
Communication and Migration Energy Aware Design Space
Exploration for Multicore Systems with Intermittent Faults

Anup Das, Akash Kumar and Bharadwaj Veeravalli
Department of Electrical and Computer Engineering

National University of Singapore
Email: {akdas, akash, elebv}@nus.edu.sg

Abstract—Shrinking transistor geometries, aggressive voltage
scaling and higher operating frequencies have negatively im-
pacted the dependability of embedded multicore systems. Most
existing research works on fault-tolerance have focused on
transient and permanent faults of cores. Intermittent faults are
a separate class of defects resulting from on-chip temperature,
pressure and voltage variations and lasting for a few cycles
to several seconds or more. Operations of cores impacted by
intermittent faults are suspended during these cycles but come
back alive when conditions become favorable.

This paper proposes a technique to model the availability
of multiprocessor systems-on-chip (MPSoCs) with intermittent
and reparable device defects. This model is based on Markov
chain with stochastic fault distribution and can be applied even
for permanent faults. Based on this model, a design space
pruning technique is proposed to select a set of task map-
pings (with variable resource usage), which minimizes the task
communication energy while satisfying the MPSoC availability
constraint. Moreover, task migration overhead is also minimized,
which is an important consideration for frequently occurring
intermittent and temperature related faults, where prolonged
system downtime during task re-mapping is not desired. Ex-
periments conducted with real-life and synthetic application
task graphs demonstrate that the proposed technique minimizes
communication energy by 30% and reduces migration overhead
by 50% as compared to the existing approaches.

I. INTRODUCTION

Shrinking feature-size and growing transistor density are
negatively impacting the dependability of multiprocessor
systems-on-chip (MPSoCs) by increasing the chances of faults
(permanent, intermittent and transient) [1]. Recently, intermit-
tent device defects are gaining significant attention among
research community [2]–[4]. These are a class of hardware
faults occurring frequently but irregularly over a period of
time due to process, voltage and temperature (PVT) variations.
A recent study with error logs from 950,000 PCs reveals
that 39% of the hardware errors are intermittent [4]. Beside
MTTF, one important performance metric for MPSoC with
intermittent faults is its availability i.e. the percentage of time
it is available to execute an application.

Task re-mapping has shown significant promise to tolerate
transient and permanent faults [5]–[13]. Intermittent faults
present separate challenges for system designers due to the
unpredictability associated with their occurrence and their
duration. Naively suspending the system operation for the
intermittent fault duration can degrade system performance
significantly. Unlike transient faults, task re-execution cannot
guarantee elimination of the intermittent faults as they usually
persist for a few cycles, if not for a few seconds or more.
Permanent fault-aware task-mapping techniques, those mini-
mizing failure probabilities, are not effective for intermittent
faults either. This is due to the non-consideration of migration
overhead which can lead to significant system downtime

making the system unavailable for the entire fault duration and
a similar downtime after fault duration to restore the tasks back
to their original cores. Thus, although permanent fault-aware
mappings maximize the useful life of a system, the availability
requirement is often violated as shown in Section VII.

Another research direction for embedded multiprocessor
systems is concerning energy consumption. Researchers have
shown that carefully selecting an application task mapping
can significantly reduce task communication energy which
constitutes a large fraction (≈ 60% according to [14]) of the
overall energy consumption. This is orthogonal to dynamic
voltage or frequency scaling capabilities of an MPSoC which
can further reduce the task computation energy.

Contributions: Following are the key contributions.
• Markov modeling of multiprocessor system availability

with stochastic fault-distribution.
• Task mapping technique to minimize the application

communication energy while satisfying the MPSoC avail-
ability constraint.

• Minimization of task migration overhead for frequently
occurring intermittent and temperature related faults.

• A heuristic to minimize the execution time of the energy,
reliability and migration aware design space exploration.

