Mehrnaz
Anvari, Elisavet Proedrou, Benjamin Schäfer. ✉email: anvari@pik-potsdam.de; marc.timme@tu-dresden.de

NATURE COMMUNICATIONS |         (2022) 13:4593 | https://doi.org/10.1038/s41467-022-31942-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31942-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31942-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31942-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31942-9&domain=pdf
http://orcid.org/0000-0001-6643-9508
http://orcid.org/0000-0001-6643-9508
http://orcid.org/0000-0001-6643-9508
http://orcid.org/0000-0001-6643-9508
http://orcid.org/0000-0001-6643-9508
http://orcid.org/0000-0003-3079-0536
http://orcid.org/0000-0003-3079-0536
http://orcid.org/0000-0003-3079-0536
http://orcid.org/0000-0003-3079-0536
http://orcid.org/0000-0003-3079-0536
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0002-4818-6997
http://orcid.org/0000-0002-4818-6997
http://orcid.org/0000-0002-4818-6997
http://orcid.org/0000-0002-4818-6997
http://orcid.org/0000-0002-4818-6997
http://orcid.org/0000-0001-6921-6094
http://orcid.org/0000-0001-6921-6094
http://orcid.org/0000-0001-6921-6094
http://orcid.org/0000-0001-6921-6094
http://orcid.org/0000-0001-6921-6094
mailto:anvari@pik-potsdam.de
mailto:marc.timme@tu-dresden.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


E lectrical energy is an essential part of daily life and is con-
tinuously generated, transmitted, stored and, finally, con-
sumed. Generation and storage of electricity shall match the

dynamic consumption of residential, industrial and other sectors
at all times. To maintain the balance between the electricity
generated by energy providers, and the electricity consumed by
consumers, energy suppliers need to estimate the electricity
required by all consumer sectors on a broad range of time scales
from seconds to days. Estimating the typical variations in the
electricity demand over the course of a day yields a load profile,
which can be attained either through the definition of a metho-
dology to extract a load profile from empirical data, the creation
of a model or a combination of both.

Research aiming at developing load profiles goes back to at
least the 1940s1, however, the issue of finding a precise, high-
resolution load profile is becoming more and more urgent due to
the increase of population, electrical heating systems, electrical
vehicles for transportation, solar home systems as well as the
increasing share of fluctuating renewable energy (RE) feed-in and
the construction of distributed power grids, especially smart grids.
In 1999, the first methodologically systematic German household
load profile, known as the H0 Standard Load Profile (H0 SLP),
was developed2 and has since been in use without alterations in at
least Germany and Austria3, see also Supplementary Note 6 for
translations of these German language references.

We focus here on the residential sector consuming around 29%
of all electricity in the European Union4, and it is expected that its
electricity consumption will considerably increase because of the
electrification of both the transport and the heating system.
Although initially household load profiles used a temporal reso-
lution of around one hour, newer models have a temporal reso-
lution up to and including one second, due to the recent
availability of highly resolved datasets of electricity consumption
and the usage of smart metres in selected houses, see Supple-
mentary Note 1. These new datasets allow the grid operators to
record the electricity consumption of individual houses at high
temporal resolutions. Several previous studies5–7 analysed high
temporal resolution datasets and reported the presence of
extreme and significant peaks in the loads which have not been
reported for datasets with temporal resolutions of 15 min to 1 h.
However, a structured approach to translate these high-resolution
datasets into usable load profiles is not readily available to date.
Therefore, in this work, we first analyse highly resolved electricity
consumption data for groups of houses in Austria, Germany and
the UK. Our data-driven analysis indicates the potential for the
presence of strong fluctuations and high levels of unpredictability
in the distribution grids, see “Complex demand dynamics—the
necessity of new load profiles”. Based on this analysis, we intro-
duce a load model where we disentangle an average load profile
from the fluctuations on top of the baseline. We thereby obtain a
new load profile that is consistent with high-resolution electricity
consumption data.

As mentioned above, one important reason of having a high-
resolution load profile is the increasing share of RE feed-in. In
contrast to electric energy generated from burning fossil fuels, RE
feed-in is weather-dependent, intermittent, and highly
variable8–10. It thus becomes harder to balance supply and
demand. As the share of renewable feed-in is increasing, recent
and current research focuses on gaining a deeper understanding
of the electricity generated by RE as well as advanced approaches
of balancing demand and supply, e.g., by load-shifting11,12. In
contrast, the dynamics of electricity consumption is far from
understood, in particular on the residential level, partially because
electricity consumption data are difficult to obtain.

In this article, we offer a method for (a) extracting a new type
of load model from a given set of consumption data to

disentangle the baseline demand dynamics over the course of a
day (average load profile, ALP) and the fluctuations on top of that
baseline (stochastic fluctuation profile, SFP) and (b) better
understanding the consumer demand dynamics. Taking into
account available microscopic data, the model is capable of
characterising (i) the demand of already moderately sized sets of
consumers with (ii) high temporal resolution and (iii) applicable
to a range of data, including those recorded in the future (and not
restricted to those analysed in this article). Together, these fea-
tures and capabilities go far beyond what the standard load profile
(H0 SLP) offers and our approach is distinct from more recent
complementary approaches since our model does not require
microscopic parameters for consumer behaviour, consumer
appliances, house infrastructures or other features that other
models depend on.

