An Automated Flow to Map Throughput
Constrained Applications to a MPSoC*

Roel Jordans!, Firew Siyoum?!, Sander Stuijk!, Akash Kumar'?2,
and Henk Corporaal!

1 Eindhoven University of Technology, The Netherlands
2 National University of Singapore, Singapore

—— Abstract

This paper describes a design flow to map throughput constrained applications on a Multi-
processor System-on-Chip (MPSoC). It integrates several state-of-the-art mapping and synthesis
tools into an automated tool flow. This flow takes as input a throughput constrained application,
modeled with a synchronous dataflow graph, a C-based implementation for each actor in the
graph, and a template based architecture description. Using these inputs, the tool flow gener-
ates an MPSoC platform tailored to the application requirements and it subsequently maps the
application to this platform. The output of the flow is an FPGA programmable bit file. An eas-
ily extensible template based architecture is presented, this architecture allows fast and flexible
generation of a predictable platform that can be synthesized using the presented tool flow. The
effectiveness of the tool flow is demonstrated by mapping an MJPEG-decoder onto our MPSoC
platform. This case study shows that our flow is able to provide a tight, conservative bound
on the worst-case throughput of the FPGA implementation. The presented tool flow is freely
available at http://www.es.ele.tue.nl/mamps.

1998 ACM Subject Classification C.3 [Special-purpose and application-based systems]: real-
time embedded systems

Keywords and phrases design flow automation, multi-processor system-on-chip, throughput con-
strained, synchronous data-flow graphs

Digital Object Identifier 10.4230/OASIcs.PPES.2011.47

1 Introduction

New applications for embedded systems demand complex multiprocessor designs to meet real-
time deadlines while achieving other critical design constraints like low energy consumption
and low area usage. Multiprocessor Systems-on-Chip (MPSoCs) have been proposed as
a promising solution for such problems but the design space exploration of such systems
typically involves many parameters. Higher abstraction levels, possibly combined with early
and accurate performance predictions, of the designed system are therefore required to
make good design choices. Several tool-flows [6, 10, 13] have been proposed to solve this
problem, but these solutions still require manual design steps which are time consuming and
error-prone. Combining existing tools into a common design flow has proven non-trivial [12]
without careful planning and coordination of the tool development.

In this paper, we present a design flow (see Figure 1) which bundles the strengths of both
the SDF? [14] tool set and the MAMPS [8] platform. The SDF? tool set supports analyzing

* This work was partly funded by the PROGRESS program of the Dutch Technology Foundation STW
through the PreMaDoNa project EES. 6390.

@@@@ © R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, H. Corporaal;

CETWTl licensed under Creative Commons License NC-ND

Workshop on Bringing Theory to Practice: Predictability and Performance in Embedded Systems (PPES 2011).
Editors: Philipp Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, Reinhard Wilhelm; pp. 47-58

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.es.ele.tue.nl/mamps
http://dx.doi.org/10.4230/OASIcs.PPES.2011.47
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

48

An Automated Flow to Map Throughput Constrained Applications to a MPSoC

and mapping synchronous data-flow (SDF) graphs [9]. SDF? uses a graph representation
of the application and a set of models of the hardware platform to calculate the worst-case
throughput of the application for a given mapping of tasks on the platform. MAMPS
provides a tool to generate MPSoC projects for a Xilinx FPGA platform including software
and hardware synthesis based on a SDF description of one or more applications and a
task mapping. MAMPS has been almost completely rewritten as part of this work, new
communication options have been added and the generated hardware and software have
been modeled into SDF2. This ensures that the MAMPS implementation of any mapping
produced by SDF? can be guaranteed to meet or exceed the throughput guarantee provided
by SDF? and thus produce a predictable system.

Application Model
|

! ;‘ | Architecture
! -t <l
| acone [Template
L
- MAMPS
SDF?
Architecture Model : — Platform s1:
D ! Mapping neration Xilinx
' PE PE ! ge Platform
,,,,, — .
'\ TNEG T | Studio
g L B
: PE PE :

Figure 1 Design flow overview.