A closed form expression for MPSoC availability is derived
using Markov state transition. Based on this expression, anal-
ysis is performed at compile-time to obtain an initial task-
mapping which minimizes communication energy and task
migration overhead while satisfying the MPSoC availability
constraint. Experiments with real-life and synthetic application
task graphs on MPSoCs with homogeneous cores demonstrate
that the proposed approach minimizes communication energy
by 30% and the migration overhead by 50% as compared to the
existing permanent fault-tolerant approaches. Moreover, the
proposed heuristic reduces the design space exploration time
by reducing mappings by more than 90% with satisfactory
result quality (within 10% variation from minimum energy).

To the best of our knowledge, this is the first work which
models MPSoC availability (using Markov chain) considering
intermittent and reparable faults and integrate the same in
application mapping.

The rest of the paper is organized as follows. A brief
overview of the prior works in fault-tolerance and energy
minimization domain is provided in Section II. This is then
followed by preliminaries on MPSoC reliability and the design
methodology in Sections III and IV respectively. The detailed
problem formulation is provided next in Section V. Section VI
introduces the readers to the proposed heuristic for solving
the multi-criterion optimization problem. Finally, Section VII
presents the results and different trade-off analyses and Sec-
tion VIII concludes the paper with key future directions.

II. RELATED WORKS

A. Permanent Fault-Aware Task Mapping
Permanent fault aware task mapping techniques generate a

starting application mapping with the aim of maximizing the
lifetime (measured as Mean Time To Failure (MTTF)) of an
MPSoC. Authors in [6]–[8] have shown that the failure rate
during useful operating life of a core is constant and therefore
exponential model can be safely assumed for the lifetime dis-
tribution. Core aging effects such as electromigration, stress-
migration and thermal cycling are modeled into temperature
and the same is incorporated in the application mapping and
scheduling. There is a second category of research considering
Weibull and Lognormal models for core lifetime distribution
[9] [10]. Authors in these works considered factors such
as temperature, operating frequency and voltage explicitly
in the scale parameter of the distribution. There are three
limitations of these works. First, mappings are generated based
on a series-failure assumption i.e. an MPSoC fails when the
first core becomes faulty (single fault consideration). This
assumption is not true, in general, for modern MPSoCs,
where tasks can be remapped after fault. Second, these works
generate a starting mapping considering the fact that a core
once faulty can never come alive. These mappings when
applied to reparable and intermittent faults, can lead to sub-
optimal results in terms of MPSoC availability, as shown in
Section VII. Third, task communication energy and migration
overhead are not considered in these works. There is one
recent work incorporating multiple failures in task-mapping
generation [11]. However, this work also suffers from the
second and the third limitations discussed above.

B. Energy and Fault-Aware Task Mapping
Most of the prior attempts to integrate energy and fault-

tolerance in the application mapping generation have focused
on transient faults [15]. Recently, there is one work on gen-
erating task-mapping with the joint objective of reducing task
communication energy and maximizing system MTTF (under
permanent fault) [12]. However, consideration of reparable
and intermittent faults, migration overhead and multiple core
failure-based analysis are lacking.

To summarize, Table I provides the requirements for energy
and reliability aware design space exploration for reparable
and intermittent faults and limitations of the existing works.

TABLE I
REQUIREMENTS AND LIMITATIONS OF RELATED WORKS

Related Weibull Multiple Reparable Comm. Migration
Works Distribution Core Failures Faults Energy Overhead
[6]–[8] × × × × ×

[9], [10]
√

× × × ×
[11]

√ √
× × ×

[12]
√

× ×
√

×
Proposed

√ √ √ √ √

III. PRELIMINARIES ON INTERMITTENT FAULTS

A. Causes of Intermittent Faults
There are three major factors contributing to intermittent

faults – wear-outs, manufacturing and design defects. Wear-
outs such as negative bias temperature instability (NBTI)
and time dependent dielectric breakdown are susceptible to
PVT variations at deep submicron nodes (45nm and beyond).