After reviewing the need for a new demand model in more
technical detail (see the section “Complex demand dynamics—
the necessity of new load profiles”), we analyse the electricity
consumption data of Germany, Austrian and UK houses mea-
sured for several weeks. We disentangle the variations in the
consumption dynamics into two main factors, the average load
profile (ALP) and the statistics of short-time fluctuations of the
ALP. First, through the application of the empirical mode
decomposition (EMD)13, we extract the average load profile from
the time series data. This extracted trend captures the demand
much more accurately than the often-used H0 SLP (see the sec-
tion “Demand trend: mode decomposition”). Next, we use
superstatistics to model the fluctuations around this trend into a
stochastic fluctuation profile (SFP). Combining the trend and
fluctuation analysis, we successfully reproduce a synthetic high-
resolution load profile, yielding a full data-driven load profile
(DLP). Our modelling approach readily transfers to use on other
datasets. To facilitate such a transfer, we are providing executable
code (see the section “Demand fluctuations: stochastic model”).
We thereby develop a load profile methodology that is applicable
to existing power grids and datasets, and also provide the tools for
extracting load profiles in different regions and under different
boundary conditions, for instance for microgrids with high shares
of on-site generation or electric cars.

Results
Complex demand dynamics—the necessity for new load pro-
files. Notwithstanding recent advances, energy suppliers still
mostly use the older load profiles, such as the H0 standard load
profile, which only has a 15-min temporal resolution. In Ger-
many, the standard load profile (H0 SLP), was introduced in
1999. Ninety percent of the residential load data used in its
creation were measured in the 1970s or earlier with an hourly
temporal resolution. Only 10% of the measured load data had a
temporal resolution of 15 min. Here, we review some of the recent
advances towards a modern load profile and touch on the per-
sistent need for a generally applicable consumption framework
which we provide in the next sections.

Three well-known model classes exist to describe a household
load profile. Top-down or conditional demand analysis models
are downward models that use the total electricity consumption
estimates of multiple households as well as macro-variables to
model the dynamics of household energy consumption by
generating household load profiles14,15. Bottom-up models use
micro-variables as input, such as the number of active occupants,
the appliances’ energy demand and usage time etc. They also
often use Markov chains to generate household load profiles16,17.
Finally, hybrid models employ a combination of the techniques
used in top-down and bottom-up models to build up a Statistical
Adjusted Engineering (SAE) model18. A detailed analysis of how
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these models have been applied was recently reviewed in ref. 19.
At present, many demand analysis models exist that can generate
daily residential electricity load profiles, see Supplementary
Note 1,1,20 for details. Only a few of these models use a high
temporal resolution of the order of seconds and those require a
lot of micro-parameters, which still leaves us with the need for an
accurate, high-resolution, easy-to-use load profile to be
developed.

A focus on the higher temporal resolution is necessary to fully
understand modern consumption patterns and respond quickly,
for instance the disturbances caused by input fluctuations or
regulatory or trading anomalies21. Recent statistical research on
power consumption (see for example, refs. 6 and 7) demonstrates
that substantial differences exist between the statistical features of
the highly resolved power consumption and consumption on a
15-min time scale. Analysing power consumption on the short
time scale of seconds to one minute reveals extreme consumption
spikes, which are completely ignored in the 15 min load profile6.
In Fig. 1a, b, a comparison of the H0 SLP with the load profiles of
two residential datasets of high temporal resolution, measured in
Germany and Austria is shown. The Austrian dataset was
recorded in 2009–2010 during the ADRES project22. The German
dataset was recorded between 2013 and 2016 during the
NOVAREF project23. In Supplementary Note 2, we report
further on analysis datasets related to 70 households, recorded
in August and September 2019 in Germany during the ENERA
project.

As can be seen in Fig. 1a, b, the averaged single-day load
profiles of both the ADRES and the NOVAREF datasets, strongly
deviate from the H0 SLP. Specifically, the trend (mean) of the
load profile of the measured data is not well described by the H0
SLP and the fluctuations on short times scales are significant (see

“Demand trend: mode decomposition”). Furthermore, the
analysis of the statistics of the highly resolved power consumption
reveals the presence of non-Gaussian, intermittent and asym-
metric fluctuations, which need to be taken into account when
designing demand side management and control mechanisms, see
“Demand fluctuations: stochastic model” and Supplementary
Note 4.

As Fig. 1a, b illustrates, the H0 SLP data clearly deviates from
the consumption pattern indicated by the NOVAREF and
ADRES data. There are three main reasons for that. First, due
missing input of microscopic data, the H0 SLP is hardly capable
of accurately capturing the electricity consumption. Second, the
H0 SLP is based on data that were measured mostly in the 1960s
and 1970s with a small fraction measured towards the end of the
1990s. Since then electricity consumption behaviours and devices
have changed drastically. Third, moderate numbers of consumers
(e.g., a group of 12 houses considered in this work) do
not typically align with an overall average for a larger group of
consumers (that might produce a result whose consumption
pattern might be closer to the H0 SLP).

Some of the observed stochastic properties could be explained
by the increased usage of new power generation and new
consumption devices, for instance rooftop photovoltaic panels
(PVs) and electronic devices such as electrical heating systems,
smartphones, tablets, robot vacuum cleaners, electric vehicles
etc.24. The usage of such devices will influence and alter the load
dynamics and in particular its time-dependent average—the load
profile. As shown in Fig. 1c, d, the consumption can even reach
negative values if houses are directly connected to local RE
resources25. However, these negative values are less or even reach
zero during the winter time because of the reduction of the PV, or
the usage of electrical heating. Local fluctuations in solar and

Fig. 1 Systematic, asymmetric and intermittent deviations of empirical power consumption dynamics and German standard load profile (H0 SLP).
a We compare the H0 SLP with the averaged real consumption data of a single day in winter for the NOVAREF project, the German dataset recorded
between 2013 and 2016 including 12 houses, and ADRES project, the Austrian dataset recorded between 2009 and 2010, including 30 houses. The
averaged real consumption data are created by taking the recorded electricity consumption of all houses in the measured time interval and, then, evaluating
PavgðtÞ ¼ 1

