
Embracing Approximate Computing for Energy-Efficient
Motion Estimation in High Efficiency Video Coding

Walaa El-Harouni, Semeen Rehman3, Bharath Srinivas Prabakaran3, Akash Kumar3,
Rehan Hafiz2, Muhammad Shafique1

1Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria
2National University of Sciences and Technology, Islamabad, Pakistan

3Chair for Processor Design, TU Dresden, Germany
Corresponding Authors: muhammad.shafique@tuwien.ac.at, semeen.rehman@tu-dresden.de

Abstract— Approximate Computing is an emerging paradigm

for developing highly energy-efficient computing systems. It
leverages the inherent resilience of applications to trade output
quality with energy efficiency. In this paper, we present a novel
approximate architecture for energy-efficient motion estimation
(ME) in high efficiency video coding (HEVC). We synthesized our
designs for both ASIC and FPGA design flows. ModelSim gate-
level simulations are used for functional and timing verification.
We comprehensively analyze the impact of heterogeneous
approximation modes on the power/energy-quality tradeoffs for
various video sequences. To facilitate reproducible results for
comparisons and further research and development, the RTL and
behavioral models of approximate SAD architectures and
constituting approximate modules are made available at
https://sourceforge.net/projects/lpaclib/.

Keywords— Approximate Computing, Hardware Accelerator,
Motion Estimation, HEVC, Video Coding, Energy Efficiency.

I. INTRODUCTION AND MOTIVATION
Approximate computing has recently gained a lot of interest by the
industrial (Intel [1], IBM [2], Microsoft [3]) and academic research
groups [4][5] as a new paradigm for developing highly energy-
efficient computing systems. Approximate computing relaxes the strict
Boolean/Numeric equivalence of underlying computing hardware, and
trades the computation accuracy loss to obtain significant area,
power/energy, and performance efficiency. The key is to leverage the
inherent error resilience properties of target applications, i.e., their
ability to tolerate approximation errors and yet produce useful output
(of acceptable quality to users) [1]-[5]. Therefore, approximate
computing is highly amenable to image/video processing applications,
which are widely proliferated in entertainment, consumer, automotive,
security, and communication industries. Their inherent resilience
comes from the fact that camera sensors already provide noisy input
data with high correlation, and the application output is graded by
different users based on their visual perception and psychological
factors [1]-[5]. Moreover, various algorithms have inherent error
masking data/control paths [6], as also shown in Fig 1 and Section I.B.

Get value of A from user
If (A+5) = ODD
{

…
run code snippet I

}else
{

…
run code snippet II

}

Carry 1 1 1
A 1 0 1 1 1
+5 0 0 1 0 1

1 1 1 0 0

Carry Ignored
A 1 0 1 1 1
+5 0 0 1 0 1

1 0 0 1 0
100% Accuracy

Carry Chain Length = 4
Maximum Effort

64.28% Accuracy
Carry Chain Length = 0

Minimum Effort
Despite the accuracy loss, Option 2 produces correct result due to algorithm’s inherent resilience

Option 1 Option 2

Fig 1: An example showing algorithm’s resilience to approximation errors.

Resilience Example: Fig 1 presents an abstract example showing
algorithmic resilience for a code snippet, and additions using accurate
and approximate adders. In this example, the approximation is done

by ignoring the output carry of each 1-bit Full Adder (FA). It is
noteworthy that although the accuracy loss is about 35%, the outcome
of the algorithm is still correct because the result of both accurate and
approximate adders is an Even number, and the code snippet II is
executed. Option 2 however provides much lower power and energy
consumption by eliminating the carry generation and propagation
logic. Section IV provides the circuits and corresponding power-
accuracy tradeoffs for different approximate adder designs.

Target Application and the Associated Energy Problem: We target
the Motion Estimation (ME) for High-Efficiency Video Coding
(HEVC, [7]). It is the latest video coding standard that provides 1.6x –
2x improved coding efficiency compared to the H.264/AVC standard
[7] at the cost of >40% more computation effort and higher energy
consumption [8][9]. This is mainly due to the increased ME effort and
mode decision space considering the HEVC’s novel Coding Tree Unit
(CTU) structure. According to the studies of [8][10], multi-mode ME
for different block sizes requires about 80% of the total energy
consumption of HEVC encoder. Similar observations were also made
by our recent experiments in Fig 2. It shows the energy distribution for
“BasketballDrive” Full-HD (1920×1080) sequence using 5 reference
frames and CTU size of
64x64. Note, the energy of
Inter-prediction is more
than 80%, which is mostly
taken by the ME process
for different block modes
(see Section III for
complexity analysis).