MapDB

Applications

core core

core core

NoC

Fault

core core

core core

NoC

Fault

Run-time Manager

Fault-tolerant Analysis

C
o

m
m

u
n

ic
a

ti
o

n

E
n

e
rg

y

R
e

li
a

b
il

it
y

M
ig

ra
ti

o
n

O

v
e

rh
e

a
d

Compile-Time

Application
Application

Application

Fig. 1. Design Methodology

Another major cause for intermittent faults is manufacturing
defects. Although, deterministic defects are detected in the
testing phase, non-deterministic faults manifest as intermittent
faults. Finally, design defects, those triggering from rare
corner-cases can also lead to intermittent faults.

B. Intermittent Fault Occurrence and Distribution
The lifetime of a core (denoted by t) is a continuous

random variable taking non-negative values. There are several
distributions considered in literature for modeling faults in
a core. This work assumes Weibull distribution with a base
MTTF of 6.56 years to model the occurrence of intermittent
burst errors in a core. However, during each error burst the
fault is modeled using Poisson distribution [2].

The probability density function of Weibull distribution is

f(t) =
βtβ−1

ηβ
e−(t/η)β , t ≥ 0 (1)

where β is the shape parameter and η is the scale parameter.
The reliability (R) and the failure rate (λ) are given by

R(t) =

∫ ∞
t

f(t) dt = e
−(t/η)β and λ(t) =

β

η
(t/η)

β−1

There are three dominant wear-out effects studied for ICs:
electromigration (EM), time-dependent dielectric breakdown
(TDDB) and thermal cycling (TC). EM related wear-out
failures are assumed here; however, any other effects can be
easily incorporated by changing the scale parameter.

The scale parameter due to EM is calculated using Equa-
tion 2 (Black’s equation ref [16]) where Γ is the gamma
function, A0 and n are material-related constant, J(Jcrit) is
the (critical) current density, Ea is the activation energy, K is
the Boltzman’s constant and T is the temperature.

η =
MTTF (EM)

Γ
(

1 + 1
β

) =
A0(J − Jcrit)−ne

Ea
KT

Γ
(

1 + 1
β

) (2)

IV. DESIGN FLOW

The task mapping methodology consists of two phases –
analysis at compile-time and execution at run-time. The focus
of this research is on the compile-time analysis; however, for
the sake of completeness, a brief overview is provided on how
to use the compile-time analysis results at run-time.

A. Compile-Time Analysis
The compile-time design methodology (highlighted in Fig-

ure 1) consists of determining an application mapping which
minimizes the communication energy and migration overhead
for every application enabled on the platform. The result is
a set of mappings e.g. {MFFT

n ,MFFT
n−1 , · · · ,MFFT

k }, where
MFFT
n denotes mapping of application FFT on the MPSoC

V0

0
c0V1

V3

V2

V4

Application Graph
(Gapp)

Architecture Graph
(Garc)

Gapp Garc3
map =

c0 c1 c2

c3 c4 c5

c6 c7 c8

A1 A2

A5

Mapping (M3)

1
c1

2
c2

3
c3

4
c4

5
c5

6
c6

7
c7

8
c8

v0,v2 v3

v1,v4

Fig. 2. Mesh-based MPSoC architecture

with n cores and k is the minimum number of cores required
to satisfy the throughput requirement of FFT. Each mapping
MFFT
i in this set is selected based on three parameters –

availability requirement (refer Section V-B), communication
energy of MFFT

i (refer Section V-D) and the migration over-
head from MFFT

i+1 to MFFT
i (refer Section V-E). The initial

mapping (e.g. MFFT
n) is generated according to [17]. When

a single application is referenced, the superscript from the
mapping notation is omitted for simplification (refer Figure 2).