N∑
N
i Phi ðtÞ, where Phi is the measured electricity consumption of each house and N is the number of houses, which is respectively 12 and 30 for

the NOVAREF and ADRES data. All three datasets were upsampled to a sampling rate of 2 s (0.5 Hz). The H0 SLP not only fails to capture the correct daily
trend, but we also observe large fluctuations of the consumption at short time scales. b Shows the same datasets at 15-min resolution to emulate the
temporal resolution that was used to generate the H0 SLP. Here the failure of the H0 SLP to capture the correct daily trend is even more pronounced.
c, d show respectively the recorded household power consumption in winter (January 1, 2017) and summer (June 30, 2017) with and without photovoltaics
as well as the electricity generated by the PV module installed on the roof of a house at a sampling rate of one minute (PV data source:70). Note the
smaller spikes visible in panels (a, b) because the data is averaged over 12 and 30 houses, respectively, for NOVAREF and ADRES, while in panel c and
d only a single household is shown.
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wind generation may further lead to coincident load profile
spikes, both positive and negative. Therefore, precisely analysing
and modelling the power consumption of households on a short
time scale is essential to ensure the stability of distributed grids.
In addition to installing more on-site generations in the
residential sector, replacing fossil-fuelled cars with electric ones,
which are charged using household electricity, results in changes
in the shape of the load profile of the households, especially when
organising consumers in microgrids26, see also Supplementary
Note 2. Since we expect an increasing number of such electrical
cars, as well as an increasing penetration of strongly fluctuating
RE generating electricity, a new data-driven load profile based on
modern and highly resolved measurements is urgently needed.

As mentioned above, extreme consumption spikes are
completely ignored in the 15 min load profile as they are
averaged out. However, these spikes are of particular importance
to lower voltage distribution grids, where coincident consumption
can dominate the consumption patterns locally or on a country
scale, due to e.g., synchronised activity during major (e.g., sports)
events, such as TV pickup in Britain27 as well as German and U.S.
power system frequency variation, respectively, during the 2010
World Cup semi-final game and Super Bowl28,29. A well-known
simple measure to quantify the coincident electricity consump-
tion between households and moreover to see how this
coincidence depends on the number of households is the
diversity factor between households30. To determine the diversity
factor between households, we first evaluate the maximum
coincident demand, Pcd and non-coincident demand, Pncd,
respectively in 15 min and 1-day time windows. For this purpose,
we sum the maximum power demand of all houses every 15 min
and then divide the Pcd with the sum of the maximum power
demand of all houses over the course of a day, i.e., Pncd.

The diversity factor varies from zero to one, where zero
indicates no coincident electricity consumption between house-
holds, while a diversity factor equal to one shows strong
coincidence. As an example, the diversity factor of the ADRES
dataset, sampled every 15 min for 14 days, is shown Fig. 2a. To
clearly indicate the interaction between houses during a day, (i)
the energy consumption trajectory of all 30 households (in grey);

(ii) the maximum coincident demand (in red) and (iii) the non-
coincident demand (in purple) between 6:00 to 6:15 (Fig. 2b) and
11:30 to 11:45 (Fig. 2c) for day 13 are shown in Fig. 2b, c.

Looking at the households trajectories, it is clear that the
energy consumption of all houses is low at the beginning of the
day and then it is gradually increasing until around 11:00. Thus,
the value of the diversity factor, which is the ratio between
coincident demand (Pcd), and the non-coincident demand (Pncd)
increases during daytime. This proves the interaction between the
demand of the households during the day and is the reason why
the significant spikes in average energy consumption do not
disappear after averaging.

To show the relationship between the value of the diversity
factor and the number of households, we calculate the diversity
factor for the NOVAREF and ENERA datasets, which are
composed of 12 and 70 households, respectively, in Supplemen-
tary Note 2. Our results demonstrate that the values of the
diversity factor are not zero during a day, even for the 70 ENERA
houses and for some time intervals the diversity factor ranges
between 0.3 and 0.4 or even larger (maximum 0.6). This indicates
that regardless of the number of houses coincident demand will
take place during certain time intervals (e.g., lunch and dinner
time) and spikes during that time will not be averaged out. This
will result in a spiky load profile, such as the single-day averaged
ENERA load profile, see also Supplementary Note 1.

In the next sections, we introduce a generally applicable
methodology for creating residential load profiles and demon-
strate its applicability through comparisons with power con-
sumption datasets measured in Germany and Austria, as well as
the industry standard load profile. In the next section (“Demand
trend: mode decomposition”), we present a methodology to
extract the averaged load profile (ALP).

Demand trend: mode decomposition. In this section, we present
a methodology with which the Averaged Load Profile (ALP) from
high temporal resolution datasets is extracted, and the load profile
of a full week is created. The latter explicitly takes into con-
sideration not only the differences existing between workdays and

 

Fig. 2 Indicating the interaction between households' energy consumption by considering the diversity factor. a shows the diversity factor or the ratio
between coincident demand, Pcd, and non-coincident demand, Pncd, of 30 households belonging to the ADRES dataset every 15 min and for 14 days. As it is
clear, there are some time intervals during a day whose diversity factor reaches 0.6. b, c respectively show the energy consumption trajectory of all 30
households from 6:00 to 6:15 and 11:30 to 11:45. It is clear from the figures that the energy consumption of all houses is low around 6:00 and then is
gradually increasing together around 11:00 and, consequently the difference between Pcd and Pncd is decreasing proving the obvious interaction between
houses consuming the electricity.
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weekends as much as the H0 SLP does, but also the differences
between different weekdays unlike the H0 SLP. The main
advantage of the ALP compared to the H0 SLP is that it only
requires a few weeks of high-resolution measured data and can,
therefore, be applied to both small neighbourhoods and whole
cities. Furthermore, its only input is the electricity consumption
of the houses, unlike most existing models, which reply on
numerous micro- or macroscopic parameters. As a result, it can
easily be used to analyse both present and future residential
power systems, which might include new technologies and
devices (see also Supplementary Note 5 for applications on a
different time of the year and a different dataset).

