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Abstract

Multi-task supported processing elements (PEs) are required in a Multiprocessor System-on-Chip platform for
better scalability, power consumption etc. Efficient utilization of PEs needs intelligent mapping of tasks onto them.
The job becomes more challenging when the workload of tasks is dynamic. These scenarios require tasks to be mapped
at run-time. This paper presents a run-time mapping technique for efficiently mapping the tasks of applications on the
multitasking resources. The technique tries to map the communicating tasks onto the same processing resource and
also the tasks of an application close to each other in order to reduce the communication overhead. For an evaluated
scenario, the presented technique reduces total execution time by 22%, average channel load by 47% and power
dissipation by 48% when compared to state-of-the-art run-time mapping techniques.

Keywords: Multiprocessor System-on-Chip (MPSoC), Network-on-Chip (NoC), Mapping Algorithms.

1. Introduction

The advancement in nanotechnology has made it feasible to develop a complete system on a single chip. The
Systems-on-Chip (SoCs) can integrate several processing elements (PEs) towards the development of Multiprocessor
Systems-on-Chip (MPSoCs). The PEs need to be connected by an on chip interconnect. Network-on-Chip (NoC)
interconnection scheme seems to be used in future architectures as traditional schemes such as shared buses and
point-to-point dedicated links are not scalable [1]. These days complex embedded applications are targeting MPSoCs
as the performance requirements cannot be achieved by a system based on a single general purpose processor.

A homogeneous MPSoC composed of identical PEs supports only a few applications, whereas a heterogeneous
MPSoC composed of different type of PEs can support a wider variety of applications. Recently, Intel [2] and Tilera
[3] proposed homogeneous MPSoCs with 80 and 100 PEs respectively, connected by a NoC. IBM, Sony and Toshiba
proposed a heterogeneous MPSoC composed of one manager processor and 8 floating-point units [4]. Future MPSoC
architectures are anticipated to contain thousands of PEs in a single die by 2015 [5].

Embedded applications like multimedia and networking contain dynamic workload of tasks. This type of workload
needs run-time management of tasks as the tasks enter into the system at run-time. Mapping tasks on the MPSoC
architecture at run-time needs dynamic mapping techniques.
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The mapping techniques find the placement of tasks in the architecture in view of some optimization criteria like
reducing energy consumption, total execution time etc. Most of the existing mapping techniques consider single task
supported PEs in the platform and are optimized for the same. These techniques do not perform well when applied
to an MPSoC containing multi-task supported PEs as they are not able to utilize the PEs efficiently. To overcome the
drawbacks and limitations of these techniques, we present a new task mapping technique targeting MPSoCs containing
multi-task supported PEs. The main goal is to reduce the communication overhead that minimizes congestion in
the network. The presented heuristics take maximum advantage of the multi-tasking PEs by carefully mapping the
communicating tasks on the same PE that results in reduced communication overhead between them. The tasks on the
same PE can communicate faster as they do not need any network resource. The presented heuristic outperforms the
existing ones significantly. The evaluated performance metrics include overall execution time, average channel load
and power dissipation.

The rest of the paper is organized as follows. Section 2 provides an overview of related work in mapping. Section
3 presents the mapping problem formulation, target architecture and drawbacks of existing mapping strategies. In
section 4, we present our proposed mapping technique to overcome the drawbacks of existing ones. The performance
of the proposed and existing mapping techniques are evaluated in section 5. Section 6 concludes the paper and
provides future directions.

2. Related Work

Task mapping can be accomplished by static (design-time) or dynamic (run-time) mapping techniques depending
upon the workload scenarios. Static mapping is suitable for static workloads and the placement for a task is found
with its well known computation and communication behavior at design-time. In dynamic workload scenarios, a task
might come into picture at run-time, requiring dynamic mapping techniques to map it.

Some static mapping techniques are presented in [6, 7, 8]. Work in [6] uses genetic mapping algorithm and tries to
optimize energy consumption. Tabu Search algorithm is adopted in [7], to explore the large search space for finding
the placement of tasks. In [8], Simulated Annealing algorithm is employed to solve the mapping problem.