Therefore, reducing the energy-consumption of the ME process is one
of the major research challenges for realizing energy-efficient HEVC
systems.

In this paper, we aim at embracing the emerging trend of approximate
computing to develop energy-efficient ME architectures.

Our motivational case study in Section I.B illustrates the available
potential of approximate computing and inherent resilience of the
motion estimation process, which can be leveraged for energy
reduction without significant quality loss. Before that, we present the
experimental setup for better understanding of the results.

A. Experimental Setup and Tool Flow (Fig 3)
The RTL (in VHDL code) of accurate and different approximate
adders and SAD variants are synthesized using: (1) ASIC design flow
with Synopsys Design Compiler, 45 nm technology, WCCOM (Worst-
Case Commercial) operating conditions, Wire_load_model set to
segmented, and the area optimization option enabled; and (2) FPGA
design flow with Xilinx ISE 14.7 for VIRTEX 7 XC7VX330T FPGA
device. The generated netlist is verified using gate-level simulations
and detailed area, power/energy, latency estimation is performed, e.g.,
using ModelSim to obtain VCD (Value Change Dump) and SAIF

Fig 2: Energy distribution [%] of the HEVC
encoder for the “BasketballDrive” sequence.

81%

6%
4% 9%

InterPrediction

IntraPrediction

CABAC

OtherBlocks

(Switching Activity Interchange Format) files, which are then used for
power estimation using PrimeTime in the ASIC flow. For elementary
approximate designs, error analysis is performed using number of error
cases, maximum error magnitude, and occurrences of maximum error
cases. For full-application evaluation, we developed the equivalent
behavior models of these approximate accelerators (in C, C++, and
MATLAB), and integrated into an open-source optimized HEVC
implementation called x265 [11]. The quality evaluation, in terms of
motion vector difference (MVD), SAD value, bit rate, and video
quality (PSNR), is performed for various test video sequences for
different block sizes.

SAIF File

Test
Cases

Compiled
Executables

Logic Simulation
(Model Sim)VHDL

Files

Logic Synthesis
(Synopsys Design

Compiler)

Gate-Level
Netlist

Area Reports Energy/Power
Estimates

.VCD File

PrimeTime Power
Estimation

C++-Based
Behavioral

Model

.EXE
Files

Integrate in X265 HEVC
Software

Validate
Design

Test Video
Sequences

Bitrate and
Quality Analysis

Fig 3: Our experimental flow showing the hardware and software tools.

B. Motivational Case Study: Resilience Analysis of ME
The main processing kernel of motion estimation (ME) is SAD (Sum
of Absolute Difference) computation for different candidate blocks;
see ME overview in Section III. Finding the best matching candidate
block is primarily a minimization problem, i.e. finding the candidate
block with the minimum SAD value out of N candidates. Let us
consider Fig 4(a) that shows four example SAD values computed using
accurate and approximate SAD accelerators, which are composed of
approximate adders and subtractors (see Section IV for designs). Note,
approximate adders are also used for approximate subtractors using 2’s
complement. Throughout this paper, only approximate adders are
discussed.

“Football” Sequence

SA
D

 V
al

ue

AppxSAD1

AccuSAD
AppxSAD3

AppxSAD2 AppxSAD4

50 100 150 200 250
Candidate Block

S1 = 565 => 540
S2 = 600 => 610
S3 = 475 => 460
S4 = 560 => 550 (b)

(a) SAD Values of Four
Candidates [approx.

version shown in
“red”]; S3 is selected
as the Best Solution

Fig 4: Illustrating the inherent resilience of the ME process
(a) An abstract example illustrating that the selection of minimum value is
unaffected due to approximations; (b) Error surface plots for accurate and four
different approximate SAD architectures [4].