Due to the high temporal resolution of the datasets we use, the
extracted ALP has a higher level of accuracy than the H0 SLP. It is,
therefore, a good alternative to be used instead of the H0 SLP and
could provide better and more accurate results, especially when
investigating or operating microgrids (a detailed discussion on the
subject can be found in “Discussion”). In its present form, the ALP
can capture the weekly trend of the load profile of a group of
houses (anywhere from 12 to 70 houses have been tested).

To produce the ALP, we first extract the consumption trend
from four consecutive weeks (or seven consecutive weekdays or
weekends) from high-resolution electricity consumption data
measurements, as explained in Supplementary Notes 3 and 5.

In this section, we present our results for the NOVAREF
dataset (temporal resolution= 2 s).

The methodology we use to determine the ALP is the following,
and it is illustrated in Fig. 3. Using the Empirical Mode
Decomposition (EMD)13, we split the dataset into multiple modes
and, thereby, separate the long-term trends (high-number modes)
from the short-term fluctuations (low-number modes). Since the
EMD extracts all signals present in the data, the original dataset can
be recreated 1-to-1 without any loss of information by summing up
all the modes. Next, the data is split into training, validation and test
datasets. The training data is used to generate the load trend by
summing a certain number of long-term trend modes. During the
validation step, the optimal required number of modes is determined
to avoid both under- and overfitting. Finally, the extracted ALP is
used to compute a test error from the test set, using the optimal
number of modes obtained from the previous step. A detailed
discussion of the adaptive time-frequency data analysis via the EMD
can be found in “Methods”, Supplementary Note 3 and in a recent
paper applying EMD in a stochastic context31.

Before training, we apply the EMD method on the entire
dataset and, thereby, extract 17 individual and independent
modes. We then divide these modes into two categories: (a) high-
frequency; and (b) low-frequency modes. The high-frequency
modes contain information on the stochastic consumption
fluctuations (see “Demand fluctuations: stochastic model”), while
the low-frequency modes are almost free of stochastic fluctuations
and are instead dominated by deterministic effects. To begin the
training step, we first choose 4 chronologically consecutive weeks
of the measured NOVAREF dataset containing no data gaps, i.e.,
01.07–01.14, 01.14–01.21, 02.04–02.11, 02.11–02.18, which were
recorded during the winter time between 2013 and 2016. These
4 weeks are the training set. Then, we calculate the average of
these four weekly consumption data and, correspondingly, we
average the last N low-frequency modes of these weeks.

In order to get the best performing ALP, we must determine
the optimal number of modes N, i.e., Noptimal, from the validation
set. If we sum too few modes, the extracted ALP fails to track the
high-resolution consumption better than the H0 SLP. In contrast,
if we sum too many modes it will overfit the dataset and lead later
to an inaccurate consumption trend for the test set. To determine
the Noptimal and quantify the performance of the optimised ALP,
we use the mean-squared error (MSE) on the validation set,

which consists of 9 randomly chosen weeks of the data measured
during winter time (see “Methods” for details on MSE and the
Supplementary Note 5 for a discussion of a different error metric,
i.e., MAE). We must stress here that we used 9 weeks of data
because these were the data that were available to us. For the
purpose of applying this method on other, shorter, datasets only
one additional week of data sound suffice to determine the
optimum ALP.

The results of the above analysis determine that Noptimal ≈ 6. . . 8
for the NOVAREF validation dataset (see the optimal result in
Fig. 3b). As seen in Fig. 3b, even for values of 8 <N < 12, the
generated ALP outperforms the H0 SLP in terms of demand
prediction. Consequently, the ALP determines the daily and weekly
electricity consumption trend of the 12 NOVAREF households
much more accurately compared to the H0 SLP. However, as
mentioned before, for N >Noptimal, the ALP overfits the data, and
hence later gives an inaccurate results for the test set.

Finally, we use 4 randomly chosen winter weeks to test the
extracted ALP. We find that the ALP outperforms the H0 SLP
when the Noptimal is chosen, as is evident from its lower average
value of MSE, which is reported in the text above the graph in
Fig. 3c. It should be noted that the ALP does not perform as well
for the smaller or larger number of modes. Figure 3c shows the
results for a single day of a week of the test set. We continue the
evaluation of the ALP performance in the next section, i.e.,
“Demand fluctuations: stochastic model”.

Here, we focus on the analysis of the NOVAREF dataset. We
determined the optimum ALP for the winter weeks by training it
and determining the related Noptimal. In addition, we investigate
the seasonality of the data in more detail in Supplementary
Note 5. In particular, we demonstrate that the optimum ALP for
the summer weeks still follows the demand trend visible in the
winter weeks, and outperforms the H0 SLP in the winter season.
We show also the applicability of our methodology by applying it
on a UK household dataset in Supplementary Note 5.