B. Run-Time Resource Management
At run-time, a mapping is fetched from the mapping

database depending on the application enabled and the number
of cores available. When a core fails, the system fetches
the next mapping from the application mapping set which
minimizes the communication energy while incurring the
minimum migration overhead. Thus, the platform downtime
is minimized together with its energy consumption while
continuing to be available as per the system specification.

V. PROBLEM FORMULATION

A. Application and Architecture Model
An application is a directed graph Gapp = (Vapp, Eapp),

where Vapp is the set of nodes representing tasks of the
application and Eapp is the set of edges representing data
dependency among tasks. Each task vi ∈ Vapp is a tuple
〈Ti, Si, {Dij}〉, where Ti is the execution time of vi, Si is
its state space (program and data memory) and Dij is the
data produced on edge eij at every execution of vi.

A mesh-based MPSoC architecture is assumed, similar to
the one shown in Figure 2. An architecture is represented as
a graph Garc = (Varc, Earc), where Varc is the set of nodes
representing cores and Earc is the set of edges representing
communication channels among the cores. Mapping of an ap-
plication Gapp to architecture Garc is represented as follows.

Gapp
map−−−→
n

Garc := G(Varc, Vapp) := Mn (3)

where n is the number of cores of the MPSoC used by an
application. With every core ci ∈ Varc, a set Ai is associated,
consisting of the task(s) mapped to ci. Thus, Vapp = ∪ni=1Ai.

B. Availability Modeling of MPSoC
The steady-state availability of an MPSoC is modeled as a

continuous-time discrete-state Markov Chain with the state of
the system defining the number of available cores. Two repair
techniques are considered.
• Self Repair: Intermittent temperature-related defects are

self-healing. A faulty core comes alive once it cools
down.

n n-1 k k-1

λn λn-1 λk+1 λk

μ μ μ μ

Fig. 3. State transition diagram

• Dedicated Repair Mechanism: In some of the modern
MPSoCs, dedicated hardware module(s) are present to
repair a faulty core.

1) Model Description and Assumptions:
• Faults are self-revealing
• Faults on the active cores are independent
• Probability of more than one core failures in a small time

interval ∆t is negligible
• Application throughput requirement

An MPSoC fails in state i, if throughput of an application
cannot be satisfied with i cores. For a graceful degrading
system, an MPSoC can operate as long as atleast one core
is fault-free albeit at a reduced throughput.

2) Notations Used in the Availability Expression:
i active cores in the MPSoC, k ≤ i ≤ n
λi(t) failure rate of the MPSoC with i active cores at time t
µ constant repair rate of a core
Pi(t) probability that there are i active cores at time t
P̂i steady-state probability = limt→+∞ Pi(t)
As steady-state availability of the MPSoC

The failure rate (λi) in state i is determined by the failure
rate of the core (in state i) with the minimum MTTF. This is
similar to the assumption in [6]–[12]. Detailed analysis with
failure rates of all cores in a state is subject to future research.

3) Closed-from Expression for MPSoC Availability:
Based on the model description and the notations, the state
transition diagram of the Markov model is shown in Figure 3.
The state (k − 1) is an all absorbing state. The MPSoC fails
when it reaches this state. The following events are defined.
• S: The MPSoC is at state i at time (t+ ∆t).
• S1: The MPSoC is at state i at time t and no state

transition occurred in the time interval ∆t.
• S2: The MPSoC is at state (i+1) at time t and a transition

to state i occurs in interval ∆t (failure).
• S3: The MPSoC is at state (i−1) at time t and a transition

to state i occurs in interval ∆t (repair).
Clearly, S = S1 ∪ S2 ∪ S3.

The state probabilities are written as shown in Equation 4.

