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Scrubbing Mechanism for Heterogeneous Applications
in Reconfigurable Devices
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Commercial off-the-shelf (COTS) reconfigurable devices have been recognized as one of the most suitable
processing devices to be applied in nano-satellites, since they can satisfy and combine their most impor-
tant requirements, namely processing performance, reconfigurability, and low cost. However, COTS recon-
figurable devices, in particular Static-RAM Field Programmable Gate Arrays, can be affected by cosmic
radiation, compromising the overall nano-satellite reliability. Scrubbing has been proposed as a mechanism
to repair faults in configuration memory. However, the current scrubbing mechanisms are predominantly
static, unable to adapt to heterogeneous applications and their runtime variations. In this article, a dy-
namically adaptive scrubbing mechanism is proposed. Through a window-based scrubbing scheduling, this
mechanism adapts the scrubbing process to heterogeneous applications (composed of periodic/sporadic and
streaming/DSP (Digital Signal Processing) tasks), as well as their reconfigurations and modifications at
runtime. Conducted simulation experiments show the feasibility and the efficiency of the proposed solution
in terms of system reliability metric and memory overhead.
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1. INTRODUCTION

Nano-satellites have been gaining significant importance in space missions, since tra-
ditional satellites are expensive to launch. They are lighter (usually under 10kg) and
are small in size. This enables the use of smaller and more efficient launch vehicles,
thereby reducing the launch costs. Nano-satellites have empowered smaller countries
and research institutes to explore and obtain data from space, leading to a reduction in
the development and production costs. For instance, the use of commercial off-the-shelf
(COTS) devices and associated tools allow faster development and a lower price due to
economy of scale.
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Fig. 1. Motivation example.

Following this trend, COTS Static-RAM (SRAM)-based Field Programmable Gate
Arrays (FPGAs) have been significantly used in space environments [Bolchini and
Sandionigi 2014; Siegle et al. 2015], since they present a higher operational capacity
and performance, as well as reconfiguring and reprogramming capabilities. In partic-
ular, reconfiguring and reprogramming properties are obviously very useful after the
devices have been launched into space. However, in space, FPGAs are commonly af-
fected by charged particles that strike the silicon substrate [Neuberger et al. 2003; Jing
et al. 2013]. These events, which are called Single Event Upsets (SEUs) [Carmichael
et al. 2000; Heiner et al. 2009], can inadvertently change the device outputs and corrupt
the function results. Hardened FPGAs [Lattice Semiconductor 2015] are one way to
mitigate this problem but are very costly. Due to this high price, several fault-tolerance
mechanisms have been developed in order to increase the reliability of SRAM-based
FPGAs. The most common techniques exploit spatial/hardware redundancy [Cheatham
et al. 2006; Koren and Krishna 2007] such as Triple Modular Redundancy (TMR) [Pratt
et al. 2006; Bolchini et al. 2007] and Duplication With Compare (DWC) [Johnson et al.
2008; Sarkar et al. 2009]. Besides TMR and DWC, scrubbing is often used to correct
errors after the FPGA has been subjected to SEUs. This method takes advantage of the
FPGA reconfiguration capability and periodically rewrites the configuration frames of
the FPGA, overwriting possible faulty bits caused by SEUs.

A common drawback among the current scrubbing solutions is the independence of
the scrubbing execution and the user tasks implemented in the FPGA. The entire FPGA
configuration memory is scrubbed sequentially at a constant rate without any relation
to the importance and timing of tasks executed on it. In order to better understand
this mechanism, please consider the simple example described in Figure 1. A task τ
with a periodic behavior is implemented in an FPGA device, using a certain amount
of hardware resources. These resources are scrubbed periodically as described in 1(I).
Since there is no relation between task τ and its scrubbing executions, the gap between
the several task τ jobs and the last corresponding scrubbing can be significantly large
(w1 and w2 intervals), increasing the probability of the task τ encountering a transient
fault, which will affect its functional outputs. Another drawback is when the scrub-
bing period is smaller than the task τ period. Considering the example described in
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Figure 1(II), the first scrubbing execution (at instant t1) is totally irrelevant for the
reliability of the task τ , since any fault between the instants t1 and t2 can be handled
by the second scrubbing execution (one that starts at instant t2). In this case, scrubbing
resources are wasted. The example in Figure 1(III) shows the ideal instant to scrub
the FPGA configuration memory related to task τ that minimizes the probability of an
SEU affecting its jobs’ executions.

Nowadays, general embedded system applications and even nano-satellite applica-
tions are increasingly composed of a large number of heterogeneous and dynamic tasks.
They may be created and removed from the system during the execution and they may
also have different execution behaviors, such as periodic, sporadic, and streaming/DSP
(Digital Signal Processing). Moreover, they may also have very different timing and
fault-tolerance requirements, which consequently organize them in different levels of
criticality or importance for the system [Baruah et al. 2010]. For instance, one fault in
a very critical task may have a significant negative impact on the system as compared
to multiple faults in a less critical task. Using a decoupled and static scrubbing process
from the tasks’ execution as the one used by current solutions is not efficient for these
heterogeneous embedded systems.

In order to overcome some of these limitations (the decoupled one), the authors of
this article have proposed [Santos et al. 2014] a new scrubbing mechanism for user
periodic tasks that improves the reliability of the system compared to the existing
scrubbing solutions, scheduling the scrubbing process according to the execution and
the criticality of each user task. However, this mechanism is also static, that is, it
does not efficiently support runtime adaptations and reconfigurations on user task set,
jeopardizing the overall system reliability metric. In this sense, a dynamically adaptive
scrubbing schedule mechanism was proposed by the same authors [Santos et al. 2015].
This mechanism schedules the scrubbing process based on windows at runtime. As
a result, this mechanism enables a higher reactive scrubbing process that adapts the
scrubbing executions to the user task set reconfigurations and modifications at runtime.
Nevertheless, both mechanisms are focused on improving the reliability of periodic and
sporadic user application tasks, not considering streaming/DSP applications.

1.1. Contributions

The following items are the key contributions of this article:

—An enhanced scrubbing schedule mechanism that increases the reliability of a het-
erogeneous user applications, composed of periodic, sporadic, and streaming/DSP
applications, implemented in FPGA;

—An improved scrubbing schedule model that allows an efficient and suitable scrub-
bing process to streaming/DSP applications, modeled by synchronous dataflow
graphs (SDFG);

—A window-based scrubbing schedule that allows runtime changes on the scrubbing
process, according to changes in the user application;

—A case study that assesses the real applicability of the proposed scrubbing
mechanism.

Conducted simulation experiments show the feasibility and the efficiency of the
proposed scrubbing mechanism. In particular, they show significant improvements on
the system reliability metric, up to 19.2% on average, when compared to other existing
scrubbing mechanisms. The experiments also show that the scrubbing process can
be very reactive when the scrubbing schedule is performed in windows. Moreover,
the implementation of these windows leads to significant reductions on the memory
overhead with small impact on the system reliability metric.

To the best of the authors’ knowledge, this is the first work that proposes an efficient
scrubbing mechanism for heterogeneous user applications implemented in FPGA. This
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Fig. 2. FPGA – background.

mechanism adapts the scrubbing process to the user applications, according to their
execution behavior, criticality, and timing requirements.

1.2. Article Organization

The rest of the article is organized as follows. Section 2 presents the FPGA background
and related works concerning the scrubbing mechanisms. Section 3 describes the sys-
tem model. Section 4 details the problem and deduces its complexity. Section 5 proposes
a heuristic to solve it. Section 6 presents a case study. Section 7 introduces the exper-
iments performed and discusses the respective results. Finally, Section 8 presents the
conclusions.