The hereby introduced ALP has several major advantages
compared to both the H0 SLP and the available demand models.
Firstly, it is data-driven and is based on modern, high temporal
resolution (2 s) measurements, whereas the H0 SLP is based mostly
on hourly resolution data measured before 1999, with a small subset
of 15-min resolution data measured between 1990 and 19992.
Secondly, because only four chronologically consecutive weeks of
data are necessary to generate the weekly ALP, and only a few
additional weeks of data are necessary to determine and validate the
Noptimal, it can be used to extract the averaged load profile of both
small and large groups of houses and does not need the plethora of
the micro-and-macro-parameters that presently available demand
models require. Note that here, we introduce a methodology with
which the baseline demand dynamics over the course of a day can be
determined from a measured electricity consumption. In “Demand
fluctuations: stochastic model”, a stochastic model to generate the
stochastic fluctuations on top of this baseline is presented.

Demand fluctuations: stochastic model. Having extracted the
predominantly deterministic trend of consumption, we now turn
to the stochastic fluctuations around this trend. Specifically, we
split the power consumption into trend P(trend) and fluctuations
P(fluc.):

P ¼ PðtrendÞ tð Þ þ Pðfluc:Þ tð Þ: ð1Þ

First, we investigate the statistical properties of these consump-
tion fluctuations. Analysing the histograms, we notice that the
fluctuations are skewed, i.e., asymmetric, and heavy-tailed, so
large deviations are much more likely than if they were char-
acterised by a simple Gaussian distribution, see Fig. 4.
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Next, we construct a stochastic model, which describes the
observed consumption fluctuation statistics by applying super-
statistics methods21,32–35: Dividing the full trajectory into several
shorter trajectories allows us to characterise each local distribu-
tion with a simpler distribution, such as a Gaussian or an
exponential distribution. In the case of consumption fluctuations,
the fluctuations within each time window of approximately
T ≈ 2000 s follow a distinct Maxwell–Boltzmann distribution, see
Fig. 5. See Supplementary Note 4 for details on the superstatistical
procedure, as well as the evaluation of this long-time scale T (see
also Supplementary Fig. 13). Each local Maxwell–Boltzmann
distribution has its distinct scale parameter σMB and offset from
zero μMB. When we now move our analysis from one local
distribution to the next one, we observe a slow time dynamics of
these Maxwell–Boltzmann parameters σMB and μMB and thereby a

time dynamics of the local Maxwell–Boltzmann distribution itself.
Superimposing these time-varying local distributions, we re-
obtain the full aggregated statistics as approximately a q-
Maxwell–Boltzmann distribution, see Fig. 4.

Mathematically, we formulate stochastic equations of motion
for the fluctuations leading to local Maxwell–Boltzmann
distributions as follows: We define auxiliary variables xi, with
i ∈ {1, 2, . . . , J}, each following a simple Ornstein-Uhlenbeck
process, based on independent Wiener processes Wi:

dxi tð Þ ¼ �γxi tð Þdt þ ϵdWi; ð2Þ

with damping γ and fluctuations amplitude ϵ. Hence, the xi are
identical but independently distributed Gaussian random variables
with a mean 0 and standard deviation σ ¼ ϵffiffiffiffi

2γ
p . Then, the demand

Fig. 3 Training and validation are used to compute the optimal number of modes, avoiding over- and underfitting. The full dataset is split into training,
validation and test datasets (shown at the top of the Figure). a Using the EMD, we decompose the training set into its empirical modes. b Next, the
validation set is used to optimise the number of modes, avoiding both under- and overfitting. Including too many modes overfits the data but yields poor
results on the test datasets. Vice versa, a model with too few modes underfits the data and fails to capture its main trend. Hence, we systematically
determine the optimal number of modes by minimising the mean-squared error (MSE). c Finally, using the Noptimal, we extract ALP for the test set.
Computing the MSE of the ALP obtained for each week demonstrates that the ALP performs better than the H0 SLP, since it tracks the measured energy
consumption more closely compared to the H0 SLP. As shown in panel (c), the average value of the MSE ALP for all weeks is lower than that of the MSE
H0 SLP. For the purpose of clarity only a single day is shown here (28.05), see also Supplementary Note 5.
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fluctuations P(fluc.) are obtained by aggregating these Gaussian
distributions and applying the observed shift from zero μMB:

Pðfluc:Þ tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðtÞ
� �2 þ x2ðtÞ

� �2 þ :::þ xJ ðtÞ
� �2q

þ μMB: ð3Þ

As is known from statistical physics36, choosing J= 3 yields exactly
Maxwell–Boltzmann distributions in the probability density p:

p Pðfluc:Þ� � ¼ 1
σ3MB

ffiffiffi
2
π

r
Pðfluc:Þ � μMB

� �2
exp � Pðfluc:Þ � μMB

� �2
2σ2MB

" #
;

ð4Þ
where the shape parameter σMB of the local Maxwell–Boltzmann
distribution is identical to the standard deviation of the
independent Gaussian variables σMB= σ. We do consider cases
of J ≠ 3 in Supplementary Note 4 and find that J= 3 is the best fit
to the data. Indeed, the approach of three independent Gaussian

variables is very convenient for computational application.
Alternative modelling approaches using a mathematically simple
1-D process would require more complex dynamics.

In applying the superstatistical approach, we implicitly
assumed separation of time scales. Here, we have the long-time
scale, on which we locally observe Maxwell–Boltzmann distribu-
tions of the power fluctuations of T ≈ 2000 s (Fig. 5). Further-
more, we estimate the short time scale, on which each local
distribution relaxes to its equilibrium, based on the autocorrela-
tion decay of the data as τ= 1/γ ≈ 300. . . 400 s, see also
Supplementary Note 4. Comparing these two time scales, we
observe a clear time separation between long-time scales T and
short time scales τ, which differ by a factor of 20. Hence, each
local Maxwell–Boltzmann distribution relaxes much faster
towards its equilibrium (with rate 1/τ= γ) than the overall
process changes towards a new Maxwell–Boltzmann distribution
(which happens with a rate of 1/T).
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Fig. 4 The intermittent characteristic of power consumption fluctuations. a The total power consumption P is a sum of the trend consumption Ptrend,
obtained by the EMD method described in the previous section and fluctuations Pfluc.. We record the difference between trend and real demand as the
fluctuation trajectory. For the purpose of clarity only a single day is shown here. b The probability density function (PDF) of the consumption fluctuation
does not follow a Gaussian distribution but is better described by a q-Maxwell–Boltzmann distribution, especially on the right flank. The histogram uses the
whole NOVAREF dataset. Alongside the Gaussian, we show a stable and Maxwell–Boltzmann (MB) distribution. The q-Maxwell–Boltzmann parameters are
determined by the methods of moments. See also Supplementary Note 4 for further details.