Pi(t+ ∆t) = Pi(t)(1− λi∆t)(1− µ∆t) +

Pi+1(t)(1− µ∆t)λi+1∆t+ (4)
Pi−1(t)(1− λi−1∆t)µ∆t

where the boundary conditions are Pn(0) = 1 and Pi(0) =
0, for k− 1 ≤ i ≤ n− 1, i.e. all the cores are assumed to be
operational at time t = 0. Taking lim∆t→0 on both sides

dPi(t)

dt
= Pi−1(t)µ+ Pi+1(t)λi+1 − (λi + µ)Pi(t) (5)

k − 1 ≤ i ≤ n− 1

dPn(t)

dt
= −λnPn(t) + µPn−1(t)

n n-1 n-2 k k-1

λn λn-1 λn-2 λk+1 λk

μ μ μ μ μ

n n-1

λ

n n-1

λn

(a) (b)

n n-1 k-1

λn λn-1 λk

(c)

n n-1

λ

n n-1

λn

(a) (b)

n n-1 k-1

λn λn-1 λk

(c)

Fig. 4. Representation of prior works in terms of state diagram

It is assumed that an MPSoC operation is halted once it
reaches state (k − 1). Therefore, the MPSoC must be in one
of the (n− k + 2) states at any instance of time.

Pn(t) + Pn−1(t) + · · ·+ Pk(t) + Pk−1(t) = 1 (6)

The steady-state availability is calculated by evaluating
both sides of Equation 5 and 6 with limt→+∞ and using
limt→+∞

dPi(t)
dt = 0.

As = 1− P̂k−1 =

[
1−

∏k

i=n
λi∑k

i=n

(
µi
∏n

j=i+1
λj
)] (7)

C. Extension of the Markov Model to Existing Research

Figure 4 shows the adaptation of the Markov model of
Figure 3 to prior research. Figure 4(a) represents works [6]–
[8] where the failure rate is constant. Research works of [9],
[10], [12] can be described using Figure 4(b) where MPSoC
analysis is based on a single core failure. Finally, the fault
model of [11] is represented using Figure 4(c).

D. Communication Energy Modeling of Applications

Application communication energy is determined by
• the amount of data communicated over NoC links
• energy consumed in communicating a single bit of data
• the hop distance over which data is communicated
The energy per bit consumed in transferring data between

core ci and core cj , situated nhops(i, j) away is given by

Ebit(i, j) = nhops(i, j)× ESbit + (nhops(i, j)− 1)× ELbit

where ESbit and ELbit are the energy consumed on the switch
and the link respectively. nhops(i, j) is the number of routers
between core ci and cj . The data communicated between these
two cores is

data(i, j) =
∑
∀vk∈ai
∀vl∈aj

Dkl × Ek,l where Ek,l =

{
1 if (k, l) ∈ E
0 otherwise

(8)

The total communication energy is therefore given by

Ecomm =
∑
∀i,j
i6=j

data(i, j)× Ebit(i, j) (9)

Algorithm 1 Communication and migration energy optimization
Input: Application and architecture graph: Gapp, Garc; MPSoC

availability constraint C
Output: A mapping that minimizes communication energy, satisfy-

ing the availability requirement
1: Determine k, the minimum number of cores needed for MPSoC

to continue operation
2: ψ = mappings of Gapp on Garc with n cores sorted on

communication energy
3: Initialize i = 0
4: while As < C do
5: Mn = ψ[i+ +]
6: Ξ = construct-m-ary-mapping-tree(Mn)
7: Ω = Generate-root-to-leaf-path(Ξ)
8: ∀ω ∈ Ω, A.push(ComputeAvailability(ω))
9: As = getMax(A)

10: end while
11: Return ψ[i− 1]

E. Modeling of Migration Overhead
Migration overhead is an important consideration for the

problem at hand. This is due to high overhead associated with
re-mapping of tasks following a fault. This can lead to deadline
misses or system downtime and is not desirable especially for
intermittent faults due to its frequent occurrence. One of the
optimization objectives is therefore to minimize the migration
overhead which is computed as the cost incurred in moving
from mapping of state l to state (l − 1) and back (refer
Figure 3). For easier representation, the migration overhead
is measured by migration energy as shown in Equation 10.