Dynamic mapping techniques are required to find the placement of tasks at run-time. Chou et al. [9] propose a run-
time mapping strategy that incorporates user behavior information in the resource allocation process. Communication
energy is saved by a large amount compared to the arbitrary task allocation strategies. Nollet et al. [10] describe a
run-time task assignment heuristic for mapping the tasks on an MPSoC containing FPGA fabric tiles. The FPGA tiles
facilitate for managing a configuration hierarchy that improves the task assignment success rate and quality. Smit
et al. [11] present a mapping algorithm to map an application task-graph on a MPSoC at run-time. The algorithm
tries to place each task near to its communicating entities in order to save the energy consumption. Faruque et al.
[12] present an agent based distributed application mapping approach for large MPSoCs such as 32×64 systems. The
approach reduces monitoring traffic and computational effort. H”olzenspies et al. [13] propose a run-time spatial
mapping technique consisting of four steps to map the streaming applications on MPSoCs. Briao et al. [14] present
dynamic task allocation strategies based on bin-packing algorithms for soft real-time applications. The energy is
saved by turning off idle processors and applying Dynamic Voltage Scaling to processors with slack. Mehran et al.
[15] suggest a Dynamic Spiral Mapping (DSM) algorithm for mapping an application on an MPSoC arranged in 2-D
mesh topology. The placement for a task is searched in a Spiral path, trying to place the communicating tasks close
to each other. Carvalho et al. [16] present heuristics for mapping tasks on MPSoCs at run-time. In [17], heuristics are
refined to show performance improvements. Tasks are mapped on the fly, according to the communication requests
and the load in the NoC links. Each PE in the MPSoC can support only one task. Differently from this, the PEs in
our target MPSoC support more than one task. Among all the state-of-the-art heuristics presented in [16], Nearest
Neighbor (NN) heuristic outperforms when evaluated for total execution time and shows almost similar results for
average channel load. We have considered NN for evaluation and performance comparison with our proposed mapping
technique.

3. Problem Statement

This section first introduces some definitions necessary to understand the mapping problem along with used MP-
SoC architecture description, then shortcomings of existing mapping approaches and finally, the problem that we are
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heading to solve.
An application task graph is a directed graph TG = (T, E), where T is a set of application tasks and E is the set

of all edges in the application, connecting the tasks and representing their communication. An edge connecting two
tasks of Video Object Plane Decoder (VOPD) application is shown in Figure 1. A task ti ∈ T is represented as (tid,
ttype, texec), where tid is the task identifier, ttype is its type (hardware, software, initial) and texec is the task execution
time. An edge in the edge set E contains communication information between two connected tasks and is expressed as
(Vms, Rms, Vsm, Rsm) like in Figure 1, where Vms is the data volume to be sent from task m to s with injection rate Rms.
Vsm and Rsm have similar meaning for sending the data from task s to m. Volumes V show the flits to be transmitted
and rates R show the desired bandwidth. The connected tasks are represented as master-slave pair. In Figure 1, iQuant
is master (m) and iDCT is slave (s).

ms ms sm sm

Figure 1: Two tasks of VOPD application and communication between them.

An MPSoC architecture is a graph AG = (P, V), where P is the set of PEs and V represents the on chip communi-
cation channels for interconnecting the PEs. A PE is identified by its identifier pid and its type is represented as ptype.
Each physical channel vi, j ∈ V keeps the available bandwidth usage (% of available bandwidth) for transmitting the
data.

In our proposed NoC-based MPSoC architecture, each PE supports more than one task. The PEs are connected
in an 8×8 mesh topology by a NoC. Among the available PEs, one is used as Manager Processor and is responsible
for managing task operations and resources usage, including run-time management of task loads. Task mapping is
activated when a mapped task need to communicate with a not yet mapped task at run-time.

Task mapping is represented by function mpg : ti ∈ T �−→ pi ∈ P, that maps a task of the application to a PE in the
MPSoC architecture.

One possible mapping of an application task graph on part of the MPSoC architecture by applying the nearest
neighbor (NN) run-time mapping heuristic is shown in Figure 2. For demonstration, each PE is assumed to support
maximum three tasks. First, the initial task (0) is mapped and other tasks are requested to be mapped at run-time when
a communication to them is required. The placement for the requested task is searched in increasing hop distances (0
to max hop count). When the initial task starts executing, it requests its communicating slave tasks (1 & 2) and their
mapping is found on the nearest possible neighbor PE. As each PE is assumed to support three tasks, so the requested
tasks (1 & 2) can be mapped onto the same position as of task 0 (hop distance = 0). After mapping tasks 1 and 2,
they start their execution and their slave tasks (tasks 3 & 4 for task 1; tasks 5 & 6 for task 2) are requested and their
mapping is found by the NN. The possible mapping for tasks 3, 4, 5 and 6 is shown. Now, when these tasks (3, 4, 5
& 6) start executing, their slave tasks (7, 8 & 9) are requested and their mapping is found. In the same manner, task
10 gets requested and mapped when task 7 starts its execution. A possible mapping for all the requested tasks of the
application by NN heuristic is shown in Figure 2. The communication between the communicating tasks start when
they are mapped.
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Initial Task (INI)