Fig. 5 Local Maxwell–Boltzmann distributions of power demand fluctuations. a Using only the high-frequency modes from the empirical mode
decomposition (EMD), we plot the consumption fluctuations P(fluct.) over time. b, c Using superstatistical methods32, 33, we find a long-time scale
T≈ 2000 s, see also Supplementary Note 4. On this local time scale T, we observe local Maxwell–Boltzmann distributions, which can be very narrow (b) or
broad (c). The histograms contain only 1000 (length of T, given a 2 s resolution) data points of P(fluct.) as local snapshots and we plot MB fits as references.
In addition to the PDF, we compare the cumulative probability functions (CDF) of MB distribution with the data in the inset. All plots use the NOVAREF
data from a test set in April. The time period and day are chosen for illustration purposes only.
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Finally, we combine the EMD-based trend of the demand with
the stochastic fluctuation model, obtaining a data-driven load
profile (DLP) and, then, compare it to the original NOVAREF
consumption data. The model enables us to make some rough
general predictions for the near future connected to these training
weeks. Long-term forecasting is outside our scope as there is
insufficient data available. We notice that while the precise
trajectories are not identical (by construction), the stochastic
properties align very well with drastically reduced error compared
to the standard H0 SLP model (see Fig. 6). In “Methods”, we
provide a link to the software and pseudo-code to generate these
kinds of trajectories for other demand regions and datasets.

Discussion
Summarising, we have shown that modern residential electricity
load profiles strongly differ from the H0 standard load profile (H0
SLP), which is widely used in the industry. We set out to replace
or supplement the existing standard load profile and obtained
three main results: First, using the empirical mode decomposition
(EMD), we develop a model to extract baseline demand dynamics
(ALP) over the course of a day. Second, using superstatistics, we
identify characteristics of short-time fluctuations around this
baseline and, hence, we developed a simple stochastic fluctuation
profile (SFP) to describe the non-Gaussian fluctuations of the
demand around the trend. Finally, combining both trend and
fluctuations yields a full data-driven load profile (DLP).

Hereby, the introduced model specifies a typical range of power
consumption at a given time of a day and allows us to study the
variation of probabilities of certain extreme power consumption
events. Knowledge of the expected demand is critical for energy
providers to calculate how much power is needed by each
household within a given time period. Simultaneously, knowledge
of how much the demand might fluctuate around this trend is
also essential, to have sufficient balancing and backup power at
hand. According to the Bundesverband der Energie- und Was-
serwirtschaft e. V. (BDEW) (German Association of Energy and

Water Industries)2, the electricity load of a household can be
expected to deviate between 10 and 20% at any given time. Our
fluctuation model provides a better quantitative estimate for these
fluctuations to avoid an overestimation of the demand and too
much usage of expensive quickly dispatchable generation37. On
the other hand, we have to prevent an underestimation of the
demand as this could easily lead to a collapse of the system.

Another strong point of our modelling approach is its flex-
ibility and broad applicability: We do not present a fixed load
profile but a methodology to extract trend (ALP) and fluctuations
(SFP) for any present or future power system. This data-driven
approach can be applied to different consumer groups, regions or
even continents without requiring external or microscopic
knowledge. Almost all alternative models require a lot of micro-
parameters or fine-grain measurements to achieve the load pro-
file, such as the Markovian model and Hidden Markov Model
introduced respectively in refs. 38 and 39. It is worth to mention
that our model is distinct from most machine learning models, as
they: (i) Typically require huge training datasets and aim for
pattern prediction of data outside the training set and moreover;
(ii) do not contribute to the insights our approach offers, e.g., in
terms of baseline vs fluctuations (and their relevant time scales).
As such our approach is complementary to existing approaches
employing machine learning. Maybe even more importantly, the
extracted profiles can easily be updated based on recent devel-
opments in consumption, e.g., due to additional PV installation
or adaptation of electrical cars. Similarly, new load profiles can be
created for newly built micro or smart grids40 or, even existing
grids, such as UK. Many existing grids suffer from network
congestion and, therefore, either require network reinforcements
or operators need to utilise the flexibility of domestic loads to
relieve grid load. We demonstrate how our approach is applied to
a different group of households located in UK in Supplementary
Note 5.