2. BACKGROUND AND RELATED WORKS

2.1. FPGA Background

FPGAs are configured using bitstreams, which contain the configuration data for each
block of the FPGA such as the Block-RAMS (BRAMs), Look-Up Tables (LUTs), inter-
connections, and Flip-Flops (FFs) [Xilinx Corporation 2015]. These individual blocks
in the FPGA are accessible to the user for building a custom design. Moreover, the
FPGA can be seen as a collection of frames, in which each of these individual blocks
are implemented, as described in Figure 2. For example, the Xilinx Virtex-6 FPGA
(XC6VLX240T-f1156) contains 28,464 frames in total and each frame contains 2,592
bits. Current FPGAs provide the ability to reconfigure at runtime both the structure
and functionality of the implemented design. This is made possible by the reconfig-
uration ports in the FPGA. For example, the Virtex-6 series provides three different
ports for reconfiguration [Xilinx Corporation 2012]: JTAG, SelectMAP, and ICAP. In
particular, the Internal Configuration Access Port (ICAP) is an internal port that can
be accessed within the FPGA for reconfiguration while the other two ports are external.
The smallest region accessible for reconfiguration is a frame. Any frame in the FPGA
can be reconfigured by addressing it via the Frame Address Register (FAR).
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It is also important to note that there are other architectures such as the coarse-
grained reconfigurable architectures (CGRA) [Liu et al. 2013, 2015] where the proposed
scrubbing mechanism can also be applied.

2.2. Scrubbing Related Works

Scrubbing is a mechanism used to repair faults on an FPGA that takes advantage
of the FPGA reconfiguration capabilities [Heiner et al. 2009; Guan et al. 2008]. The
FPGA reconfiguration is possible through the FPGA ICAP that allows the reading and
writing of the FPGA configuration frames, the lowest reconfigurable granular blocks
found in an FPGA. Several fault-tolerance solutions have been developed around this
mechanism with the simplest approach being blind scrubbing [Carmichael et al. 2000;
Brosser et al. 2014; Hoque et al. 2014]. This solution does not detect the existence of
faults on the FPGA, but it periodically rewrites the configuration frames (bitstream
file) onto the FPGA instead, overwriting possible faulty bits caused by SEUs. The entire
FPGA is scrubbed without considering the tasks that have been implemented in it and
the respective used configuration frames. An external memory with continuous access
is required to store the original configuration frames, frequently called golden copy.
Nazar et al. [2013a, 2013b] propose a mechanism that statistically finds the optimal
frame to start the scrubbing, which reduces the mean time to repair a certain fault.
This mechanism does not scrub the entire FPGA but only the frames that implement
the user tasks, that is, the frames that are relevant for the user application. Scrubbing
associated with TMR implementation [Hoque et al. 2014; McMurtrey et al. 2008] has
also been studied by the researchers. On one hand, this solution allows us to improve
the overall system reliability metric when compared to a pure TMR approach. On the
other hand, it allows us to reduce the scrubbing frequency and, consequently, the power
consumption when compared to a pure scrubbing mechanism. Readback scrubbing is
another solution that enables fault detection, reading frame-by-frame the configuration
data from the FPGA and then performing a bit-for-bit comparison to the original frames
stored in the external memory (golden copy). Another alternative combines readback
scrubbing with Error Correction Codes (ECCs) [Argyrides et al. 2011; Park et al. 2012;
Lanuzza et al. 2010; Venkataraman et al. 2014]. This approach enables fault detection
by reading the configuration data frame by frame, computing their error correction
codes (ECCs) and comparing them to the original ones previously computed and stored
externally for each frame. Sari and Psarakis [2011] propose a re-placement method
to reduce the number of sensitive frames (frames that are used to implement the
user tasks) and thus reduce the scrubbing time. They also combine a scrubbing fault-
detection and repair method (based on ECC) with a checkpointing mechanism in order
to improve the reliability of the FPGA user design. Sari et al. [2013] also improve this
work by proposing a proper analysis that enables the user real-time tasks to meet
their deadlines, taking into account the number of checkpoints as well as the required
scrubbing time.

All these scrubbing mechanisms are mostly independent of the user applications
execution behavior implemented in the FPGA. The FPGA is frequently scrubbed
subsequently with a constant and static rate or following a static pattern defined
before the execution of the system. As a result, the reliability of the system is not
maximized and scrubbing utilization is wasted. In order to solve this drawback,
Santos et al. [2014] propose a scrubbing mechanism that improves the efficiency
and the reliability of the system. This mechanism schedules the scrubbing process
according to the criticality of each user application and also as close as possible to
their executions. This way, the probability of the user applications being affected by a
fault is reduced. However, this solution is also static, that is, the scrubbing scheduled
is computed offline and during the runtime execution any modification/reconfiguration
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that may occur on the user application set is not reflected on the scrubbing schedule.
The memory required to store the scrubbing schedule may be large, since this solution
is dependent on the least common multiple (LCM) among the scrubbing task periods
on the system. Moreover, the task model considered in this solution is limited, since
it assumes that the user applications are strictly periodic, executing in well-defined
instants. As a response, Santos et al. [2015] present a dynamically adaptive scrub-
bing schedule mechanism for mixed-criticality systems executed on reconfigurable
embedded systems, such as FPGAs. This mechanism schedules the scrubbing process
based on windows at runtime and following the fixed priority scheduling. As a result,
this mechanism enables a higher reactive scrubbing system that adapts the scrubbing
executions to the user application set reconfigurations and modifications at runtime.
Moreover, this solution significantly reduces the amount of memory required to store
the scrubbing schedule. However, neither of the previous works consider an important
group of applications that are increasingly found in heterogeneous embedded systems,
such as the signal processing (DSP) and multimedia applications.

In this article, the proposed scrubbing mechanism is evaluated comparing it with
the other existing scrubbing mechanisms, in terms of reliability achieved by system. It
should be noted that the existing approaches can be divided into two classes, Selective
and Blind. Both execute without any strong relation to the user applications execution,
penalizing the system reliability metric. As mentioned before, in the literature, the
Blind scrubbing mechanism [Carmichael et al. 2000; Brosser et al. 2014; Hoque et al.
2014] is described as a simple mechanism that replaces the values of the configuration
memory, and for that it uses the initial configuration bit file stored in a golden copy. It
replaces the entire configuration memory, even if part of it is not used by the user
application. However, please note that the term Blind scrubbing is related to the
fact that the mechanism is blind to the actual occurrence of an error, not to the fact
of being independent of the applications implemented in the FPGA. Because of this
aspect, the Blind scrubbing terminology used in this article can also be referred as Full
Memory scrubbing. On the other hand, in this article Selective scrubbing only scrubs
the configuration frames that are utilized by the user design. For that, information
about the FPGA placement of the user applications is required as used in Nazar et al.
[2013a, 2013b], for instance.

3. SYSTEM MODEL

3.1. Architecture Model

FPGAs have the ability to integrate on the same device several functionalities run-
ning in parallel and implemented in well-defined FPGA regions [Kumar et al. 2008]
(Figure 3). The user design of an FPGA can be divided into several regions/partitions,
commonly called partially reconfiguration regions (PRR). Each partition is responsible
for implementing one or more specific functionalities, which can be dynamically mod-
ified by loading the respective bit file, while the other blocks continue their normal
operation. Different circuits with different functionalities (different bit files) can be
loaded onto the FPGA and thereafter be used for the reconfiguration when required.
Each PRR is very well delimited and, therefore, is composed of a well-defined set of
configuration frames. In the context of this work, it is assumed that the diverse user
application tasks are implemented by a set of PRRs, one task per region as described
in Figure 3.