7 8 9
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7,8,10

6,90,1,2

Figure 2: Mapping by an existing mapping heuristic.
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Figure 3: Mapping by the proposed technique.
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Communicating task pairs (0, 1), (0, 2), (6, 9) and (7, 10) gets mapped onto the same PE. Thus, communication
overhead gets reduced. But, rest of the communicating pairs need to communicate from different PEs, thus a lot of
communication overhead still remains. This overhead can be further reduced if more communicating pairs can be
mapped onto the same PE. Next, we discuss our proposed strategy that maps the communicating pairs systematically
so that most of them are mapped on the same PE.

4. Proposed Mapping Technique

This section details our proposed mapping technique. The technique is explained with the help of an example
application.

The mapping is started by the initial (starting) task of the application. Each application’s initial task is mapped by
using a clustering approach that divides the NoC into clusters or regions. Each cluster (Figure 3) supports only one
initial (INI) task that is placed at the center of the cluster. So, resource sharing between applications is possible, but
its occurrence is minimized. The boundaries of the clusters are virtual, so an application might use parts of different
clusters if required.

When the initial task starts execution, communicating tasks are requested. For each unmapped requested task,
the placement is found by scanning the whole network (hop distance = 0 to max hop count) with the help of the
Algorithm 1. If there is no supported resource in the platform, the task is entered into its corresponding type of queue
and waits for a resource to become free that can execute the task (step 33). As and when a supported resource becomes
free, the queued task is released from the queue and is mapped onto the resource (step 34).

The technique is applied on the same application as used before to see its potential over the existing techniques.
The technique is explained with Algorithm 1. Unlike the Nearest Neighbor (NN) strategy as described before, here
the placement for requested tasks is not found as and when they come into picture. Out of all the requested slave tasks
from some particular task (master or requesting task), placement for the first one is found and others are stored in a
queue named Application Queue (AQ). For a requested task (step 1), first its master task is found (step 2) then it is
checked if the found master task is same as of the master of previous requested task and the present requested task is
not a leaf task (step 3). If the checked condition (step 3) is satisfied, the requested task is entered into the AQ (step 4).

By following above conditions, mapping for the first requested task from a master is found and other requested
tasks from the same master gets entered into the AQ. This facilitates in mapping of most of the communicating pairs
on the same PE that might not happen if all the requested tasks are tried to be mapped at the same time. As the
platform PEs are modeled to support multiple tasks, so the requested slave task can get mapped on the same PE as of
the master task (step 9), reducing the communication overhead. After the mapped task starts executing, its unmapped
communicating (slave) tasks are requested. Similarly as before, the placement for the first requested task is found and
others are placed in the same AQ. The placement could be same as of the requesting task as PEs support multiple
tasks, further reducing the communication overhead. Thus, many communicating pairs can be mapped on the same
PE. The same process continues until the communicating tasks from one branch of the application are supported at
the same PE. If not, the requested task is entered into the AQ and one of its previously queued task is taken out to find
its mapping by NN. The mapping is found by scanning the NoC in increasing hop distances (1 to max hop count)
from its requesting task (step 12). For the queued tasks, out of the many possible mapping positions, one that does
not have any previously mapped task (step 17) is chosen so that its unmapped communicating tasks would be mapped
on the same PE, to reduce the communication overhead. The scanning stops when the placement is found. The same
process as described above continues for the requested tasks by the mapped queued task. Additionally, while finding
the mapping for the queued task, it is not entered into the AQ again to avoid the unnecessary overhead of queuing and
finding placement for it many times. For this, comingFrmAppQ variable is set while finding mapping for a queued
task. Also, leaf tasks are not entered into the AQ (step 11) and are mapped even if not supported at the same PE as
of its requesting task to avoid the unnecessary overhead of queuing and finding its mapping again. If a requested task
does not gets mapped on the same PE as of its master and does not follow any of above conditions (step 23) then also
the task is entered into the AQ (step 24). After queuing at this point, it is checked if there is any previously queued task
(step 25) to start the mapping of previous queued tasks (step 26). The same strategy is followed by all the requested
tasks. When there is no task to be requested and there is a task in the AQ, the mapping is started with the queued task.
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Algorithm 1 Smart Nearest Neighbor (SNN)
Input: TG(T,E), AG(P,V) // task ti ∈ T ; PE pi ∈ P (PE)
Output: mpg (mapping TG(T,E)→ AG(P,V))
// NFR[type]: number of free resource(s) of type type in NoC