The H0 SLP focused mainly on the time scale of 15 min and
reports much smaller fluctuations than our new load profiles.
How can we explain this? First, we note that the H0 SLP used

Fig. 6 Synthetic power demand in agreement with empirical data. a We display a brief trajectory of the real (blue), H0 SLP (black) and the new ALP
(orange). The ALP curve overall keeps closer to the real consumption values than the H0 SLP does. b The histogram of the power mismatch
ΔP= ∣P(real)− P(model)∣ shows higher deviations of the demand for the H0 SLP compared to the ALP. We also report the mean-squared error (MSE) of
the H0 SLP and the ALP. c Combining the trend extraction via EMD to obtain the ALP and the superstatistical model for demand fluctuations (DLP)
approximates the real consumption histogram very well, in particular for large consumption values. All trajectories use the same time stamps, starting
15 min past midnight on 15th of April of the NOVAREF data from test set. The histograms return almost identical results for other weeks.
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older data, with a temporal resolution much lower than the 1 s of
our data sources. More relevant is however the power system
perspective: Generation and demand are scheduled for fixed time
intervals, such as 15 min and all fluctuations and deviations
within each interval are taken care by control mechanisms41. This
view also emphasises the role of the high-voltage transmission
grid where some demand fluctuations, which we observe on the
distribution grid, might not occur. Our temporally highly
resolved model and focus on the distribution grid become
increasingly relevant: Conventional generators and their stabilis-
ing inertia are removed from the grid and renewable generators
are often directly coupled with households. Hence, the balance of
supply and demand has to be present also on the distribution
level and on an increasingly fast time scale. Consistently, high-
resolution datasets, such as the now-published NOVAREF data
are becoming even more important. Any future model, forecast or
simulation relies on updated and high-resolution data, even more
so when applying data-driven approaches42 or machine
learning43. If no such data are available, any prediction will have
an increasing error. Both households and the increasing share of
renewables introduce fluctuations and without updated highly
resolved data, we would face increasing uncertainties on both the
expected demand and generation. These uncertainties would
likely affect energy prices as well, making them more volatile as
predictions of the power balance become less accurate. Finally, we
note that not only do both households and renewables introduce
fluctuations in the distribution power grid but their fluctuations
share similarities. In particular, the heavy tails of consumption
fluctuations and its slowly decreasing power spectrum are also
observed in renewable generation10.

Our model is also especially useful in the case of microgrids
which are often powered either partially or fully by renewable
resources combined with smart metres. One such renewable
resource is photovoltaic panels, which can be installed on rooftops,
gardens44, walls45, walkways46 and over roads47. Two more
examples are small vertical wind turbines48 and bladeless wind
turbines49, both of which can be mounted on any flat, sturdy
surface. They are very well suited for use in residential areas due to
their small size and low noise output, especially the newer designs
such as Flower Tulips50 and the Vortex Bladeless Turbine49. These
renewable energy sources can be utilised not only by households51

but also by farms, small and large businesses52 as well as
industries53 since they only require a sturdy flat surface and can be
used in a stand-alone more or in combination with one
another54,55, and allow them to go partially or entirely off-grid.

In the past, small autonomous grids were comprised mainly of
remote, usually rural villages or households powered by fossil fuel
generators. In recent years, the concept has been reconfigured to
help overcome the challenges of integrating intermittent renew-
able energy production with the main energy grid56,57 as well as
provide electricity to populations in both remote, island58 and
urban regions as well as business parks, industrial parks and
resorts59 while replacing fossil fuels with renewable resources, in
both developed59 and developing countries60,61. Such grids,
however, always face the problem of matching the intermittent
energy generation with the, as we have shown in “Complex
demand dynamics—the necessity of new load profiles”, also the
intermittent power consumption of the households that
comprise them.

A task that is made harder by the fact that many microgrids are
composed of less than the 332 households that the H0 SLP
assumes. As shown in “Complex demand dynamics—the neces-
sity of new load profiles” and “Demand trend: mode decom-
position”, the consumption behaviour of a small number of
houses deviates significantly from the H0 SLP and displays a
strong stochastic component. Which technologies can be used to

achieve a successful balancing between the generation and
consumption56,62, which protection schemes63 and control sys-
tems can be used to ensure the stable and secure operation of
these grids64–66 and even more scheduling and operation
issues57,67,68 are all active areas of research.

Furthermore, our model could allow the administrators of an
autonomous or semi-autonomous micro-grid equipped with
smart metres to use the collected data to create a general rough
prediction of the electricity consumption of the microgrids units
in the following weeks and take the appropriate measures to
ensure a continuous stable operation, e.g., by ensuring enough
balancing power is available. At present, the H0 SLP, which does
not differentiate between the electricity consumption of a handful
of houses and a small city, makes this impossible. Because our
approach is entirely dependent on data with no prior assumptions
being made, it could theoretically be used to extract the averaged
load profile not only of households but also of small or large-scale
of industry or, even, full countries. The current lack of freely
available data makes this a task for the future. For example, we
wish to apply our model on consumption data of other regions,
and compare it to the local equivalent of the H0 SLP. Regions like
Canada, where a large number of smart metres are already
installed, are particularly promising. While we focused here on
household demand, the presented methods should also be
applicable to extract the demand trend and fluctuations of
industry consumption or combinations of very different con-
sumers. Furthermore, the fluctuation modelling could be exten-
ded to include longer-term correlations or match the precise
increments in the observed datasets. This would move the study
of consumption fluctuations closer to the well-researched state of
fluctuations in renewable generation. Given sufficient high-
resolution data in the future, other data-driven methods, such
as recurrent neural networks, weighted-nearest-neighbour pre-
dictors or multilayer perceptrons could be trained on such data.
These methods typically require constant data input, while our
ALP provides a semi-static prediction. All data used here were
taken prior to the COVID-19 pandemic, during which the time
people spent at home typically increased substantially. How
demand patterns might have changed due to COVID-19 and how
well our framework could still capture the dynamics remains an
interesting question for future research.