The remainder of this paper is organized as follows. Section 2 reviews the related work for
automated MPSoC generation and performance prediction. Section 3 provides an overview of
application modeling using SDF graphs. Section 4 gives an overview of the architecture of the
MAMPS platform. The design flow is presented in Section 5 and the implementation changes
to both SDF? and MAMPS are explained in this section. Section 6 presents an experiment
used to validate the design flow and analyzes the design effort and design overhead of the
flow. Section 7 concludes the paper and gives a direction for future work.

2 Related work

The problem of mapping an application to an architecture has been widely studied in literature.
One of the recent works most related to our research is CA-MPSoC [13]. CA-MPSoC extends
the MAMPS platform with a hardware communication assist (CA) which is responsible for
the communication between the processing elements of the platform. The paper presents a
SDF model for this CA controller and uses this model for performance prediction. However,
the presented model has been simplified and lacks modeling of the communication channel.
This paper improves the model by a) including the fragmentation of communicated tokens
into words that can be sent over a network, and b) including a model for the communication
channel on the network itself. The flow presented in [13] introduces options for deciding on a
mapping of the application onto the generated platform but the method requires the user
to manually translate the output format of the mapping tool into the interchange format
of the platform generation tool. The flow presented in this paper automates this step by
introducing a common input format for both the mapping and platform generation tools,
circumventing possible user introduced errors during the translation step.

R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal

ESPAM [10, 11] presents a similar design flow as the flow presented in this paper. The
ESPAM flow uses Kahn Process Networks (KPNs) to model the application. In our approach,
we use SDF graphs in stead. SDF graphs are a subset of KPN graphs and therefore have a
limited expressiveness when compared to KPN graphs. The disadvantage of using pure KPN
for application modelling however is the limited possibilities for analyzing pure KPN graphs.
It is, for example, impossible to analyze buffer requirements in a generic way when using
KPN graphs but this analysis is possible for SDF graphs [2]. Another disadvantage of KPN
over SDF is that KPN requires run-time buffer management and scheduling which make
performance prediction difficult while SDF graphs can be completely analyzed at design
time [14]. Our approach produces a predictable, throughput constrained solution whereas
ESPAM is limited to an estimation of the performance. The PeaCE approach presented in
[6] provides another method for hardware and software co-design. PeaCE uses two different
extended versions of the SDF model and three different types of tasks for representing
different parts of the application, requiring a relatively complex operating system. Our
approach uses a pure SDF representation of the application and implements only a single
task type resulting in a minimal implementation overhead. This comes however at the cost
of a reduced expressiveness and therefore potentially an over dimensioning of our platform.
The experimental results show however that this effect is limited.

3 Application Modelling

Figure 2 shows an example of an SDF graph. There are three actors in this graph. As in a
typical data flow graph, a directed edge represents the dependency between actors. Actors
consume input data from their input edges and/or produce output data on their output
edges; such information is referred to as tokens. Tokens are shown in an SDF graph as dots
on the edges, a number is added to these dots to show that multiple tokens are available.
The number of tokens consumed by an actor is constant and can be read from the SDF graph
next to the incoming vertex. An actor is called ready when it has sufficient input tokens on
all its input edges. Actor execution is called firing, an actor can only fire when it is ready.
An actor also produces a constant amount of tokens per firing denoted next to the outgoing
end of each edge. SDF actors are stateless (i.e. no internal actor state is preserved between
actor firings) so any actor state need to be modelled explicitly. Actor A in Figure 2 is an
example of an actor which keeps state, implemented as the static variable in Listing 1, this
state variable is modeled explicitly in Figure 2 by the self-edge of actor A.