Although the approximate values have errors in the absolute
magnitude, it is noteworthy that the minimum solution is always the
case “S3”. This phenomenon can be best understood by analyzing the
error surface plot of Fig 4(b) [4], which shows the SAD values for
different candidates using accurate and four different approximate
designs of SAD accelerators.

Note that the complete error surface plots in Fig 4(b) are shifted for
different approximate designs, and follow almost similar minimization
trends for local and global minimas. Therefore, when finding the best
match, although the individual SAD values for different candidates
have errors due to approximations, the candidate with minimum SAD
value remains the same in most of the cases. The trend is very similar

for different approximate variants of the SAD accelerator, which can
be realized by using different types of approximate arithmetic modules
and different number of LSBs to be approximated (see design details
in Section IV). This shows the inherent resilience of the ME process
that can be leveraged to achieve significant energy savings through
(relaxed or aggressive) approximations.

The error in the decision process of ME can only happen if two
candidates have very close SAD values, and the impact of
approximations is different due to different input values. This can be
understood from Fig 4(a): if S3 would have not been a potential
candidate in the matching process, then S4 would have been selected
in the accurate case, while S1 would have been selected in the
approximate case. However, there is another interesting point to note:
since the SAD values of these candidates are close, even a wrong
decision would not lead to a significant degradation of output quality
because the resulting residual to encode after the inter-prediction will
also be in close range.

C. Our Novel Contributions and Open-Source Library
In this paper, we demonstrate how the emerging trend of approximate
computing can be leveraged for energy-efficient motion estimation in
HEVC. Besides presenting the energy distribution of HEVC (Section
1), resilience analysis of ME (Section I.B) and computational
complexity analysis of HEVC ME (Section III), we make the following
further novel contributions:

1) An approximate architecture for energy-efficient motion
estimation (Section V) that employs different SAD accelerators with
accurate and heterogeneous approximation modes for different block
sizes. It provides different tradeoff points in terms of energy
consumption, area, resulting bit rate, and output video quality, and
allows user to select an appropriate variant depending upon their
requirements, e.g., in terms of bit rate and required energy savings.
2) Tradeoff analysis of heterogeneous approximate SAD variants
(Section VI) for energy, area, power, quality and bit rate for different
video sequences. These designs are synthesized and validated using
ASIC and FPGA design flows. These accelerators are then integrated
into the HEVC motion estimation for further analysis in terms of bit rate,
video quality, and motion vector difference.
An open-source library of approximate SAD accelerators and
constituting modules (i.e. approximate multipliers and adders) is
provided at https://sourceforge.net/projects/lpaclib/ [17]. It contains
the RTL (in form of VHDL codes) and behavioral models (in form of
C-/C++ and MATLAB codes). This library facilitates reproducible
results for comparisons and further research/development of energy-
efficient video coding systems based on approximate computing.

II. RELATED WORK
Approximate Computing: Comprehensive surveys on approximate
computing can be found in [4][12]. A majority of the work is done on
developing elementary approximate arithmetic blocks like
approximate adders [13][14][15] and approximate multipliers [16]
[17][23], error correction in high-performance approximate
accelerators [24], approximate cache [26], and some works have been
done at the programming language [3] and application-level
approximations [25]. There are two types of approximate adder
designs: (1) Low-latency approximate adders (like ACA and GeAr
[15]) that break the carry chain to achieve high performance design.
However, these designs employ overlapping sub-adders to
approximately predict the carry, which incur high area and power, and
therefore only beneficial for high performance, high-power designs.
(2) Low-power 1-bit approximate full-adders (like IMPACT [13][14])
that approximate the circuit logic of single-bit full adders through
different circuit decimation and simplification techniques. Similar

concept for multipliers is proposed in [16][23]. Hardware-level
approximate computing research has primarily targeted circuit and
elementary arithmetic blocks, and has not explored the design of low-
power approximate architecture and approximate accelerators,
especially for video coding, and in particular for the HEVC.

Fast and Energy-Efficient Motion Estimation in HEVC: Much of
the energy-efficient ME works exist for H.264, which primarily
employ techniques like early search termination and SAD decimation
[10][18], modification of SAD formula [19], and voltage over-scaling
[19][20]. Many of these techniques provide fixed low-power solution
without run-time adaptability, or employ standard low-power
techniques and suffer from significant quality loss, but do not exploit
the potential of heterogeneous approximation modes. Besides
computation, memory energy reduction during ME can also be
achieved through search window design, exploitation of data reuse,
and power-gating of memory blocks [8].