3.2. Application Model

As mentioned above, embedded system applications designed for aerospace equipments
are nowadays becoming more and more complex. Following this trend, FPGA devices
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Fig. 3. Architecture model.

have to accommodate diverse heterogeneous applications with different execution be-
haviors (streaming/DSP and periodic/sporadic), timing, and fault-tolerance require-
ments. Therefore, the challenge is to create an integrated, efficient and fair scrubbing
mechanism that is able to provide fault tolerance to the user applications according
to their characteristics. In this work, an embedded system (ES) can be composed of
a set of applications Appa ∈ ES. Each application Appa can be identified as either
streaming/DSP or periodic/sporadic. Associated to each application there is a critical-
ity value crta ∈ N that models the importance of this application to the entire system.
Zero criticality corresponds to the lowest criticality in the system.

3.2.1. Streaming/DSP Application. A streaming/DSP application (Appa ∈ ES) has been
naturally modeled by the SDFG paradigm [Hölzenspies et al. 2008; Cannella et al.
2014]. Considering the dataflow model defined by Kavi et al. [1986], an SDF graph is
composed of one or more nodes, called actors. The actors represent application tasks and
their execution consists of reading and computing tokens (data items) from their input
ports and writing the computation results as tokens on the output ports. Therefore,
an actor is only fired/executed when it has sufficient tokens on its inputs and enough
buffer space on the outputs to store the produced tokens.

Definition 3.1 (SDFG G). A SDFG G [Ghamarian et al. 2006] can be represented
as a directed graph, G = (V, E), composed of a finite set of actors τi ∈ VG and a set of
directed edges EG. Each edge eu ∈ EG is defined by a tuple eu = (τi, τ j), denoting the
communication from the actor τi to the actor τ j . When τi executes, it transmits su

i data
tokens on the edge eu. On the other hand, when τ j executes, it consumes cu

j data tokens
on the edge eu.

Figure 4 presents an SDFG example. This graph G is composed of four actors VG =
{τ0, τ1, τ2, τ3} and a set of edges EG = {e0, e1, e2, e3, e4}. For instance, when the actor τ1
executes, it consumes c2

1 = 1 data tokens on the edge e2 and then transmits s3
1 = 1 data

tokens on the edge e3.
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Fig. 4. SDFG G example.

Fig. 5. A feasible schedule SG for the SDFG G.

Definition 3.2 (SDFG Schedule, SG). A schedule SG of an SDFG G represents the
order of execution (firings) of all actors that are part of the graph G. A schedule is
called feasible if the sequence of the actors’ execution guarantees an SDFG execution
free of deadlocks and buffer overflow conditions. A feasible schedule can be repeatedly
executed.

Definition 3.3 (SDFG Iteration Period, TG). An iteration period TG of an SDFG G
represents time between the execution of consecutive iterations of schedule SG.

Definition 3.4 (Actor Execution Pattern, EPi). The actor execution pattern (EPi)
defines for the actor τi ∈ VG the pattern of firings during the iteration period TG. EPi(l)
defines the actor execution instance l inside the iteration period, where 0 <= l < |EPi|
and |EPi| defines the number of execution instances of the actor τi during the iteration
period TG.

Taking into account the target architecture model described in the previous subsec-
tion, each actor is mapped in an independent processing area (FPGA partition). There-
fore, actors execute by following a self-timed schedule fashion, that is, they execute
as soon as they get the sufficient number of tokens on their input edges. Considering
this approach, Figure 5 presents one feasible SDFG schedule of the SDFG described in
Figure 4. Please note that during an iteration period TG the application actors τ0, τ1,
τ2, and τ3 execute 1, 4, 1, and 2 times, respectively.

As noted, each actor of each SDFG G executed on the FPGA is implemented in an
independent FPGA partition. Therefore, each actor τi implemented in the FPGA, with
0 <= i <

∑
∀G |VG|, can be characterized by the following parameters that will be

useful to define the scrubbing process, τi = (Ci, Ti, EPi, ηi, ζi). Ci defines the execution
time of the actor τi; Ti represents the actor execution pattern period, which is equal
to the respective graph iteration period TG; EPi defines the actor execution pattern
inside the iteration period; ηi defines the number of FPGA configuration frames used
to implement the actor τi on the FPGA; and, finally, ζi represents the criticality of the
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actor in the system, restricted by the criticality assumed by the SDFG application to
which it belongs (this relation will be detailed later, in subsection 3.5). The execution
of the actor τi can be interpreted as following: τi is released inside the iteration period
according to the execution pattern EPi and this pattern is executed in an infinite
sequence at the instants kTi, where k = {0, 1, 2, 3, . . . }.

3.2.2. Periodic/Sporadic Application. Without loss of generality, the embedded system can
also include periodic/sporadic applications (Appa ∈ ES) as elaborated in Santos et al.
[2014] and Santos et al. [2015]. Each periodic/sporadic application Appa is naturally
associated to a task τi characterized by the same parameters as the ones that character-
ize an SDFG actor (τi = (Ci, Ti, EPi, ηi, ζi)). Therefore Ci indicates the task execution
time; Ti represents the task’s period; EPi is composed of only one entry, since the task
is only executed once per period (so EPi(0) represents the task offset); ηi also defines
the number of FPGA configuration frames used to implement the task; and, finally, ζi
represents the criticality directly inherited by the application’s criticality, crta.

3.2.3. User Tasks—Uniformalization. Since the actors that compose an SDFG application
and the periodic/sporadic tasks can be formally defined with the same parameters, in
the rest of the article, the term user tasks will be generally used to refer to both.
Therefore, � will be used to represent the set of user tasks τi implemented in the
system.

3.3. Error Model

As mentioned on Section 2, the FPGA device composed of � configuration frames can
be affected by SEUs. The SEUs follow a Poisson distribution with a rate of λ failures
per time unit [Bridgford et al. 2008]. Therefore, the probability of no failures in an
unprotected FPGA-based design in an interval t is given by the following equation [Das
et al. 2013; Axer et al. 2011]:

Pne = e− λ�
�

t ⇔ Pne = e−λt. (1)

Definition 3.5 (Reliability of an Application). Reliability of an application Appa is a
metric that defines the probability of Appa being executed in the interval [0, t] without
faults.

Therefore, the reliability of Appa can be expressed in the following equation as the
probability of all instances of all associated user tasks τi being executed without faults
in the interval [0, t]:

RAppa(t) =
∏

τi∈Appa

�t/Ti�∏
k=0

Pne
[
τ k

i

]
. (2)

The previous equation only computes the reliability from 0 to �t/Ti�×Ti . The reliability
of the remaining time is negligible, since t is significantly higher than Ti. Pne

[
τ k

i

]
represents the probability of the user task execution instances (τi) on the iteration
period k being executed without any fault in all its frames f during the interval w

k, f
i .

Therefore, Pne[τ k
i ] is defined as follows:

Pne
[
τ k

i

] =
ηi−1∏
f =0

e− λ
�

w
k, f
i . (3)

Regarding frame f , w
k, f
i defines the time interval between the end of the last user task

instance τi(|EPi| − 1) on the iteration period k and the closest of two points (previous
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Fig. 6. Time interval between last scrubbing process, in particular the frame f , and the beginning of the lth

user task execution on the iteration periods 0 and 1.

scrubbing instance of frame f or the end of the last τi(|EPi|−1) instance on the iteration
period k− 1), as illustrated in Figure 6. If the scrubbing execution of frame f occurs in
the middle of a τi execution sequence, then each execution instance can be considered
individually, improving the application reliability slightly.

Definition 3.6 (System Reliability Metric). In this article, system reliability metric
is a metric that defines the reliability of the overall system during the interval [0, t]
and taking into account the reliability as well as the criticality of each application Appa
executing in the system, either SDFG or periodic/sporadic.

Therefore, the system reliability metric can be expressed as follows:

R(t) =
|ES|−1∑
Appa=0

RAppa(t) × crta, (4)

where |ES| is the number of applications that are executing in the embedded system
(FPGA).