Listing 1 Implementation of actor A N

static int local_ variable_ A ; N

void actor_A_init(typeAtoB x, typeAtoC =x) {

N
local__variable_ A = 0; AN

B
e

1

void actor_ A (typeAtoB xtoB, typeAtoC xtoC) {

// calculate something 1
// and write the output tokens .7
toB[0] = calculate_valueB1(); L7
toB[1] = calculate valueB2(); .7
*toC = calculate_valueC (local variable A); s

} -

Figure 2 Example of an SDF graph together with the implementation of one of the actors.

An application is described using a graph. Edges may contain initial tokens as is shown
on the self-edge of actor A in Figure 2. In the above example, only A can fire in the initial

49

PPES 2011

50

An Automated Flow to Map Throughput Constrained Applications to a MPSoC

state, since the required number of tokens are present on all of its incoming edges. Once A
has finished firing it will produce 2 tokens on its edge to B, 1 token on its edge to C' and
1 token on its self-edge. B can then fire as it has enough tokens on its incoming edge to
execute twice, each time producing 1 token on its edge to C.

Implementing an application using its SDF graph requires an implementation for each
actor. Actor implementations consist of one actor implementation function which takes up
to one parameter per edge connected to the actor. Not every edge needs to be explicitly
implemented as a parameter to the actor implementation function. The self-edge of actor
A is an example of an edge which is not explicitly implemented. Therefore we make a
distinction between explicitly and implicitly implemented edges. Explicitly implemented
edges implement connections between two actors which are transferring data. Implicitly
implemented edges include, but are not limited to, the self-edges as shown above, but can
also be used to model restrictions like limited buffer sizes on the edges connecting multiple
actors as well as modeling a specific firing order as imposed by static order scheduling [14].
Only explicit edges are implemented as parameters of the actor implementation function.
Listing 1 shows an example implementation of actor A. Two functions are created in this
listing, an initialization function and the actor implementation. The actor implementation
function actor_A() has two parameters, one for the edge to B and one for the edge to C', note
that there are no parameters supplied for the implicit self-edge of A. Output tokens are
written to the buffers provided as parameters. The initialization function, actor_A_init, i
responsible for producing the initial tokens that are expected on the output edges of actor
A, in this case the self-edge of A. The initialization function has the same signature as the
main actor implementation but no space is reserved for edges that do not produce initial
tokens and no input tokens are provided.

The application graph and the relation between the graph elements and their respective
implementations are joined into the application model. The application model also specifies a
set of metrics of the actor implementations. These metrics include the Worst-Case Execution
Time (WCET), required memory sizes, and the size of communicated tokens. Memory size
requirements are specified separately for both instruction and data memories in order to
facilitate processing elements that use a Harvard architecture. The memory size requirement
is used in the tool flow to automatically determine the memory requirements for each
processing element. The WCET metrics and token sizes are used by the SDF? tools to
calculate a lower bound on the throughput of the application. A good WCET estimate of
each actor implementation is therefore important for the performance of the presented tool
flow. Many different approaches exist for determining the WCET of (a part of) a program,
either from the source code or some intermediate form. WCET tool challenges [5, 7] present
insightful information about existing WCET analysis tools and techniques and [16] gives an
in-depth analysis of the available methods as well as a survey of existing tools for WCET
analysis. Any of these tools can be used to provide the WCET of actors for the presented
design flow. It is possible that different (optimal) implementations of the same actor exist for
the different types of processing element or tile configuration in the platform template. The
application model can specify multiple implementations for each actor. Each implementation
specification defines the relation between the function arguments of the implementation and
the edges of the graph, the WCET and memory requirements of that specific implementation,
and the type of processing element this implementation can be mapped to. This allows the
tool flow to map the actors on a heterogeneous platform where actor implementations for
different processing elements are likely to have different metrics.