There has been some early works from error-tolerant computing domain
[19][20] where voltage over-scaling has been employed in ME
architectures to save power at the cost of voltage-induced timing errors.
Similar concepts have also been applied to fault-tolerant JPEG2000 [21],
and frame buffer memory of H.264 decoder [22], but not motion
estimation. This is somewhat analogous to approximate computing,
except the source of errors, which is incorrect functionality (i.e.
functional errors) in approximate hardware. This feature requires
completely different design principles and architectural concepts, as
explored in this paper. The work in [19] performs input sub-sampling for
power reduction, but incurs severe PSNR (Peak Signal to Noise Ratio)
losses for videos containing high texture and motion content. We do not
incur significant PSNR losses by exploiting heterogeneous approximate
modes. The work in [20] performs error-inducing voltage-scaling for the
less-significant computations. The above works employ their concepts
to a three-step search based motion estimator of an old-generation of
codec to analyze the error tolerance. However, they have two main
limitations: (1) They do not exploit the potential of emerging
approximate arithmetic blocks (like adders). (2) The three-step search
gets trapped into local minima, therefore the best accurate answer is
already highly erroneous compared to any good adaptive ME algorithm.
Therefore, the analysis of voltage-overscaling induced errors is not
representative in terms of realistic benefits vs. error rates.

In short, state-of-the-art has not yet systematically explored the
potential of approximate accelerator-based architecture for energy
reduction in motion estimation (also not in HEVC) and the energy-
quality tradeoff analysis for heterogeneous approximation modes. This
paper makes the first attempt to bridge this gap, and facilitates further
research towards this growing field through first open-source
contributions in approximate accelerators for video coding.

Note: our proposed concepts and techniques are orthogonal to most of
the related works based on SAD decimation, search window re-sizing,
and memory energy reduction, and thereby can be employed in
conjunction with those techniques.

III. BACKGROUND KNOWLEDGE AND COMPUTATIONAL
COMPLEXITY ANALYSIS OF HEVC MOTION ESTIMATION

Coding Structure of HEVC: The key processing block in HEVC is
called Coding-Tree Block or Unit (CTB, CTU), which defines a
flexible variable-sized block structure for coding. Each CTU is
partitioned into multiple Coding Units (CU) of sizes 64x64, 32x32,
down to 4x4 pixels. The search for the best CU mode, that provides
the best coding efficiency in terms of coded video quality and bitrate,
is done recursively in a tree structure, starting from the Largest CU
(LCU). Fig 5 depicts an example of CTU partitioning. For each CU,
the motion estimation is performed for (multiple) reference frames.

(1)

(0)

(2) (3)

(8)

(9) (10) (18)

(4) (5) (6) (7) (11) (12) (17)

(13) (14) (15) (16)

0

8

1 2

3
4 5

6 7

9 10

18
17

12

14
13
15
16

11

4

64

Fig 5: The organization of the coding-tree unit/block in HEVC.

Overview of Motion Estimation (ME): For each CU in the CTU of the
current video frame (C), the motion estimator finds out its best match by
comparing it with different selected candidate blocks (R), of same size
as of CU, in one or multiple reference video frames (i.e. previously
encoded and reconstructed frames). The selection of candidate depends
upon the ME algorithm, while the search is performed in a restricted
search window. The most widely used matching metric is Sum of
Absolute Differences (SAD, Eq. 1). CUheight and CUwidth are the height
and width of a given CU in number of pixels.

0 0
(,) (,)

CUheight CUwidth

y x
SAD C x y R x y

= =

= −∑ ∑ (1)

The candidate with the minimum SAD is given as the best match, and
its distance from the current CU is given as the motion vector. The
selection of best CU for final encoding is done through the rate-
distortion optimization process. Since ME can be performed for each
possible CU inside a CTU, it results in a very high energy cost as
discussed in Section I. Fig 6 illustrates the ME process and the generic
data path of the SAD accelerator.