3.4. Scrubbing Model

The proposed scrubbing mechanism does not scrub the FPGA frames sequentially with
a constant rate; instead, it scrubs the FPGA configuration frames associated with
each user task τi independently from others, enabling adaptive scrubbing. The FPGA
configuration frames associated with the user task τi are scrubbed, taking into account
its execution pattern as well as its criticality. In the scrubbing mechanism proposed
in Santos et al. [2014] specially designed for periodic tasks, the scrubbing process
executes periodically and just before (as near as possible) the user tasks execution.
There is a one-to-one relationship between the periodic user tasks and the scrubbing
process, that is, associated with each user task there is only one scrubbing task. When
this solution is used on streaming/DSP applications modeled by SDFGs, one of the
possibilities is to execute the scrubbing tasks periodically and just before the first
actor τi execution instance in each iteration period. However, this solution may not
be the most reliable one. Please consider the example in Figure 7 in order to better
understand this point. In SDFGs, an actor can execute several times in one iteration
period, like actor τ1 (Figure 7(I)). If the corresponding scrubbing task only executes
once in one iteration period, for instance, just before the execution of the first actor
instance (Figure 7(II)), then it may not be enough to keep a desired level of reliability.
The other actor execution instances (τ1(1), τ1(2), τ1(3)) are increasingly far from the
last corresponding scrubbing task execution instance (sτ1), increasing the probability
of them being executed with a fault. This effect is amplified with the increase in the
number of actor instances per iteration period. In order to better protect the SDFGs
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Fig. 7. Scrubbing execution. (I) User task execution example. (II) Scrubbing execution: Only one scrubbing
task associated with each user task. (II) Scrubbing execution: More than one scrubbing task can be associated
with one user task according to their execution behavior.

implemented in the FPGA system, each actor τi can be associated with one or more
scrubbing tasks (s�i, the scrubbing task set associated with actor τi). In the ideal case,
each actor execution instance (EPi(l)) is associated with its own scrubbing task, as
described in Figure 7(III). However, this scenario may not be scalable and practical,
since a huge number of all scrubbing tasks depending on the SDFG could be generated.
Therefore, a balanced solution needs to be found.

Before presenting one possible solution for this problem, please take into account first
the formal definition of the scrubbing process. The scrubbing process can be defined
by the union of all the scrubbing task sets {s�0 ∪ s�2 ∪ ... ∪ s�i} associated with each
user task τi, with 0 <= i < |�| − 1 and where |�| represents the number of user tasks
implemented in the FPGA. Each scrubbing task sτ j ∈ {s�0 ∪ s�2 ∪ ... ∪ s�|�|−1}, with
0 <= j < |s�0 ∪ s�2 ∪ ... ∪ s�|�|−1|, is straightforwardly modeled as a periodic task
characterized by five parameters sτ j = (τi, SCj, STj,� j, ζ j): τi is the user task, with
which the scrubbing task sτ j is associated; SCj defines the time to scrub the ηi FPGA
frames used to implement the user task τi; STj represents the period of this scrubbing
task; � j is the initial offset; and ζ j defines the criticality inherited from user task τi. The
execution of sτ j can be interpreted as follows: sτ j is released in an infinite sequence
of jobs at the instants � j + pSTj , with p = {0, 1, 2, 3, . . . }. Note that the release of
the scrubbing jobs are synchronized with the corresponding user task jobs execution.
Considering the deadline of sτ j to be equal to its period STj , the job instance sτ p

j has
to execute SCj time units during the interval [� j + pSTj,� j + (p + 1)STj).

Algorithm 1 describes one possible solution to define the scrubbing task set associated
with each user task. This algorithm receives as input the implemented user task set
(�) and, consequently, the execution pattern EPi of each user task τi. It also receives
the maximum acceptable time distance (ϒ) between the user task execution instance
and last corresponding scrubbing execution. At the end, the algorithm returns the
scrubbing task set s�i with the respective parameters of each scrubbing task sτ . For all
the user tasks τi (line 1) and for each execution instance τi(l) (line 6) during the period
Ti, the algorithm verifies the time distance between the current user task execution
instance and the last corresponding scrubbing execution (line 7). Please assume that
the first scrubbing execution occurs just before the execution of the first user task
execution instance (lines 2 to 5). If this distance is greater than ϒ (line 7), then a new
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ALGORITHM 1: Finding the scrubbing task set s�i associated with each user task τi .
Input: �, ϒ ;
Output: s�0...s�|�|−1;
1: for (i = 0; i < |�|; i ++) do
2: lastS = EPi(0);
3: sτ → τi = i; sτ → SC = ηi× time to scrub one frame; sτ → ζ = ζi ;
4: sτ → � = EPi(0) − (sτ → ST );
5: s�i = s�i ∪ sτ ;
6: for (l = 1; l < |EPi|; l + +) do
7: if ((EPi(l) − lastS) > ϒ) then
8: lastS = EPi(l);
9: sτ → τi = i; sτ → SC = ηi× time to scrub one frame; sτ → ζ = ζi ;
10: sτ → � = EPi(l) − (sτ → ST );
11: s�i = s�i ∪ sτ ;
12: end if
13: end for
14: end for
15: return s�0..s�|�|−1;

scrubbing task sτ j is created and associated with the task τi (lines 8 to 11). Its offset
� j will be equal to the execution instance of the user task execution instance τi(l).

Please note that a scrubbing preemptive approach is considered in this article. There-
fore, in order to guarantee that no scrubbing preemptions occur during the scrubbing
process of one frame, the minimum time unit used to define the scrubbing schedule
is equal to the time to scrub one FPGA frame. Therefore, the periods (T ) and, conse-
quently, the corresponding scrubbing periods (ST ) have to be multiples of the time to
scrub one configuration frame. The minimum time unit imposed by this assumption is
not a limiting factor. In a real system, this time is very small. It usually takes only a few
microseconds (μs). For instance, considering a Xilinx Virtex-6 FPGA (XC6VLX240T),
the time to scrub one frame at the maximum ICAP frequency is 0.81μs.

3.5. Criticality Assignment

Definition 3.7 (Criticality of an Application). Criticality of an application is a metric
that defines the impact of its correct (or incorrect) functioning on the overall system
correctness [Dobrin et al. 2008].

As defined, the criticality of an application reflects the importance/impact of that
application on the system. In this sense, the application’s criticality plays a central role,
when the scrubbing task sets have to be defined, since the ICAP capacity is limited
and it may not be enough to scrub all the user tasks associated to the applications
at the maximum frequency desired. In this case, the tasks associated to the most
critical applications must be scrubbed more frequently than the less critical ones.
The following method is proposed to assign the application’s criticality. However, on
this aspect the proposed scrubbing mechanism is very flexible. Therefore, different
criticality assignment methods may be used.

3.5.1. Criticality Based on the User Criteria—Cu. This method assigns the criticality ac-
cording to the user option. Therefore, each application assumes the criticality given by
the following equation:

∀Appa ∈ ES, crta = norm1(constanta), (5)
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where constanta ∈ N is the value defined by the user and norm1() gives the normalized
value by 1, that is,

norm1(constanta) = constanta∑|ES|−1
a=0 constanta

. (6)

Regarding the user tasks, they will inherit the criticality of the application that they
belong to. Therefore,

∀τi ∈ �, τi ∈ Appa, ζi = crta
|Appa| , (7)

where |Appa| represents the number of user tasks associated to the application Appa.
Please note that the assignment of the criticality to the different applications in the
system and also to their tasks is completely flexible. The user can utilize different
equations according to his/her preference.