1: for all unmapped task ti ∈ T that is requested do
2: mstTID = Finding master of the requested task from buffer storage;
3: if mstTID == oldmstTID AND ti is not a leaf task then
4: scheduleToAppQ(ti, mstTID); oldmstTID = mstTID;
5: wait and go to step 1 if new task is requested;
6: else
7: if NFR[titype] != 0 then
8: if at requesting (hop = 0) PE titype==pitype & resource available at pi then
9: Map ti onto the requesting PE pi and exit to step 35;

10: else
11: if ti is a leaf task OR comingFrmAppQ then
12: for all hop distance = 1 to max hop count do
13: PE list = get PE list(hop distance);
14: for all PEs ∈ PE list do
15: if titype==pitype AND resource available at pi then
16: prev tasks = Find previously mapped tasks on pi;
17: if (prev tasks == NULL & comingFrmAppQ) OR ti is leaf then
18: Map ti onto PE pi and exit to step 35;
19: end if
20: end if
21: end for
22: end for
23: else
24: scheduleToAppQ(ti, mstTID);
25: if queueAppNtids > 1 then
26: leaveFrmAppQ(ti, mstTID); comingFrmAppQ = 1; go to 11: to map ti;
27: else
28: go to step 1 for next requested task ti ∈ T;
29: end if
30: end if
31: end if
32: else
33: insert(ti to Queue(titype)); wait until NFR[titype] != 0;
34: release(ti from Queue(titype)); Map ti onto the freed resource at node pi;
35: insert(pi to mpg); update(resources by mpg);
36: if mapped ti is leaf task AND queueAppNtids > 0 then
37: Perform step 26;
38: else
39: go to step 1 for next requested task ti ∈ T;
40: end if
41: end if
42: end if
43: end for

One possible mapping of an application on part of the MPSoC using the proposed mapping technique is depicted
in Figure 3. Here also, each PE is assumed to support maximum three tasks and the application is same to compare
the final mapping with NN mapping strategy. After mapping initial task (task 0), communicating slave tasks 1 and 2
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are requested. Placement for the task 1 is found and task 2 is placed in the AQ. Task 1 gets mapped with task 0 as
each PE supports multiple tasks. When task 1 starts executing, it requests its communicating tasks 3 and 4. Task 3
gets mapped on the same PE as of its requesting task (task 1) and mapping for task 4 is also found as it is a leaf task
that should not be queued according to the strategy described above. Now when task 3 starts execution, task 7 gets
requested. Task 7 can’t be mapped with task 3 as the PE supporting it already has three tasks mapped on. So, task
7 is entered into the AQ and previously queued task 2 is considered for mapping. According to the strategy, it needs
to be mapped at a PE without any previous task so that its unmapped communicating tasks would be mapped with it.
A possible mapping for task 2 is shown in Figure 3. For its communicating tasks 5 and 6, task 5 is mapped with it
and task 6 is entered into the AQ. After mapping the task 5, its communicating task 8 is requested and gets mapped
on the same PE. Since, there is no task to be requested, the queued task 7 is considered for mapping and should be
mapped on a PE without any previous task. A possible mapping for it and its unmapped communicating task 10 is
shown. After mapping task 10, queued task 6 is considered for mapping. Placement for task 6 with its unmapped
communicating task 9 is shown.

This strategy maps most of the communicating pairs onto the same PE as shown in Figure 3. Communicating task
pairs (0, 1), (1, 3), (2, 5), (5, 8), (7, 10) and (6, 9) get mapped on the same PE. Thus, communication overhead is
greatly reduced as compared to the previous strategy where only few pairs were mapped on the same PE. We switch
to find mapping of queued tasks without traversing all the tasks of a branch in order to start the parallel execution
of tasks from another branches as well. This switching avoids long waiting for the tasks of another branch that can
be executed in parallel and decreases chances of mapping the communicating tasks far from each other. All these
considerations facilitate in finishing the application’s tasks execution faster.

5. Performance Evaluation

Experiments are performed in co-simulation (SystemC for applications and RTL-VHDL for NoC [18]) by Model-
Sim Simulator. The NoC is arranged in 2D-mesh topology and it’s parameters include input buffers, wormhole packet
switching, 16-bit flit width and deterministic XY routing. SystemC is used to model the PEs with two SystemC-
threads. One thread for the Manager Processor (MP) named Mthread is responsible for resource and task (mapping,
scheduling) management. Second thread for rest of the PEs named TASKthread describes task behavior implementa-
tion that is specified in a configuration file containing execution time and communication rates for each task.