MC(l− 1|l) =

∑
∀vu∈Vapp

Su × Ebit(i, j)

k ≤ l ≤ (n− 1) (10)

where ci and cj are respectively the core on which vu
is mapped in mapping Ml and Ml−1 respectively. Clearly,
minimizing the migration overhead is equivalent to minimizing
the migration energy.

F. Multi-Criteria Optimization Problem
The table below summarizes the optimization problem.
Minimize

∑n−1

l=k
Ecomm ×MC(l|l − 1)

Subject to
• All tasks meet their respective deadlines
• All control/data dependencies are satisfied
• As ≥ MPSoC availability constraint
• MTTF ≥ MPSoC MTTF constraint

MPSoC MTTF is computed according to [13].

VI. HEURISTIC SOLUTION APPROACH

Combining the migration overhead with availability and
communication energy leads to a convex optimization objec-
tive. Although efficient tools exist (cvx for example) to solve
this convex problem, the execution time is usually large and
is not scalable with the number of tasks and cores. To reduce
the execution time for the solution, a heuristic is proposed.
This is shown as pseudo-code in Algorithm 1.

The first step of the algorithm is to determine the minimum
number of cores (k) needed to satisfy application throughput
requirement (line 1). A set of mappings is then generated.
These mappings are sorted based on communication energy
and stored in the set ψ.

TABLE II
REFERENCES AND THEIR ABBREVIATIONS FOR COMPARISON

References Abbreviation Description
[6]–[8] MT Multi-fault Temperature optimization

[9], [10] SM Single fault MTTF optimization
[11] MM Multi-fault MTTF optimization
[12] SME Single fault MTTF & Energy optimization

Proposed MMEAR Multi-fault MTTF, Energy & Availability
optimization considering Repair

Fig. 5. Steady state availability

An m-ary mapping tree is generated with mapping Mi

as root node (line 6). There are (n − k) levels of the tree
(corresponding to the states k to (n − 1) in Figure 3) and
m branches spanning out from each node. A node at level
l of the tree represents Gapp

map−−−→
l

Garc. Each branch bxy

connects source node x (mapping Mx) with destination node
y (mapping My) and has weight equal to the product of
migration overhead from Mx to My , the communication
energy and the failure rate associated with My

1.
Once the tree is generated, all paths from root to the leaf

nodes are identified (line 7). For each path, the availability
of the MPSoC is determined by considering the failure rate
associated with every node (mappings) of the path. If the
availability requirement of the platform is met, the algorithm
terminates; else, the local optimization step is re-executed
starting with the next mapping from the set ψ.

VII. RESULTS AND ANALYSIS

The proposed algorithms are implemented in C++ and
integrated with Matlab. The following parameters are used
for the computations of failure rate [9]: current density J =
1.5 × 106A/cm2, activation energy Ea = 0.48eV , the slope
parameter β = 2, temperature T = 350K and n = 1.1.

The results of the proposed approach are compared with ref-
erences [6]–[12]. These are abbreviated as shown in Table II.

A. Steady State Availability

Experiments are conducted with 50 synthetic application
task graphs with the number of tasks selected randomly from
the range 4 to 32 and MPSoCs consisting of 2 to 8 homo-
geneous cores. Additionally, a set of real-life applications are
considered both from streaming and non-streaming domain.

Figure 5 plots the steady state availability (in percentage)
of all five techniques of Table II, for 10 applications randomly
selected from the exhaustive set above. The number of tasks
in each application is indicated in parenthesis against its
name. These applications are executed on an MPSoC with
6 homogeneous cores (arranged as 2× 3).

1It should be noted that although product function is used, the algorithm
can be easily modified to incorporate any other function.