R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal

4 Architecture Modelling

The second input of the design flow is the architecture model (see Figure 1). This model
describes the various components available in the hardware platform and how these com-
ponents are connected. The MAMPS platform allows two types of components in the
architecture; tiles and interconnect. Tiles form the processing elements of the architecture
and the interconnect is limited to connecting tiles together. A standardized network interface
(NI) has been defined for connecting tiles to the interconnect. All tile and interconnect
variants use this same network interface which makes it easy to compose a platform by
using elements from an architecture template. Figure 3 shows an example of the MAMPS
platform architecture. This example shows four different variations of a tile connected
together through an interconnect. Tiles 1 and 2 in the example show simple tile architectures
using a processing element (PE) which is connected to the network interface (NI), a local
memory and some optional peripherals (i.e. 10, timers, etc.). Tile 3 shows a similar tile
which has been extended with a communication assist (CA) which handles the memory
management and serialization, sending, and receiving of tokens. The last tile, Tile 4, shows
another option where a hardware implementation of an actor (IP) is connected directly to
the interconnect using only a network interface.

Tile 1 ——— ~ Tile 2 ——— ~ Tile 3 —— — Tile 4
Memory Memory Inst.
Periph. Data.
e«) _
_________ NI ______________NI ______________
[
i Interconnect :

Figure 3 MAMPS platform architecture example showing different variations of a tile.

Running realistic applications on a system requires that one or more actors have access
to peripherals. Predictability of the MAMPS platform is guaranteed by avoiding the sharing
of peripherals over tiles. Another option for maintaining predictability while using shared
peripherals is to use a predictable arbiter. [1] presents such an arbiter for SDRAM memories.
The technique presented in [1] can be extended to include different types of resources and is
easy to implement.

4.1 Network interface

A clear definition of the network interface is critical for the functioning of the template
based architecture generation. The MAMPS platform defines the Xilinx Fast Simplex Link
interface as network interface. This limits the network interface to communicating 32-bit
words but also makes sure there is a trivial point-to-point solution for the interconnect by
using Xilinx Fast Simplex Links (FSL) [15]. In order to translate arbitrarily sized tokens into
one or more 32-bit words and back again requires serialization and de-serialization. These
operations can either be performed by the processing element of the tile (i.e. the PE block
in Tile 1 of Figure 3), or by the addition of some dedicated communication hardware (i.e.
the CA block of Tile 3 in Figure 3).

The advantage of using the processing element for the serialization and de-serialization

51

PPES 2011

52

An Automated Flow to Map Throughput Constrained Applications to a MPSoC

of tokens is the simplicity of the generated hardware. This simple hardware comes at the
cost of extra processing time used on the processing element which can not be spent on
running actor code. Using dedicated communication hardware like the CA described in [13]
increases hardware complexity but also relieves the processing element from the serialization
and de-serialization of tokens which improves the actor response-time.

4.2 Communication model

The communication introduced in MAMPS has been modeled in an SDF graph. This graph
is used in SDF? to predict the behaviour of edges mapped to the interconnect. Figure 4
shows the parameterized model of communication via the interconnect. Three boxes divide
this model into the parts representing the various phases in the communication of a token.
The dashed edge in this graph shows the original connection in the SDF graph.

Tile A Interconnect Tile B
Qo
Qsre — N N N Xdst
s3 \m / ds (—\.\
p q
PN ¢ Van\ $ A
4 \p N N ‘1 A

I
(Gsrc 0> S1 — S2 —> 1 — C2 —3 do = di —> Adst)
\

A 7 n 4
NP TR
~ .

Figure 4 Parameterized model for communication over the interconnect. Missing port rates and
token counts are to be interpreted as 1.

The central box models the interconnect behaviour, the model allows pipelined sending
of words over the interconnect where the number of initial tokens w is equal to the maximum
number of words in simultaneous transmission. The connections on the interconnect are
also capable of buffering a number of a,, words in transmission. Actors ¢; and ¢y form a
latency-rate model for the communication. Actors s1, so and s3 model the serialization of the
token into N 32-bit words by the network interface. The execution time of s; is dependant
on the design of the serialization code while the execution times for sy and s3 are set to 0
because these actors are only required for the modeling of the serialization of the tokens.
Actors dy, dy and d3 model the de-serialization of the transmitted words into tokens at the
receiving end and are assigned values in the same way as the serialization actors. Finally,
agsre and ags; model the available buffer space on the sending and receiving ends of the
connection. The model in Figure 4 can be used for modeling communication over many
different forms of interconnect by changing w, «,, and the execution times of s1, co, and d
to appropriate values.