Current CTU

already coded

Search Window

N Reference Frame(s)

Motion
Vector

Best Match

Current Frame

+

−
ABS

−
ABS

+

−
ABS

−
ABS

+

−
ABS

−
ABS

+

−
ABS

−
ABS

...

...
... ...

+ +
+

SAD

+ +
++

Accelerator
Data Path

(a) (b)
Fig 6: (a) Motion estimation/search process; (b) SAD accelerators data path.

Complexity Analysis of ME in HEVC: The energy consumption is
proportional to the computational requirements of the ME, which
directly depend upon the number of operations in one SAD, and the
number of computed SADs for candidate blocks. While the first factor
is fixed, the latter depends upon the search algorithm and mode
decision. A full search ME (FME) exhaustively evaluates all candidate
blocks within in the search window. For instance, for each CU size,
for a search window of size 32x32, there are 1024 candidates for SAD
computation (4096 for 64x64, and 16384 for 128x128 search window).
Typically, in energy-efficient real-world implementations, fast
adaptive search (AME) algorithms like TZ, EPZS, or UMHexagonS are
used. A good fast ME algorithm will cut down the search complexity
(i.e. number of candidates for SAD evaluation) of full search by about
80%-90% [10]. However, in general, the computation complexity of
ME increases with the number of CU sizes. Table I illustrates the
number of CTUs, CUs, and candidates evaluated per frame using FME
and AME, for different video resolutions.

Note, one block SAD (for a 32x32 CU size) requires 1024 subtractions
for difference computation and 1023 additions for the adder tree (see
data path in Fig 6), i.e. about 2K arithmetic operations per CU.
Therefore, even using AME, the compute effort for one frame of
HD1080p and CIF videos will require more than 1.8 T and 5.4 B
operations, respectively. For a frame rate of 30fps, this corresponds to
more than 50 T and 160 B operations for HD1080p and CIF videos,
respectively. Such a high number of arithmetic operations in SAD

computations illustrates a high potential of energy reduction through
using approximate computing modules, besides providing parallel
SAD arrays for high throughput.

Table I: Complexity Analysis for Different Video Resolutions.
(AME, with 90% complexity reduction compared to FME)

Resolution QCIF CIF 480p HD720p HD1080p
Width × Height 176 x 144 352 x 288 640 x 480 1280 x 720 1920 x 1080
LCU Size 16 16 32 32 64
#CTUs in 1 frame 99 396 300 900 510
#CUs in 1 CTU 65 65 273 273 1105
Search Window 32x32 32x32 64x64 64x64 128x128
#Cand. FME 1024 1024 4096 4096 16384
#Cand. FME/frame 6.6M 26.4M 335.4M 1B 9.2B
#Cand. AME [10%] 102 102 410 410 1639
#Cand. FME/frame 0.6M 2.64M 33.5M 0.1B 0.92B

IV. APPROXIMATE ADDERS: DESIGN AND ANALYSIS

A. Designing Approximate Adders
In this paper, we deploy the approximate 1-bit full adders (FA) of
IMPACT designs [13][14], and the multi-bit approximate adders from
the open-source library of [23]. In the following, we provide only the
necessary background information required to understand the novel
contributions of this paper.

Approximate 1-Bit Full Adders (FA): Fig.7 shows the circuit
diagrams of accurate adder (AccuAdd) and 3 approximate adders
(AppxAdd1, AppxAdd2, and AppxAdd3) based on the designs of
[13][14]. The VHDL codes of these designs can be found in our open-
source library of [17]. The area, latency, power, and error results are
depicted in Table II, which were observed exactly the same as reported
in the [23], thus also validating the reproducibility. Note, AppxAdd3
offers the best area, power, and latency results, because it is simply a
short-circuit logic, and does not incur any switching power. However,
it also has the highest error rate. AppxAdd1 and AppxAdd2 are
reasonable tradeoff points w.r.t. power and error rate.

Adder
Accuracy

100
%

74.16% 74.9%

PSNR(Row-1) Inf 28.37 19.18
PSNR(Row-2) Inf 28.95 20.56
Nor. Power 1 0.18 0

AccuAdd AppxAdd2 AppxAdd3

(e)

Fig.7: (a) Accurate 1-bit FA; (b, c, d) Approximate 1-bit FA of [13][14];
(e) Power-quality impact of approximate adders for low-pass image filtering.