Fig. 6. Task communication energy

Fig. 7. Normalized task migration overhead

For each application in the figure, there are five bars, four
of which are for the existing techniques (refer Table II). The
availability requirement for the MPSoC is set to 99%. When
the existing mapping techniques are applied on the MPSoC,
the availability requirement is violated by 20% on average
for most applications. The proposed technique satisfied the
availability requirement for all 10 applications in Figure 5.
Although not explicitly shown here, only 2 of the 50 synthetic
applications violated the constraint by less than 0.05% with
the design parameter, m set to 5. Increasing this to 10 resulted
in all applications meeting the availability requirement.

B. Task Communication Energy
Figure 6 plots the communication energy of the previous

10 applications on the same MPSoC architecture. The energy
numbers of all techniques are normalized with respect to
minimum energy achieved for the given application on the
given platform [14]. As can be seen from the figure, the
communication energy of SME is least among all the existing
fault-tolerant techniques. This is expected as communication
energy is explicitly modeled in the optimization objective. The
proposed technique minimizes this further by achieving 15%
less communication energy, on average, than SME while stay-
ing within 5% of the minimum energy mapping of [14]. The
energy savings with the proposed technique constitute 30%
(18%) of the communication (total) energy of an application.

Although both SME and the proposed approach model com-
munication energy explicitly in the objective, the savings in
the proposed technique is more. This is because SME is based
on single failure model; the minimum energy mapping can
be potentially discarded if it violates the MTTF requirement
with single-fault scenario, irrespective of the fact that the same
mapping with task re-mapping can satisfy the constraint.

C. Task Migration Overhead
Figure 7 plots the migration energy of all the techniques

for the same set of applications. Results are normalized with
respect to MT. As can be seen from the figure, the migration

TABLE III
ALGORITHM SENSITIVITY TO DESIGN PARAMETER m

Total Mappings Applications Missing Percentage
m Evaluated Availability Constraint Violation
1 15,625 12 0.5%
5 101,556 4 0.05%
10 1,888,887 0 0%

overhead in the proposed approach is the least with an average
50% savings as compared to the existing research.

From the results of the previous three sections it can be
concluded that proper task mapping can minimize communi-
cation energy and migration overhead while satisfying MPSoC
availability requirement.

D. Complexity of the Proposed Algorithm
The complexity of Algorithm 1 is governed by line 2, 7 &

9. The number of mappings generated with |Vapp| tasks on n
homogeneous cores (line 2) is O (n× |Vapp|) (ref. [18]). In
the worst case, the while loop (line 4-11) is traversed for each
of these mappings. In each loop, the total mappings evaluated
is equal to the number of nodes in the mapping tree. This is
given by

∑n−k+1
i=1 mi. Hence, the worst case complexity of

Algorithm 1 is O
(
n× |Vapp| ×mn−k+1

)
.

E. Distance from Optimality
Figure 8 plots the percentage deviation of the proposed

approach from the energy minimum point at center (obtained
by solving the problem at hand using standard convex solvers)
for the same set of applications. As can be seen from the
figure, the proposed technique is within 10% of the minimum
energy. Thus, solving convex optimization, communication
energy can be reduced further by 10% (over that obtained in
Section VII-B). The price paid is 3 fold execution-time. This
trade-off is omitted here for space limitations.
F. Sensitivity of the Proposed Algorithm

Table III reports the sensitivity of the proposed algorithm
to the design parameter m. The table reports the number of
mappings evaluated and the number of applications for which
no mappings satisfied the availability requirement, for different
values of m. The experiment is conducted with 45 synthetic
and 5 real-life applications on an architecture with 9 cores
(3 × 3). The number of tasks in the synthetic application is
randomly generated with mean 20.

As can be seen from the table, for m = 10, the proposed
algorithm generates a solution for all the applications consid-
ered. However, the number of mappings evaluated is large.
This is due to the increased number of nodes of the mapping
tree which results in a large number of paths from the root to
the leaf nodes. Setting this value to 1 resulted in a substantial
reduction of the number of mappings. However, 6 out of 50
applications missed the availability requirement. Finally, m =5
provides the best result with 4% misses (2 out of 50) and a
reasonable number of mappings.