Methods
EMD. The Empirical mode decomposition (EMD) is a well-known method used
for nonlinear, non-stationary datasets. It decomposes the data into a finite number
of intrinsic mode functions based on the local properties of the data. Therefore, this
method is not restricted to linear or stationary time series, as is the case with other
methods, such as Fourier spectral analysis. To determine the empirical mode
functions, one applies the following steps on a dataset: (1) first the envelope of both
local maxima and minima in a dataset are defined separately. For instance, all local
maxima are connected by cubic spline lines for the upper envelope and then the
same procedure is repeated for the lower envelope. Consequently, all data are
confined between upper and lower envelopes. It is worth mentioning that in this
method there is no need for the data to have zero crossings, therefore all values can
be just positive or negative. (2) Defining the upper and lower envelopes, their mean
value, m1 has to be calculated and then subtracted from the original data, i.e.,
X(t)−m1= h1, where X(t) is the original data and h1 is called the first component.
(3) In the next step, the first component, h1 is converted to the intrinsic mode
function (IMF), i.e., h1 should have the same number of extrema and zero crossings
plus the symmetry of upper and lower envelops around zero (for details, see ref. 13).
After finding the IMF, c1, we subtract it from the original data: X(t)− c1= r1. This
c1 is the first mode and contains the shortest period of the original data X(t). (4)
Steps (1)–(3) are repeated until rn becomes a monotonic function, and it becomes
impossible to define any envelop for that. If we sum up all IMFs and the residue, we
reproduce again the original data, i.e.

XðtÞ ¼ ∑
n

i¼1
ci þ rn; ð5Þ

Consequently, we can obtain all the intrinsic oscillation modes of the dataset
with the EMD method.
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Trend extraction. In this section, we present the adaptive time-frequency data
analysis we used to determine the ALP. It is based on a normalised version of the
one-step prediction mean-squared error (MSE)69 of an estimator.

In order to generate the ALP, we separate firstly four chronologically
consecutive weeks of high-resolution electricity consumption dataset with no data
gaps as the training set. In this case, weeks 01.07–01.14, 01.14–01.21, 02.04–02.11,
02.11–04.18 of the NOVAREF dataset, which were recorded between 2013 and
2016. For accurate and meaningful results we must use data from the same group
of houses whose demand trend is to be determined. The first step in this process is
calculating the average of the 4 weeks of data:

EmeanðtÞ ¼
1
4
∑
4

i¼1
EiðtÞ ð6Þ

where Ei(t) is the electricity consumption of each week and i is the number of weeks
used in the calculation (i= 4). Four weeks are the approximate maximum number
of weeks such that by averaging them, the significant spikes occurring during a day
will not be missed. Substantially beyond 4 weeks, the extreme values will have been
removed by the averaging and adding extra weeks will not make a difference.

For the next step, we apply the EMD on the averaged weekly electricity demand
profile Emean. In the case of the NOVAREF data, 17 individual and independent modes
are extracted. Finally to calculate the ALP, we sum the last N low-frequency modes.

ALP ¼ ∑
N

i¼1
Miþs ð7Þ

where M1+s is the highest-frequency mode still to be included. In the case of the
NOVAREF data, we can have, as an example, N= 8 and s= 9, hence all modes from
i+ s= 10 up to i+ s= 17 are summed up to obtain the ALP.

To determine the optimal number of low modes, i.e. Noptimal, to sum and
quantify the performance of the optimised ALP, we apply the mean-squared error
(MSE) on the validation set. The MSE measures the average squared difference
between the estimated values and the actual values69 and we calculate it as follows:

MSE ¼ 1
L
∑
L

i¼1
½PðALP; tiÞ � Pðmeasurement; tiÞ�2 ð8Þ

where P(ALP, ti) is the ALP obtained from summing up the certain N modes in the
training set, P(measurement, ti) is the measured consumption time series belonging
to the validation set. ti is the time in seconds, 0 < i < L and L is the length of data
used to normalise the ALP. For the NOVAREF dataset L is 7 days of data in 2 s
increments.

The MSE is calculated for both the ALP (MSEALP) and the H0 SLP (MSEH0SLP)
and compared (see Fig. 3 in “Demand trend: mode decomposition”). The
comparison reveals that:

MSEALP < MSEH0SLP ð9Þ
for 5 <N < 12. Regardless of the number of modes summed to create the ALP there
is always a minimum which fulfils the MSEALP <MSEH0SLP condition (see Fig. 3b).
This minimum gives the optimal number of low modes, i.e., Noptimal, that must be
summed to create the optimal ALP for a given set of chronologically consecutive
4 weeks. This minimum varies with the set of weeks used, though for the
NOVAREF dataset Noptimal= 7 for the majority of the weeks investigated. A more
detailed analysis of the model training, validation and test datasets used, can be
found in Supplementary Note 3.

The non-randomness of our results was also verified by calculating the fraction
of the MESALP and the MSEH0SLP

MSEfraction ¼ MSEALP

MSEH0SLP
ð10Þ

for the N ≈Noptimal, MSEfraction < 1.

Data availability
The ADRES household consumption data were provided by the TU Wien and are available
for research purposes upon request https://www.ea.tuwien.ac.at/projects/adres_concept/EN/.
The IDEAL household dataset is available in https://datashare.ed.ac.uk/handle/10283/3647?
show=full. The ENERA household consumption data that support the findings of this study
were made available by the DLR Institute for Networked Energy Systems and the EWE,
respectively. Restrictions apply to their availability as they were used under license for the
current study, and so are not publicly available. The data are, however, available from the
authors upon reasonable request and with permission of the DLR Institute for Networked
Energy Systems and the EWE. The NOVAREF and IDEAL household consumption data
that support the findings of this study are available at https://osf.io/yu2dm/?view_only=
685370675ca145eb88234031158fc32c for download under the CC-BY-4.0 license.

Code availability
The code used to calculate the EMD, the ALP and the stochastic fluctuation analysis and
generation is available for download on the OSF: https://osf.io/yu2dm/?view_only=
685370675ca145eb88234031158fc32c, under the CC-BY-4.0 license.
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