We evaluated 20 identical tree like applications (parallel benchmarks have this profile) each having 10 tasks and
injection rate is varied from 5 to 20% (% usage of available bandwidth). Each application is modeled as in Figure
2, consisting of one initial (starting) and rest as software tasks. An 8×8 NoC-based MPSoC is considered, where all
the PEs are processors. One PE is used for the MP and rest 63 PEs as software resources. All the processors except
those supporting the MP and initial tasks are considered to support multiple tasks. Initial tasks act as manager of
applications and have overhead for managing other tasks, so the supported processors are considered to support only
one task. The PEs reserved for initial tasks are defined aiming to uniformly distribute them over the system area. The
experiment has been performed at 2 tasks/processor, which is easily extendible to more number of tasks. The number
of simultaneously running applications was varied and best results were obtained at 10 applications.

5.1. Total Execution Time

The total execution time is the overall time to execute all the applications. The overall time includes mapping,
configuration, computation, waiting (when system does not have a supported resource) and communication time. Out
of all these times, communication time dominates, which is required to transfer packets from one PE to another. This
dominating time highly depends on the communication overhead that is greatly reduced by our proposed strategy.
Thus, overall execution time gets reduced.

Figure 4.(a) shows total execution time when Nearest Neighbor (NN) and Smart Nearest Neighbor (SNN) heuris-
tics are employed. The SNN heuristic outperforms NN at all the communication rates and an average improvement of
22.83% is achieved.

Our analysis in time complexity shows that both NN and SNN heuristics have time complexity of same level that
is of O(C), where C is number of PEs in the NoC. The heuristics execute almost in similar time.
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Figure 4: Overall Execution Time, Average Channel Load and Power Dissipation at different communication rates for NN and SNN mapping
heuristics.

5.2. Average Channel Load

It represents the NoC use and is calculated by looking loads in all the channels at some fixed clock cycle inter-
val until execution of all the applications is finished. The loads depend on traffic produced in channels while two
tasks communicate from different PEs. The proposed strategy maps maximum communicating pairs on the same PE
resulting in reduced traffic production in channels.

Figure 4.(b) plots average channel load for NN and SNN heuristics at varying rates. At all the rates, the SNN
heuristic reduces the average channel load significantly when compared to NN. An average gain of 47.38% is achieved
by SNN over NN.

5.3. Power Dissipation

Power is needed to transfer packets from source PE to destination PE on them communicating tasks are mapped.
The amount of power depends on the distance between both the PEs and the number of bits to be transferred. The
bits are calculated by multiplying the number of packets to average packet size and are considered as data volume Vms

and rate Rms (Figure 1) respectively, when transferring from master to slave. As communication happens from slave
to master as well, so total bits include multiplication of Vsm and Rsm (Figure 1) too. The distance between source-
destination pair is considered as Manhattan distance (ΔXms + ΔYms) as XY routing algorithm is used. The power
dissipation is estimated as the product of number of bits to be transferred and distance between source-destination
pair by Equation 1, for all master-slave pairs.

PD =
∑

[(Vms × Rms + Vsm × Rsm) × (ΔXms + ΔYms)] (1)

Our strategy places the communicating tasks on the same PE. The bits can be easily exchanged through some
common register or memory without needing communication channels that need lot of energy. The distance between
source-destination pairs is also reduced as they become the same PE by placing the communicating task pairs on it.
Thus, power dissipation is greatly reduced by reducing the energy consumed in communication.

Third graph in Figure 4 plots power required by NN and SNN heuristics at different communication rates for the
evaluated application scenario. The power is clearly proportional to the rate. The SNN heuristic achieve an average
gain of 48.38% over NN.

6. Conclusions

This paper describes an efficient run-time mapping technique for MPSoC platforms consisting of multi-task sup-
ported PEs. The technique tries to map maximum communicating task pairs of an application on the same PE to
reduce the communication overhead. The communicating tasks mapped on the same PE can communicate faster
as they don’t need to communicate through channels of the NoC. The performance of the technique is evaluated to
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map the applications onto an 8×8 NoC-based MPSoC. Evaluated performance metrics total execution time, average
channel load and power dissipation show significant improvement as they heavily depend on the communication over-
head. Our future scope includes evaluation of real-time benchmarks on the MPSoC platform and to incorporate task
migration when a performance bottleneck is detected in order to improve the performance.
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