Table II Characterization of Approximate 1-Bit Full-Adders.
(Our results came out same as reported in the open-source library of [23])

 Area
[GE]

Latency
[ns]

Power
[nW]

Number
of Error
Cases

Max
Error

Magnitude

Occ.
of Max
Error

AccuAdd 4.41 0.12 1130 0 0 0
AppxAdd1 1.94 0.07 294 2 1 2
AppxAdd2 1.59 0.05 198 3 1 3
AppxAdd3 0 0.00 0 4 1 4

Approximate Multi-Bit Adders: For building the multi-bit adders,
we follow the design method depicted in Fig.8 [23], where
approximations are only done for the LSBs to avoid high error

magnitude. For an N-bit adder, only k-bits are approximated using one
of the three types of approximate 1-bit FAs (FAapx) as shown in Fig.7,
while for N-k bits accurate 1-bit FA (FAacc) are used. To avoid design
complexity, each approximate multi-bit adder variant has only one
type of approximate 1-bit FA for all the k-approximated bits.

…
Ak-1

Coutk FAapx

Bk-1

Sk-1

A1

Cout2 FAapx

B1

S1

A0

Cout0 FAapx

B0

S0

k Approximate 1-Bit Full Adders

Cin

(N-k) Accurate 1-Bit Full Adders

Ak+1

Coutk+1 FAacc

Bk+1

Sk+1

Cout
FAacc

SN-1

…
AN-1 BN-1

Coutk FAacc

Ak Bk

Sk

Fig.8: Multi-Bit Adder Chain using Accurate or Approximate 1-Bit Adders.

B. Power-Quality Analysis for Approximate Adders
To validate our implementations and to analyze the power-quality
impact of these multi-bit approximate adders, we deployed accurate
and two approximate 8-bit adders in a low-pass image filtering
applications. Fig.7(e) shows the results for power (normalized to that
of the accurate version), adder accuracy (% loss compared to accurate
version), and output quality in terms of subjective quality (images) and
objective quality (PSNR – Peak Signal to Noise Ratio, compared to
the output of accurate adder-based filtering). It is interesting to see that
the AppxAdd2, though having reduced PSNR, still produces similar
subjective quality as of the accurate design. However, the subjective
quality of the AppxAdd3 is degraded yet recognizable, but provides a
very high power reduction.

V. APPROXIMATE ARCHITECTURE FOR MOTION
ESTIMATION IN HEVC

A. Approximate ME Architecture

...
...

...

Accurate SAD
Accelerators

...

...

...

Approximate SAD
Accel. Variant1

... ...

...
...

...

Approximate SAD
Accel. VariantN-1

...

...

...

Approximate SAD
Accel. VariantN

SAD Accelerator Array Output and
Monitoring

(MV, SAD, etc.)

AGU

On-Chip Memory

Ref.
Frame
Search
Window

Current
Frame
CTU

Power-Gating Control Approximate Variant Selection Unit

User
ConstraintsCPU Main Memory

System Bus

CPU
executes
the ME

algorithm
and HEVC

Memory stores
the video frames

Fig 9: Hardware architecture of our approximate motion estimator.

Fig 9 illustrates our approximate ME architecture for HEVC. It
contains an array of SAD accelerators organized in form of
heterogeneous approximate SAD tiles. Each tile contains multiple
instances of a particular type of SAD variant. The approximate variant
selection unit contains a look up table (LUT) filled with entries like
power/energy and quality obtained from the design time analysis for
heterogeneous approximate SAD variants for different block sizes.
Depending upon the user requirements in terms of tolerable error and
required energy reductions, tiles of appropriate approximate SAD
variants are powered-on, while keeping all unrequired tiles in power-
gated states. The HEVC and motion estimation algorithm execute on

the general-purpose processor core. The candidate vectors and pointer
addresses are forwarded to the Address Generation Unit (AGU), which
generates the memory address to fetch the data from on-chip memories
storing the current CTU data and the search windows from reference
frame(s). In case the required data is not in the on-chip memories, it is
fetched from the main memory which stores the complete current and
reference frames. The data from on-chip memories is forwarded to the
SAD accelerators for computing the matching cost. The monitoring
unit is responsible for maintaining the intermediate SAD and motion
vector (MV) values, such that, the motion estimator can make fast
search decisions, and can determine the best match, i.e. the one with
the minimum SAD value.