4. SCRUBBING SCHEDULE—PROBLEM DEFINITION

After defining the scrubbing process, that is, after defining the scrubbing task set s�i
associated with each user task τi and its executions instances, the ideal case that
maximizes the reliability of each task τi during an interval [0, t] is to scrub the corre-
sponding FPGA frames with a period equal to the user task period (T ) and as close as
possible before their execution instances, as described in Figure 7. However, this ideal
case may not be possible to achieve, since the ICAP resources/utilization (time to read
and write the user design frames) are limited. In that case, the scrubbing task periods
(ST ) may have to be larger than the corresponding user task periods T . Taking into
account these concerns, the problem can be formulated as follows. Given all user tasks
τi implemented in the FPGA using a certain number of configuration frames ηi, the
challenge is to determine the exact schedule of all scrubbing tasks sτ j in a way that it
enables the fault-tolerance in all user tasks in the system and reduces the probability
of each user task execution instance τ k

i (l) being affected by a fault. The exact schedul-
ing means the determination of the scrubbing instant of each frame in each scrubbing
instance ε

p, f
j (refer to Figure 6). The most critical user tasks in the system must be the

most reliable, that is, they must be scrubbed more frequently and as close as possible
to their execution instants. On the other hand, the less critical user tasks must be the
least reliable if there are not enough scrubbing resources to scrub all the user tasks
in the system. In this case, the less critical tasks must be scrubbed less frequently. In
short, the global objective is to maximize the system reliability metric based on the ap-
plication criticality. Therefore, taking Equations (2) and (4) into account, the objective
function can be expressed as follows:

max R(t) = max
|ES|−1∑

Appa

⎛
⎝ ∏

τi∈Appa

�t/Ti�∏
k=0

Pne
[
τ k

i

]
⎞
⎠ × crta, (8)

where |ES| returns the number of user applications implemented in the system and
�t/Ti� gives the number of user task periods in a pre-defined time interval [0, t].

4.1. Complexity

The scrubbing problem, that is, finding the exact execution instant for each scrubbing
task that maximizes the system reliability metric, can be modeled as a well-known
preemptive scheduling problem. However, these problems are NP-hard in the strong
sense as Jeffay et al. [1991] have shown. In the next section, a heuristic is proposed in
order to find a feasible solution in a suitable interval of time.
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5. PROPOSED HEURISTIC

Considering Figure 6, as one can observe, if the scrubbing tasks are scheduled as close
as possible to their deadlines, the probability of the corresponding user tasks being
affected by a fault is reduced. Therefore, instead of finding the exact schedule for
the scrubbing tasks, we propose a heuristic that finds the minimum scrubbing periods,
which makes the scrubbing task set schedulable by the utilization-based schedulability
test. Then, the earliest deadline as late as possible (EDL) algorithm [Chetto and Chetto
1989] is used to schedule the scrubbing tasks, since it schedules the tasks as late as
possible near the deadlines.

ALGORITHM 2: Proposed Heuristic (preemptive)
Input: �, s�;
Output: schedule;
1: findSPeriods(�, s�, uBound); //using ILP
2: lcm = computeLCM(s�);
3: schedule = edlSchedule(s�, lcm);
4: return schedule;

Algorithm 2 describes the proposed heuristic in order to compute the scrubbing
schedule. Three main steps can be highlighted. The first step that is implemented
by the function findSPeriods (line 1) finds the minimum period of the scrubbing task
sτ j associated with the corresponding application actor τi. This step is performed by
using an Integer Linear Programming (ILP) formulation. Equation (9) describes the
cost function,

min
|s�0∪...∪s�|�|−1|−1∑

j=0

STj

Ti
× ζi, sτ j ∈ s�i, 0 ≤ i ≤ |�| − 1. (9)

Please note that the scrubbing periods are found according to the user task critical-
ity. These periods must make all scrubbing task sets s�i schedulable, verifying the
utilization-based schedulability condition given by the following equation:

|s�0∪...∪s�|�|−1|−1∑
j=0

SC j

STj
≤ uBound, (10)

where uBound defines the maximum ICAP utilization provided to the scrubbing mech-
anism and |�| is the number of user tasks implemented in the system. The second
step, implemented by the function computeLCM (line 2), computes the LCM of the
obtained periods in the previous step. The schedule produced in the next step has a
cyclic property, that is, for every LCM interval, the schedule is repeated [Leung and
Merrill 1980]. Moreover, its feasibility is automatically assured for the LCM interval
by the first step (line 1), since the EDL algorithm is optimal for preemptive task sets.
The third step, which is implemented by the function edlSchedule (line 3), computes the
system scrubbing schedule for the LCM interval following the EDL algorithm [Chetto
and Chetto 1989].

The memory required to store the scrubbing schedule may be large, since this so-
lution is dependent on the LCM among the scrubbing task periods on the system.
Moreover, this dependency of the scrubbing schedule on the LCM interval does not
allow the modifications/reconfiguration on the user task set, such as adding, removing,
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Fig. 8. Scrubbing schedule window mechanism—flowchart.

and modifying tasks. In order to overcome this limitation, a window-based scrubbing
schedule mechanism is presented in the next subsection.

5.1. Window-Based Scrubbing Schedule

The scrubbing mechanism of an FPGA device can be classified as a soft real-time
system. If some user task is not scrubbed at the right instant according to the computed
scrubbing schedule, then there is no negative impact on its execution, that is, the user
task is executed normally. However, the reliability of the system may decrease, that
is, the probability of that user task to be executed with a fault may increase. Taking
this factor into account, the proposed mechanism computes the scrubbing schedule in
pre-defined time windows, enabling reactive adaptations of the scrubbing process to
the changes on the implemented user task set. Scheduling the scrubbing tasks based
on windows is not the optimal solution, since the scrubbing tasks may miss their
deadlines. However, the reliability of the system is improved through a reactive update
of the scrubbing mechanism to the changes and the execution of the implemented user
tasks.

The scrubbing schedule windows have duration � (defined as the multiple of the time
to scrub one configuration frame) specified by the user and according to the reactivity
requirements of the scrubbing process. Their execution can be interpreted as follows:
The scrubbing schedule windows are executed sequentially; each window starts at the
instants n × � with n = {0, 1, 2, 3, . . . } and has a duration of �. Therefore, the window
n defines the scrubbing schedule for the interval (n�, (n+ 1)�]. Figure 8 describes the
sequence of steps regarding the proposed approach. The first step computes the mini-
mum scrubbing periods according to the criticality of each user task (Equation (9)) that
maximize the allowed ICAP utilization defined for the scrubbing mechanism (Equa-
tion (10)). Then the scrubbing schedule is executed and computed in windows. During
the execution of the scrubbing schedule defined in the window n − 1, the scrubbing
schedule for the window n is computed. Only the scrubbing task activations that oc-
cur in the interval (n�, (n + 1)�] will affect the schedule produced by the window n.
If during the scrubbing schedule execution of the window n any change on the user
task set is detected, then the minimum scrubbing periods that satisfy the maximum
defined ICAP utilization have to be recomputed. The new periods are then used to
compute the scrubbing schedule for the incoming windows. The scrubbing schedule
is computed according to the fixed priority scheduling (FPS), contrary to the solution
proposed by Santos et al. [2014]. FPS is more predictable and easier to implement
than dynamic priority scheduling (DPS) and the definition of criticality fits perfectly
on the notion of priority, too. The most critical user tasks are always scrubbed closer
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Fig. 9. Auxiliary Window – Example. (I) User task execution. Task τ0 is more critical than task τ1. (II)
Computed scrubbing schedule using the proposed scrubbing schedule based on windows but without using
an auxiliary schedule window. (III) Computed scrubbing schedule using the proposed scrubbing schedule
based on windows and improved by using the auxiliary schedule window mechanism. Note 1: The auxiliary
windows are represented by the darker boxes. The tasks inside them are the tasks considered for the
scrubbing schedule of the previous window. Note 2: The execution time of the user tasks may not be in scale
with the scrubbing executions.

to their executions instances than the less critical ones. The better schedulability of
the DPS is almost irrelevant in this context, since the scrubbing mechanism should
be used for low-ICAP utilizations, leaving free space for FPGA reconfigurations. Note
that the memory required by this approach is only the memory required to store the
scrubbing schedule of two � windows. The gains in terms of memory will be really
high when the proposed approach uses small windows sizes (�) and the LCM interval
given by the task periods is really large. Moreover, if the criticality of the applications
has not changed, the scrubbing schedule has to be computed for all windows, since the
window size may not be equal to the LCM of all applications periods. However, if the
window size happens to be a multiple of the LCM, then it is only needed to compute
the scrubbing schedule during changes. This way, any change on the application set
can be easily accommodated on the scrubbing schedule.