5 Design flow

The design flow, as depicted in Figure 1 can be divided in three steps. The application
should first be mapped onto the architecture. This mapping can then be combined with
the original application and architecture specifications into a FPGA design which can, as a
third step, be synthesized into a working system using out of the box FPGA development
software. The goal of this flow is to produce a working implementation of the application
on a given platform, capable of achieving the throughput as required for the application.
The throughput of an application is defined in [3] as the long term average number of graph

R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal

iterations per time unit. The long term average is used to avoid initialization effects from
influencing the throughput. The design flow defines the system clock of the platform as its
base time unit. This section provides a more in-depth description of the SDF? tool set, the
MAMPS platform generation, and the currently available architecture components.

5.1 SDF?

The SDF? tool set consists of several tools that allow automatic mapping of an application
described as a SDF graph to a given platform. SDF? also verifies if such a mapping is deadlock
free, calculates buffer distributions, and predicts which throughput can be guaranteed for
this mapping. SDF? uses generic cost functions to steer the binding of the application to
the architecture based on; processing, memory usage, communication, and latency. Buffer
distributions, task mapping and static-order schedules are determined and gathered in the
mapping output of SDF3. The virtual platform of the SDF? tool set was modified to match
the architecture and model of the MAMPS platform. The algorithms used during mapping
have not been changed from those presented in [14].

5.2 MAMPS

The MAMPS tool set was completely rewritten as part of this research but the architecture
and ideas remain the same. The platform is now generated by combining the information from
the application and architecture models with the mapping output from SDF3. Information

from the architecture model and mapping are used to generate the hardware platform.

Template components are instantiated and connected as required by the application. Memory
sizes are calculated for each tile based on the mapped buffers, actors and the size of the
scheduling and communication layer. The interconnect components are instantiated to match
the specified communication architecture. Connections are routed and the VHDL code
and peripheral driver for the interconnect are also generated when required. The software
platform is generated next. This includes generating wrapper code for each actor, translating
the static-order schedule provided by SDF? into C code, and generating initialization code
for the communication. The generated code is combined with a template project which
already includes an implementation of the scheduling and communication libraries. The XPS
TCL script interface is then used to complete the project and to add the required hard and
software targets for the implementation. Using the script interface ensures compatibility over
many different versions of XPS and greatly simplifies the generated code.

5.3 Currently available in the architecture template

Not all blocks shown in Figure 3 are currently available in the tool flow. The MAMPS
platform currently offers two forms of interconnect and two different tiles. The currently
available architecture components are all targeted for the Xilinx Virtex6 FPGA using the
Xilinx ML605 evaluation board. The subsections below discuss the available options.

5.3.1 Interconnect

Either point-to-point connections using Xilinx Fast Simplex Links (FSL) [15] or a Spatial
Devision Multiplex (SDM) NoC based on [17] can be used for connecting the tiles. Both
interconnects comply to the network interface definition but the NoC interconnect provides
more flexibility at the cost of a larger implementation and a higher latency while the FSL
interconnect simply uses the FSL implementation provided by Xilinx.

53

PPES 2011

54

An Automated Flow to Map Throughput Constrained Applications to a MPSoC

The NoC consists of one router per tile in the design. Each router connects through a set
of wires to its neighbours. Each router can also be connected to the network interface of
a single tile. The routers are arranged in a 2-dimensional mesh network. The dimensions
of this network are based on the number of tiles required in the design and the network is
kept as close to square as possible to reduce the maximum distance between two tiles since
this distance relates directly to the latency of the network connections. The NoC allows
the user to program connections on a point-to-point basis, each connection can be assigned
a certain bandwidth through the number of wires assigned to that connection but wires
can only be assigned to a single connection at a given time allowing an efficient usage of
network resources. The original NoC presented in [17] already complied with the network
interface requirements for the MAMPS platform but missed flow-control for connections in
the network. Flow-control was added as part of the integration of the NoC in the MAMPS
platform. The changes to the NoC required approximately 12% more slices on the FPGA
when compared to the original implementation.