B. Heterogeneous Approximate Variants of SAD Accelerator
We developed different SAD units of sizes 8x1, 8x8, 16x16, and
32x32. The elementary accelerator is 8x1, which is then re-used to
build bigger SAD blocks. For instance, we constructed 8x8 SAD unit
out of one 8x1 SAD units that runs for 8 cycles. Alternatively, 8 such
units can also be placed in parallel to obtain a single cycle
implementation with more area cost. A 32x32 SAD unit was built
using four 8x1 units and runs for 32 cycles.

Accurate and heterogeneous approximate variants of SAD accelerators
(numbered as “V”) are built using accurate or three approximate
adders, and choosing 2, 4, or 6 LSBs for approximation. The area,
power, and energy results for 8x8 and 32x32 SADs using the ASIC
design flow are shown in Table III.

Table III Area, Power, and Energy Results for Heterogeneous
Approximate SAD Variants: (a) 8x8 SAD; (b) 32x32 SAD

V 8x8 SAD Approx
LSBs

Area
[GE]

Power
[µW]

Energy
[pJ]

32x32
SAD

Approx
LSBs

Area
[GE]

Power
[µW]

Energy
[pJ]

0 AccuAdd 0 1383 190.4 4.90 AccuAdd 0 4038 567.1 14.61
2 AppxAdd1 2 1336 176.4 4.54 AppxAdd1 2 3847 506.7 13.05
5 AppxAdd1 4 1257 154.9 3.99 AppxAdd1 4 3531 411.8 10.60
7 AppxAdd1 6 1178 133.7 3.44 AppxAdd1 6 3215 318.8 8.21
3 AppxAdd2 2 1323 175.0 4.51 AppxAdd2 2 3794 503.0 12.96
6 AppxAdd2 4 1233 151.3 3.90 AppxAdd2 4 3433 401.0 10.33
8 AppxAdd2 6 1143 128.2 3.30 AppxAdd2 6 3071 302.0 7.78
1 AppxAdd3 2 1280 173.5 4.47 AppxAdd3 2 3626 495.3 12.76
4 AppxAdd3 4 1100 142.4 3.67 AppxAdd3 4 2887 363.0 9.35
9 AppxAdd3 6 912 112.7 2.90 AppxAdd3 6 2119 237.6 6.12

We additionally evaluated the efficacy of designs using the FPGA design
flow. The area (in terms of LUTs and Slices), power and latency (critical
clock delay and circuit’s delay after place-and-route) results are shown
in Fig 10 for 8x8 and 32x32 SAD accelerators, using three approximate
adders (AppxAdd1, AppxAdd2, and AppxAdd3) with 6 LSBs
approximated. It is noteworthy that S3 has the lowest power and latency,
and therefore is the most aggressive approximate variant, while S1 is the
worst w.r.t. power and S2 in the middle.

VI. RESULTS AND DISCUSSION
Area, latency, and power/energy results have already been presented
in the previous sections. Now, we will discuss the following three
major results, analyzing the impact of our approximations on the:

1) output of ME in terms of MV difference and SAD,
2) bit-rate and PSNR of x265 reconstructed videos, and
3) energy consumption of ME vs. MV difference.

Due to long encoding delays and memory constraints, we present
results mostly for CIF sequences, though our approach is equally valid
for HD sequences, as we will show for one experiment.

A. Impact of Approximation on the outcome of ME
Approximation impact can be studied in form of (1) change in the SAD
values (as also demonstrated in Section I.B); and (2) change in the
motion vector in form of motion vector difference (MVD, as defined
in Eq.2).

sqrt[(MV.Xaccurate - MV.Xapprox)2 + (MV.Yaccurate - MV.Yapprox)2] (2)

Fig 11 shows the average MVD for different approximate variants (as
defined in Table III) for different video sequences, considering 16x16
SAD accelerators and a search range of 32. The resulting non-zero
differences are averaged to obtain single bar for each case as shown in
Fig 11. Note, increasing the number of approximate LSBs does not
necessarily decrease accuracy. This is the case, for example, for “Bus”
sequence when comparing AppxAdd1 with 2-, 4-, and 6-bits
approximation (i.e. variants V=2, 5, and 7). There is no general rule
for which adder performing generally better than another adder, i.e.
when arranging the approximate variants ascendingly according to
their corresponding MVDs will not result in the same order. Table IV
illustrates the variant order w.r.t. increasing MVD values.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

5
10
15
20

Av
er

ag
e

M
VD

Foreman Football Bus Mobile Waterfall

Approximate Variant Number (V)
Fig 11: Average motion vector difference (MVD) for different video sequences at
different approximation levels (see level description in Table III).