5.1.1. Auxiliary Window—Improvement. The scrubbing schedule based on windows raises
a problem. The scrubbing tasks that are activated in the beginning of the window n may
not be executed since the remaining execution space in window n may not be enough. In
order to solve this limitation, an auxiliary scrubbing schedule window is proposed. Ev-
ery scrubbing schedule window n is succeeded by an auxiliary window with � size (mul-
tiple of the time to scrub one configuration frame), which helps to compute the scrubbing
schedule. This way, for the produced scrubbing schedule in the window n, all the scrub-
bing requests in the interval (n�, (n+ 1)� + �] are considered. However, the produced
schedule in the auxiliary window ((n+1)�, (n+1)�+�] is not taken into account, since
it will be recomputed in the scrubbing schedule window (n+1). Please observe Figure 9
in order to better understand the auxiliary window mechanism. Diagrams (II) and (III)
show the scrubbing schedule for the two user applications presented on diagram (I).
The scrubbing schedule window has duration of 9 time units and the auxiliary window
of 3. Diagram (II) shows the scrubbing schedule without using the auxiliary window
mechanism, unlike diagram (III). Please consider the activation of scrubbing task sτ1
in window 1 (Figure 9(II)). In this case, window 1 does not have enough space to execute
completely the scrubbing task sτ1. The scrubbing part that was not executed should
have been done in window 0. However, this did not happen, since the activation of sτ1
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Table I. User Tasks—� (Parameters)

τi User Task Name Application Ci(ms) Ti(ms) ηi ζi(cu)
τ0 Control Law App0 / Periodic 0.900 50.000 250 0.250
τ1 Process IRES Data App1 / Periodic 0.410 100.00 150 0.250
τ2 Calibrate Gyro App2 / Periodic 0.390 100.00 100 0.250
τ3 Motion Estimation App3 / SDFG 1.910 10.345 1000 0.050
τ4 MB Encoding App3 / SDFG 0.084 10.345 42 0.050
τ5 MB Decoding App3 / SDFG 0.062 10.345 31 0.050
τ6 V LC App3 / SDFG 0.130 10.345 65 0.050
τ7 Motion Compensation App3 / SDFG 0.057 10.345 26 0.050

Fig. 10. h.263 encoder SDFG.

only occurs in window 1. This problem can be solved if, during the computation of the
scrubbing schedule of window 0, the scrubbing activation that takes place in the begin-
ning of window 1 is also considered. Therefore, during the computation of the scrubbing
schedule of window n, all the scrubbing activations that occur during the auxiliary win-
dow placed in the beginning of the window n+ 1 are taken into account (Figure 9(III)).

6. CASE STUDY

A nano-satellite is generally composed of two subsystems, namely the navigation con-
trol and the payload subsystem. The navigation control subsystem is responsible for
monitoring and controlling the orientation of the nano-satellite, while the payload
subsystem is responsible for implementing the functionality of the nano-satellite. The
considered nano-satellite in this case study aims to collect high-resolution video images
from the Earth. For that, the implementation of eight user tasks in an SRAM-based
FPGA was simulated, whose parameters are defined in Table I. The first three user
tasks, based on Forget et al. [2010] and Burns and Wellings [1995], are related to
the nano-satellite navigation subsystem, and they present a periodic behavior. The
other five tasks are related to the payload subsystem. They implement the h.263 en-
coder application, which is responsible for encoding the video frames captured by the
nano-satellite camera to be transmitted to the Earth. The h.263 encoder is modeled
by a SDFG, as described in Figure 10. Please note that each of the user tasks is
implemented with dedicated hardware in independent FPGA areas (PRRs). In this
sense, the execution of all user tasks is never delayed by the lack of execution re-
sources. Figure 11 shows the h.263 SDFG execution (schedule). During one itera-
tion period, MB Encoding and MB Decoding execute 99 times per period. Contrarily,
Motion Estimation, Motion Compensation, and VLC execute only once.
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Fig. 11. (I) h.263 encoder SDFG schedule. (II) Proposed scrubbing execution for ϒ = 11ms. (III) Proposed
scrubbing execution for ϒ = 4.13ms.

Table I also shows the number of FPGA configuration frames (ηi)1 used to implement
each one of the user tasks. The SRAM-based FPGA (Virtex-6 LX240T) considered in
this case study contains 28, 464 configuration frames, and it is assumed that each
frame of the FPGA device is scrubbed at the maximum ICAP frequency (100MHz).
Therefore, each FPGA configuration frame requires 0.81μs to be scrubbed. In order to
reduce the energy consumption, the maximum percentage of ICAP utilization provided
to the scrubbing mechanism was limited to 30%. Moreover, for this case study, the
FPGA device was simulated to be placed in the space environment, subjected to SEUs
with a rate λ = 1

1Hour [Bridgford et al. 2008]. Table I shows as well the criticality
assigned to the user tasks regarding the method presented in Section 3.5. The method
cu assigns the criticality according to the user criteria. In this particular case, it is
assumed that all the applications have the same criticality/importance for the system
(0.25—normalized). Please note that the user tasks that belong to the SDFG application
receive its criticality divided equally among them.

According to the proposed scrubbing solution, the first step defines scrubbing task set
s�i associated with each user task τi. Each scrubbing task set s�i is computed based on
Algorithm 1. The number of scrubbing tasks |s�i| associated with each task τi is defined
by the maximum time distance (ϒ) allowed between the task execution instance and
the last scrubbing execution. Therefore, the number of scrubbing tasks |s�i| associated
with the user task τi can vary between 1 and the number of instances that the task
executes during its period Ti. For instance, the user task τ4 (an actor that composes
the h.263 SDFG) can have between 1 and 99 scrubbing tasks associated, depending on
the value of ϒ . After defining the scrubbing task sets (s�i), the minimum scrubbing
periods of each scrubbing task sτ j ∈ {s�0 ∪ ... ∪ s�|�|−1} associated with all user tasks
implemented in the system are computed. The defined periods have to make the entire
scrubbing process schedulable by the EDL scheduling algorithm. In this particular
case, the scrubbing periods are found assuming that only 30% of the ICAP port can be

1The number of configuration frames used by each user task is estimated according their complexity.
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Table II. Scrubbing Task Sets (s�i ) Parameters—ϒ = 11.0ms

sτ j s�i SC j (ms) STj (ms) � j (ms) ζ j (cu)
sτ0 s�0 0.2025 50.000 3.700 0.250
sτ1 s�1 0.1215 100.00 1.800 0.250
sτ2 s�2 0.0810 100.00 1.900 0.250
sτ3 s�3 0.8100 10.345 9.535 0.050
sτ4 s�4 0.0340 10.345 1.829 0.050
sτ5 s�5 0.0251 10.345 1.929 0.050
sτ6 s�6 0.0527 10.345 10.105 0.050
sτ7 s�7 0.0211 10.345 10.239 0.050