5.3.2 Tile template

As shown in Figure 3, a tile consists of a processing element (PE), an optional instruction
and/or data memory, and a network interface (NI). MAMPS currently provides only two
types of tiles. The first type is the master tile, this tile is similar to Tile 1 in Figure 3. It
uses a Xilinx Microblaze soft-core as processing element, includes up to 256kB memory in a
Modified Harvard configuration and has direct access to the peripherals on the FPGA board.
The FSL ports of the Microblaze and a software library implementing (de-)serialization are
used to implement the network interface. The second type of tile is the slave tile, this tile
is the same as the master tile but does not have access to the peripherals and therefore is
similar to Tile 2 in Figure 3.

6 Case study

The application used in the case study is the MJPEG decoder shown in Figure 5. The
VLD actor parses the input file and decompresses the Minimal Coded Unit (MCU) blocks.
MCUs consist of up to 10 blocks of frequency values, depending on the sampling settings
used when creating the input file. Each block of frequency values is passed through the
inverse quantization and zig-zag reordering (IQZZ) and IDCT actors which transform the
frequency values into color components. The color conversion (CC) actor translates the color
component blocks of one MCU to pixel values and the rasterization (Raster) actor puts
the pixel values at the correct location in the output buffer. The subHeader1 and subHeader2
edges in the SDF graph forward information from the file header (i.e. frame size and color
composition) to the CC and Raster actors. One graph iteration of the MJPEG decoder
decodes a single MCU. This causes the throughput of the application to be defined in MCUs
per clock cycle of the generated platform. A method based on [4] combined with execution
time measurement was used to determine the WCET of the actors in this case study.

subHeader2

subHeaderl 1
1 P 1 1

1
vidState vld2iqzz iqzz2idct idct2cc cc2raster rasterState
1 VLD Pr— 1QZ7Z — IDCT X o CC) d Raster 1

1
1 1

Figure 5 The SDF graph for the MJPEG decoder.

R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal

6.1 Throughput analysis

An important aspect of the presented design flow is the early throughput analysis of the
designed application. The throughput of the MJPEG decoder was therefore measured on
the FPGA implementation and compared to the predicted throughput of SDF?3. Figure 6
shows the worst-case throughput obtained by running the MJPEG decoder on 5 different test

sequences and a synthetic sequence containing random data for two different architectures.

The worst-case analysis line in both graphs shows the SDF? prediction based on the WCET
of the actors. The expected values were calculated using SDF? by using WCET metrics
obtained through execution time measurement of the actor code using the test-data used
for the FPGA measurement. The difference between the expected throughput (blue) and
measured throughput (yellow) shown in Figure 6 shows the margin of the used models (less

than 1% for the synthetic data) when using actors with low variation in the execution time.

Throughput at the worst-case analysis line is guaranteed by the flow.

T 12 2 12

S S

Q Q

2 10 W Measured 12 1ok B Measured i
5 O O Expected 5 O Expected

(=" (=¥

Z 08 1= ost 1
= =

b5)

S 06 12 06} 8
=) =}

Q Q

s 041 worst—case | 041 worst—case |
8 analysis |5 analysis
£ 02r 1 02f R
=) 50

= =

2 =

£ =

= 00 Synthetic Test—set g 00 Synthetic Test—set

(a) FSL interconnect (b) NoC interconnect

Figure 6 Measured and predicted worst-case throughput for a synthetic test-sequence and a
set of real-life test-sequences for two different forms of interconnect compared to the worst-case
prediction of SDF?