VIII. CONCLUSION

This paper introduces a technique to model the availability
of an MPSoC based on Markov state transition. Based on
this, a technique is proposed to minimize the communication
and migration energy of the MPSoC guaranteeing to meet its
availability requirement under the influence of reparable and
intermittent device defects. Simulation results confirm that the
proposed technique minimizes the communication energy by

0

2

4

6

8

10
1

2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

232425
26

272829
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

48 49 50 MPEG

FFT

MWD

VOPD

JPEG

Fig. 8. Distance from optimality

30% and the migration overhead by 50%. Although, homo-
geneous cores are considered for experiments, an immediate
extension of the approach is to consider heterogeneity of cores.

ACKNOWLEDGMENT

This work was supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 with grant number
R-263-000-655-133.

REFERENCES
[1] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”

IEEE Micro, 2003.
[2] P. Wells et al., “Adapting to Intermittent Faults in Future Multicore

Systems,” in IEEE Conference on Parallel Architecture and Compilation
Techniques (PACT), 2007.

[3] S. Pan et al., “Ivf: Characterizing the vulnerability of microprocessor
structures to intermittent faults,” IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), 2012.

[4] E. B. Nightingale et al., “Cycles, cells and platters: an empirical
analysisof hardware failures on a million consumer PCs,” in ACM
conference on Computer systems, 2011.

[5] J. Huang et al., “Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems,” in IEEE/ACM/IFIP
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

[6] A. K. Coskun et al., “Temperature aware task scheduling in MPSoCs,”
in IEEE Conference on Design, Automation and Test in Europe (DATE),
2007.

[7] T. Chantem et al., “Temperature-Aware Scheduling and Assignment for
Hard Real-Time Applications on MPSoCs,” in IEEE Conference on
Design, Automation and Test in Europe (DATE), 2008.

[8] L. Thiele et al., “Thermal-aware system analysis and software synthesis
for embedded multi-processors,” in ACM Design Automation Conference
(DAC), 2011.

[9] L. Huang et al., “Lifetime reliability-aware task allocation and schedul-
ing for MPSoC platforms,” in IEEE Conference on Design, Automation
and Test in Europe (DATE), 2009.

[10] S. Wang et al., “Thermal-aware lifetime reliability in multicore systems,”
in ISQED, 2010.

[11] A. Hartman et al., “A case for lifetime-aware task mapping in em-
bedded chip multiprocessors,” in IEEE/ACM/IFIP Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2010.

[12] C.-L. Chou et al., “FARM: Fault-aware resource management in NoC-
based multiprocessor platforms,” in IEEE Conference on Design, Au-
tomation and Test in Europe (DATE), 2011.

[13] A. Das et al., “Reliability-Driven Task Mapping for Lifetime Extension
of Networks-on-Chip Based Multiprocessor Systems,” in IEEE Confer-
ence on Design, Automation and Test in Europe (DATE), 2013.

[14] J. Hu et al., “Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints,” in IEEE
Conference on Design, Automation and Test in Europe (DATE), 2004.

[15] B. Zhao et al., “Generalized reliability-oriented energy management for
real-time embedded applications,” in ACM Design Automation Confer-
ence (DAC), 2011.

[16] J. S. S. T. Association et al., “Failure mechanisms and models for
semiconductor devices,” JEDEC Publication JEP122-B, 2003.

[17] A. Das et al., “Fault-Aware Task Re-Mapping for Throughput Con-
strained Multimedia Applications on NoC-based MPSoC,” in IEEE
Symposium on Rapid System Prototyping (RSP), 2012.

[18] A. Singh et al., “A Hybrid Strategy for Mapping Multiple Throughput-
constrained Applications on MPSoCs,” in ACM Conference on Compil-
ers, Architectures and Synthesis for Embedded Systems (CASES), 2011.