Table III. Scrubbing Task Sets (s�i ) Parameters—ϒ = 4.13ms

sτ j s�i SC j (ms) STj (ms) � j (ms) ζ j (cu)
sτ0 s�0 0.2025 50.000 3.700 0.250
sτ1 s�1 0.1215 100.00 1.800 0.250
sτ2 s�2 0.0810 100.00 1.900 0.250
sτ3 s�3 0.8100 10.345 9.535 0.050
sτ4 s�4 0.0340 10.345 1.829 0.050
sτ5 s�4 0.0340 10.345 5.945 0.050
sτ6 s�5 0.0251 10.345 1.929 0.050
sτ7 s�5 0.0251 10.345 6.045 0.050
sτ8 s�6 0.0527 10.345 10.105 0.050
sτ9 s�7 0.0211 10.345 10.239 0.050

used by the scrubbing process. Tables II and III present the scrubbing tasks’ parameters
given by the proposed mechanism (in particular the scrubbing tasks sτ j associated with
each user task τi and their scrubbing periods STj). Table II presents the scrubbing task
set considering a maximum time distance between the user task execution and the last
corresponding scrubbing execution (ϒ) equal to 11ms. Please note that, in this case,
only one scrubbing task is associated with each user task τi. On the other hand, Table III
presents the scrubbing task set, when ϒ = 4.13ms. In this case, two scrubbing tasks are
associated with the user tasks τ4 and τ5. Figure 11 describes the scrubbing execution
according to the proposed scrubbing mechanism. Figure 11(II) describes the execution
of the scrubbing task set when ϒ = 11ms. Figure 11(III) presents the scrubbing task
set execution when ϒ = 4.13ms.

After determining the scrubbing task periods, the scrubbing schedule is computed
and executed during runtime in windows following the EDL algorithm. According
to this scheduling algorithm, the scrubbing tasks are executed as late as possible,
nearest to the deadline/period (STj). Therefore, the scrubbing tasks execute in the
best case just before the corresponding user task execution, minimizing the probability
of the user task being affected by an SEU fault. The size of the scrubbing schedule
window is set to 1s (� = 1s) and the auxiliary window is equal to zero (� = 0). The
scrubbing schedule window is relatively large, since the objective of the case study is to
evaluate the enhanced proposed scrubbing mechanism when applied to heterogeneous
applications and not the execution of the scrubbing process in windows. The larger the
size of the scrubbing windows, the closer we are to the optimal solution. The impact
of the scrubbing window size on the system reliability metric will be assessed in more
detail in the experimental results section.

The proposed scrubbing mechanism (Scheduled) is evaluated comparing it with the
other existing scrubbing mechanisms that can be divided in two classes, Selective and
Blind, as explained in Section 2.2. Please note that with 30% of ICAP capacity available,
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Table IV. System Reliability Metric over ϒ. Criticality Is Assigned According to the User Criteria (cu Method)

ϒ(ms)
Method 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Scheduled 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96
Selective 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Blind 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79

each user task of this case study is scrubbed every 4.5ms using the Selective approaches
and every 115.3ms using the Blind ones.

Table IV compares the system reliability metric when the proposed (Scheduled),
Selective, and Blind scrubbing mechanisms are applied to this particular case study
and when the criticality is assigned according to the user criteria (cu). In this case,
all the applications have the same importance to the system. The system reliability
metric is computed for 24 hours through Equation (4) and considering an ϒ rang-
ing from 0.2ms to 2ms. Please observe that the proposed mechanism always performs
better when compared to the other solutions. This occurs due to the fact that they exe-
cute without any relation to the user applications/tasks. Considering also ϒ = 0.2ms,
the proposed mechanism performs 6% and 20% better than the Selective and Blind
scrubbing mechanisms, respectively. Please note that when the proposed scrubbing
mechanism is applied, the system reliability metric decreases when ϒ increases, as
expected. This occurs because the number of scrubbing tasks assigned to tasks τ4 and
τ5 decreases when ϒ increases.

7. EXPERIMENTAL RESULTS

Several experiments were conducted in order to better evaluate the proposed scrubbing
mechanism. The experiments were based on a Virtex-6 LX240T SRAM-based FPGA
with 28,464 configuration frames. It was assumed that each frame is scrubbed at
the maximum ICAP frequency (100MHz). Therefore, each FPGA configuration frame
requires 0.81μs to be scrubbed. Moreover, for these experiments the FPGA device
was simulated to be placed in the space environment, subjected to SEUs with a rate
λ = 1

1Hour [Bridgford et al. 2008].
For the experiments (expected the last one), the implementation of an application

that includes one SDFG G (composed with up to 5 actors) and 5 independent periodic
applications was simulated. Therefore, the number of user tasks implemented in the
FPGA can reach up 10 user tasks. The SDFG is synthetically generated, using the
function sdf3generate-sdf available in the SDF3 framework [2015]. The SDFG is gen-
erated with the following parameters: stronglyConnected = “true,” acyclic = “ f alse,”
and multigraph = “ f alse.” Moreover, the total number of actor execution instances
during the iteration period (

∑
i∈VG

|EPi|) can be up to 25. The actors that compose this
graph G are also synthetically generated. The execution time of each actor assumes
values that are multiples of 0.1ms and are uniformly distributed between 0.5ms and
1.5ms. The number of configuration frames used to implement each user task, either
actor or independent period task, assumes values that are multiples of 10. They are
also uniformly distributed between 10 and 500, corresponding to a scrubbing execu-
tion time (SC) between 8.1μs and 405μs, respectively. Moreover, the periods of each
generated periodic task assumes only values that are multiples of 1ms and uniformly
distributed between 10ms and 50ms.

For each experiment (except the last one), 1,000 user applications were synthetically
generated, according to the features and parameters described above. The proposed
scrubbing mechanism (Scheduled) is also compared to the existing solutions, classified
as Selective and Blind. All the mechanisms are evaluated using the cu method to assign
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Fig. 12. System reliability metric over ϒ . Criticality is assigned according to the user criteria (cu). All the
user applications have the same criticality in this experiment.

the user task’s criticality. In the first four experiments, it is assumed that the cu method
assigns the same criticality/importance to all the user applications.

7.1. System Reliability Metric Over ϒ

This first experiment evaluates the system reliability metric over the maximum time
distance (ϒ) recommended between one user task execution instance and the corre-
sponding latest scrubbing execution. Please note that the previous scrubbing mecha-
nism presented in Santos et al. [2014] has proposed the scrubbing schedule compu-
tation for the LCM interval given by the periods of all scrubbing tasks. Despite the
fact that this solution is optimal, when it is applied to heterogeneous applications with
different execution behaviors and very different periods, the LCM given by the corre-
sponding scrubbing tasks can be huge. Therefore, computing the scrubbing schedule
for huge LCM intervals can be computationally very expensive and impractical. This
has occurred in most of the user applications synthetically generated. Therefore, the
scrubbing schedule window size (�) for this experiment is set to a considerably large
value, 1 minute, in order to get results as close as possible to the optimal ones. The
auxiliary window (�) is set to 0. Please note that all tested scrubbing mechanisms can
only use 30% of the overall ICAP utilization available.

For each user application generated, the system reliability metric is computed for
24 hours, considering ϒ ranging from 1.5ms to 15.75ms. Figure 12 shows the ob-
tained results. As expected, for bigger ϒs time distances the system reliability metric
is smaller, since the proposed scrubbing system generates fewer scrubbing tasks associ-
ated with each user task that composes the SDFG G. In the best case (with ϒ = 1.5ms),
the proposed scrubbing mechanism (Scheduled) performs 6.0% and 19.1% better when
compared to Selective and Blind approaches, respectively.

7.2. System Reliability Metric Over the ICAP Utilization

This experiment evaluates the system reliability metric over the ICAP utilization pro-
vided to the scrubbing process. For each generated user application, the system relia-
bility metric was computed for ICAP utilization ranging from 20% and 100%. Similarly
to the previous experiment, the scrubbing schedule window size (�) is set to 1 minute
and the auxiliary window (�) equal to 0.

Figure 13 shows the respective results measured for 24 hours. As expected, the
system reliability metric decreases when the ICAP utilization is constrained. Moreover,
it is important to note that the proposed solution always performs better than the other
mechanisms. In particular, the proposed solution performs on average 3.8% and 16.3%
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Fig. 13. System reliability metric over the ICAP utilization. Criticality is assigned according to the user
criteria (cu). All the user applications have the same criticality in this experiment.