6.2 Designer effort

Table 1 lists the required designer effort in creating and mapping the MJPEG decoder as
this was done by the authors of the paper. This implies a working understanding of the
application as well as previous experience in writing applications for the design flow and
platform. The top part of the table represents manual labour performed by the designer
and the bottom part (marked with A) is automated by the presented design flow. Manually
implementing the overall system would cost at least another 2-5 days depending on the
complexity of the hardware (i.e. number of tiles) and the number of application mappings
tried.

6.3 Overhead

The overhead of the generated system when compared to a manually developed system can
be characterized in two categories, modeling and implementation overhead. The primary
source of modeling overhead are the fixed output rates of the SDF actors. This can be
seen in the MJPEG example at the output rate for the VLD actor which produces up

55

PPES 2011

56

An Automated Flow to Map Throughput Constrained Applications to a MPSoC

Table 1 Designer effort, steps marked with A are automated.

Step Time spent
Parallelizing the MJPEG code < 3 days
Creating the SDF graph 5 minutes
Gathering required actor metrics 1 day
Creating application model 1 hour
Generating architecture model 1 second A
Mapping the design (SDF?) 1 minute A
Generating Xilinx project (MAMPS) 16 seconds A
Synthesis of the system 17 minutes A
Total time spent ~ 4 days

to 10 frequency blocks per MCU depending on the format of the input stream. Another
source of modeling overhead can be found in communicating the initialization values on
the subHeaderl and subHeader2 channels in the example. A manual implementation of the
algorithm could communicate these values separately from the main program flow during
an initialization phase, it is not possible to model this using a single SDF graph. However,
these initialization tokes are relatively small and use only 1% of the communication. The
implementation overhead of SDF is also very small. Scheduling on the MAMPS platform
is done through a static order schedule which reduces the scheduler to a lookup table. A
manual implementation is likely to implement the same schedule in its main loop which is
similar in efficiency. Communication would also be solved in a similar way and therefore
does not influence the implementation overhead. The scheduling overhead will be similar
for other applications but the modeling overhead and communication overhead will vary
depending on the nature of the application.

A short second experiment was performed to study the overhead incurred by the
(de-)serialization code in the current tile implementation. In this experiment, the worst-case
execution time of the (de-)serialization functions was replaced with the execution time of the
communication assist as presented in [13] and the WCET of the (de-)serialization routine
was no longer counted towards the execution time of the processing element. This resulted in,
according to SDF3, an increased throughput for our case-study by up to 300% when actors
were mapped to the same resources as in the original experiment. This suggests that the use
of a CA will greatly improve the usability of the MAMPS platform, but this result could not
be verified on hardware because there is currently no support for tiles using a CA.

7 Conclusions

In this paper, we present an automated design flow that is capable of generating an im-
plementation of a given application on a MPSoC and correctly predicting the worst-case
performance of the generated implementation. The design flow provides a method for auto-
matically instantiating different architectures using a template based architecture model.
This template based architecture is easy to extend and allows the automated selection
of the correct implementation when heterogeneous systems are designed. This allows the
designers to perform a very fast design space exploration for real-time embedded systems.
Together with the publication of this paper the whole flow will be made publicly available to
the research community at http://www.es.ele.tue.nl/mamps. For future work we would
like to offer an improved automated design space exploration and more variation in the

http://www.es.ele.tue.nl/mamps

R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal

architecture template. Adding a predictable arbiter could enable multiple tiles in accessing

peripherals while keeping a predictable system. Finally, we plan to add the communication
assist presented in [13].

—— References

1

10

11

12

13

14

15

Benny Akesson et al.: Predator: a predictable SDRAM memory controller; in Proceedings
of the 5th IEEE/ACM international conference on Hardware/software codesign and system
synthesis; p. 251-256; New York, NY, USA; 2007; ACM.

Marc Geilen and Twan Basten: Requirements on the Ezecution of Kahn Process Networks;
in Programming Languages and Systems; vol. 2618 of Lecture Notes in Computer Science;
p. 319-334; Springer Berlin / Heidelberg; 2003.