Fig. 14. System reliability metric over the scrubbing schedule window size. Criticality is assigned according
to the user criteria (cu). All the user applications have the same criticality in this experiment.

better (with a maximum of 5.8% and 19.2%) when compared to the Selective and Blind
approaches, respectively.

7.3. System Reliability Metric Over the Schedule Window Size (�)

Using the same user applications considered in the previous experiments, this experi-
ment evaluates the system reliability metric over the scrubbing schedule window size
(�). Please note that for this experiment the maximum ICAP utilization provided to
the scrubbing process is also 30%. Moreover, ϒ is set to 1.5ms, the best case measured
in the first experiment.

Figure 14 shows the system reliability metric results measured for 24 hours and
considering a schedule window size (�) ranging from 1ms to 20ms. As expected, the
system reliability metric using the proposed approach increases with the increase of
the scrubbing schedule window size. The proposed solution is also evaluated using the
auxiliary window mechanism (�) equal to 25% of the main scrubbing schedule window.
Applying the auxiliary window to the proposed scrubbing mechanism improves the
system reliability metric up to 3.5%. Moreover, it allows us to achieve for bigger �s (close
to 20ms) the best system reliability metric measured on the first experiment with a (� =
1 minute and ϒ = 1.5ms). Therefore, � <= 20ms leads to a memory overhead reduction
to store the scrubbing schedule (as shown in the next experiment) without a significant
impact on the system reliability metric and it allows us to quickly update the scrubbing
schedule according to any modification that may occur on the user application. When
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Table V. Scrubbing Schedule Computation Time over ϒ

ϒ(ms) 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
CPU Time / � 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
N. of scrubbing tasks 17.5 14.9 12.4 11.4 10.9 10.5 10.2 10.0 9.5 9.4

Table VI. Scrubbing Schedule Computation Time over the Window Size (�)

Window Size �(ms) 1 3 5 7 9 11 13 15 17 19
CPU Time / � 0.30 0.13 0.11 0.08 0.07 0.07 0.06 0.06 0.05 0.05

the proposed scrubbing mechanism (with auxiliary window) is compared to the other
current scrubbing approaches Selective and Blind, improvements up to 5.9% and 18.8%
are observed.

7.4. Scrubbing Scheduler Evaluation

This set of experiments evaluates the scrubbing scheduler and demonstrates its feasi-
bility. The following experiments were executed using a machine consisting of a Intel(R)
Xeon(R) processor running at a constant speed of 2.40GHz and 8GB of memory.

7.4.1. Memory Overhead. This experiment evaluates the proposed scrubbing mecha-
nism in terms of memory overhead required to store the produced scrubbing schedule.
In this sense, this experiment compares the memory required to store the scrubbing
schedule when � ranges between 1ms and 20ms to the memory required to store the
scrubbing schedule when � = 1minute (window size considered in the first exper-
iment). It is observed that for a scrubbing schedule window size equal to 20ms (the
biggest considered), the memory overhead required 163B using the cu method to assign
the criticality. Moreover, considering the previous experiment (7.3), for window sizes
bigger than 5ms, the difference to the optimal solutions (with � = 1minute) is less than
1%, reaching almost 0% for window sizes equal to 20ms. Therefore, it is concluded that
by using smaller scrubbing window sizes, there is a significant reduction in the memory
overhead required to store the scrubbing schedule (for � = 1minute, the memory used
is above 500KB) with insignificant losses in terms of system reliability metric.

7.4.2. Scrubbing Schedule Computation Time Over ϒ. This experiment evaluates the be-
havior of the scrubbing schedule computation time over the variation of ϒ . Table V
presents the results, taking into account the same experiment presented in 7.1. Please
note that in this experiment � is equal to 20ms. As it is possible to observe, the time to
compute the scrubbing schedule decreases when ϒ increases. When ϒ is smaller, the
proposed scrubbing mechanism generates a higher number of scrubbing tasks. There-
fore, the time to compute the respective scrubbing schedule for a � window size is
higher when compared to smaller ϒs.

7.4.3. Scrubbing Schedule Computation Time over the Window Size. This experiment eval-
uates the behavior of the time to compute the scrubbing schedule over the window
size (�). Based on the experiment described in Section 7.3, Table VI presents the ratio
between the time required to compute the scrubbing schedule and the the window size.
As you can observe the ratio reduces significantly with the increase of the window size.
Please note that for � = 20ms the scrubbing schedule can be computed using 5% of
the window size.

7.5. Dynamic Adaptation

This experiment assesses the impact of user tasks modifications on their reliabil-
ity. For that, five periodic independent tasks were synthetically generated, and their
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Table VII. Reliabiliy of the user Task τi Over Several user Task Set Modifications

Scheduled Selective Blind
Task A B C D A B C D A B C D
τ1 0.99 0.86 0.90 0.99 0.93 0.93 0.93 0.93 0.82 0.82 0.82 0.82
τ2 0.84 0.84 0.99 0.99 0.78 0.78 0.78 0.78 0.71 0.71 0.71 0.71
τ3 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96
τ4 0.99 0.99 0.99 — 0.95 0.95 0.95 — 0.90 0.90 0.90 —
τ5 0.91 0.99 — — 0.87 0.87 — — 0.84 0.84 — —

implementation in FPGA was simulated. The criticality of the task, assigned by the
user, is descending according to their ids. Therefore, the task τ1 is the most critical
and task τ5 is the least critical one. The ICAP utilization provided to the scrubbing
process was set to 5% and � was configured to 20ms. Table VII shows the reliability
of each task when the different scrubbing mechanisms are applied. Column A shows
the reliability of each task when the system starts the execution. At a certain instant
during the execution, for some reason the criticality of task τ1 is switched with τ5. Task
τ5 becomes the most important in the system and task τ1 the least important one. As
you can observe in column B, when the proposed scrubbing mechanism is applied, the
reliability of task τ5 increases automatically, since more scrubbing effort is given to this
task as opposed to task τ1. During also the execution, task τ5 and task τ4 are suspended
sequentially (columns C and D, respectively). The reduction of the task set allows the
proposed mechanism to automatically redistribute the scrubbing effort given to task τ4
and τ5 by the remaining active user tasks, increasing their reliability for the same ICAP
utilization. Considering the other existing scrubbing mechanisms, the reliability of the
user tasks remains unchanged over the several modifications, since these mechanism
are completely static and decoupled from the user tasks’ execution.

8. CONCLUSIONS

In this article, a new scrubbing mechanism is proposed in order to improve the system
reliability metric of heterogeneous embedded system applications, composed of pe-
riodic/sporadic and streaming/DSP user applications, implemented in reconfigurable
devices. This new mechanism takes into account each user application execution be-
havior as well as its criticality in the system to find the proper scrubbing schedule that
maximizes the overall system reliability metric. The scrubbing schedule is computed
and executed in windows of configurable size. This mechanism allows the reduction of
the memory overhead required to store the scrubbing schedule, as well as it allows dy-
namic adaptations on the scrubbing process as response to user task reconfigurations/
modifications at runtime.

Conducted experiments with different functional scenarios show the feasibility of
the proposed scrubbing mechanism. They show important improvements on the sys-
tem reliability metric compared to other scrubbing mechanisms. Improvements up
to 19.2% on the system reliability metric are observed on average. The experiments
also show significant reductions on the memory overhead with small impact on the
system reliability metric when the scrubbing schedule is performed in windows. This
mechanism also allows high reactivity on the scrubbing process when any modification
occurs on the user application.

As future work, the computation of the ratio between the system reliability metric
achieved by the different scrubbing approaches and their energy consumption would
also be a useful metric for comparison.
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