Amir Hossein Ghamarian et al.: Throughput Analysis of Synchronous Data Flow Graphs; in
Proceedings of International Conference on Application of Concurrency to System Design;
p. 25-36; Los Alamitos, CA, USA; 2006; IEEE Computer Society.

Stefan Valentin Gheorghita et al.: Automatic scenario detection for improved WCET es-
timation; in Proceedings of the 42nd annual Design Automation Conference; p. 101-104;
New York, NY, USA; 2005; ACM.

Jan Gustafsson: The Worst Case Execution Time Tool Challenge 2006; in Proceedings of
the 2nd International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation; p. 233 —240; nov. 2006.

Soonhoi Ha et al.: Hardware-Software Codesign of Multimedia Embedded Systems: the
PeaCE; in Proceedings of the 12th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications; p. 207-214; 2006.

Niklas Holsti et al.: WCET 2008 — Report from the Tool Challenge 2008 — 8th Intl. Work-
shop on Worst-Case Ezecution Time (WCET) Analysis; in Proceedings of the 8th Interna-
tional Workshop on Worst-Case Execution Time (WCET) Analysis; Dagstuhl, Germany;
2008; Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

Akash Kumar et al.: Multiprocessor systems synthesis for multiple use-cases of multiple
applications on FPGA; ACM Transactions on Design Automation of Electronic Systems;
13(3), p. 1-27; 2008.

Edward A. Lee and D.G. Messerschmitt: Synchronous data flow; Proceedings of the IEEE;
75(9), p. 1235 — 1245; sep. 1987.

Hristo Nikolov et al.: Multi-processor system design with ESPAM; in Proceedings of the 4th
International Conference on Hardware/Software Codesign and System Synthesis; p. 211
216; oct. 2006.

Hristo Nikolov et al.: Systematic and Automated Multiprocessor System Design, Program-
ming, and Implementation; IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems; 27(3), p. 542-555; mar. 2008.

Andy Pimentel et al.: Tool Integration and Interoperability Challenges of a System-Level
Design Flow; in Embedded Computer Systems: Architectures, Modeling, and Simulation;
vol. 5114 of Lecture Notes in Computer Science; p. 167-176; Springer Berlin / Heidelberg;
2008.

Ashan Shabbir et al.: CA-MPSoC: An automated design flow for predictable multi-processor
architectures for multiple applications; Journal of Systems Architecture; 56(7), p. 265-277;
2010; Special Issue on HW/SW Co-Design: Systems and Networks on Chip.

Sander Stuijk: Predictable Mapping of Streaming Applications on Multiprocessors; PhD
Thesis; Eindhoven University of Technology; 2007.

Xilinx website: Fast Simplex Link overview; apr. 2010; http://www.xilinx.com/
products/ipcenter/FSL.htm.

57

PPES 2011

http://www.xilinx.com/products/ipcenter/FSL.htm
http://www.xilinx.com/products/ipcenter/FSL.htm

58 An Automated Flow to Map Throughput Constrained Applications to a MPSoC

16

17

Reinhard Wilhelm et al.: The worst-case execution-time problem—overview of methods and
survey of tools; ACM Transactions on Embedded Computer Systems; 7(3), p. 1-53; 2008.
Zhiyao Joseph Yang et al.: An Area-efficient Dynamically Reconfigurable Spatial Division
Multiplexing Network-on-Chip with Static Throughput Guarantee; in Proceedings of Inter-
national Conference on Field Programmable Technology; p. unknown; Beijing, China; dec.
2010; IEEE; Paper accepted for publication.

	Introduction
	Related work
	Application Modelling
	Architecture Modelling
	Network interface
	Communication model

	Design flow
	SDF3
	MAMPS
	Currently available in the architecture template
	Interconnect
	Tile template

	Case study
	Throughput analysis
	Designer effort
	Overhead

	Conclusions