Table IV Variant Order w.r.t. Increasing MVD for Different Videos
Video Sequence Variant order according to increasing MVDs

Foreman [9, 4, 7, 1, 8, 6, 3, 2, 5]
Football [2, 5, 8, 7, 4, 9, 1, 3, 6]
Bus [4, 9, 1, 7, 8, 6, 3, 5, 2]
Mobile [7, 8, 3, 5, 6, 2, 9, 4, 1]
Waterfall [8, 7, 1, 9, 4, 5, 3, 6, 2]

Fig 12 shows the error surface plot (in terms of SAD values) for
different approximate variants and for two HD720p video sequences,
for a search window of 65x65. It is noteworthy that in several HD video
sequences, the error surface degradation is not significant (row 1), and
overall for all sequences, error surface degradation still follows the
same minimization trend, illustrating the high resilience of ME, and low
impact of our approximations on output quality degradation.

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

SAD32x32Zero SAD32x32First SAD32x32Third

0

100

200

300

400

500

600

700

800

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SAD32x32Zero SAD32x32First SAD32x32Third
0

0.1
0.2
0.3
0.4

S1 S2 S3
0
160
320
480

800

Po
w

er
 [W

]

Ar
ea

 [S
lic

es
, L

U
Ts

]

S1: SAD32x32_AppxAdd1
S2: SAD32x32_AppxAdd2
S3: SAD32x32_AppxAdd3

2.5

0

1.25

S1 S2 S3
0

2.1

3.5

Cr
iti

ca
l C

LK
 D

el
ay

[n
s]

PA
R

De
la

y[
ns

]

Power Slices

Critical CLK Delay
PAR Delay

LUTs
0.5

640

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

SAD8x8Zero SAD8x8First SAD8x8Third

0

50

100

150

200

250

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SAD8x8Zero SAD8x8First SAD8x8Third
0

0.1

0.2

0.3

0.4

S1 S2 S3
0

60

125

190

250

Po
w

er
 [W

]

Ar
ea

 [L
U

Ts
, S

lic
es

] 3

0

1

2

S1 S2 S3
0

0.34

0.68

1

Cr
iti

ca
l C

LK
 D

el
ay

[n
s]

PA
R

De
la

y[
ns

]

Power Slices

Critical CLK Delay
PAR Delay

LUTs

S1: SAD8x8_AppxAdd1
S2: SAD8x8_AppxAdd2
S3: SAD8x8_AppxAdd3

Fig 10: FPGA synthesis results: (a, c) Comparing power and area (in terms of
slices and LUTs) of approximate SAD variants of 32x32 and 8x8 sizes,
respectively. (b, d) Comparing latency (critical clock delay and post place-and-
route delay) of approximate SAD variants.

1000

2000

3000

4000

1000

2000

3000

4000

135 35 70 1000 35 70 1000

2000

6000

10000

14000

135

2000

6000

10000

14000

135

LEGEND
Variant-0
Variant-1
Variant-2
Variant-3
Variant-4

(a) “Stockholm” 8x8 (b) “Parkour” 8x8

(c)“Stockholm” 16x16 (d) “Parkour” 16x16SA
D

Va
lu

e
[x

10
3]

0
4
8

12

0
4
8

12

Candidate Blocks Candidate Blocks

0
1
2

4
3

0
1
2

4
3

35 75 100 135 35 75 100 13500

35 75 100 135 35 75 100 13500

Fig 12: Error surface plots for accurate and different approximate SAD variants
for HD720p video sequnces for 8x8 SAD and 16x16 SAD.

B. Bit-Rate & Quality Analysis of x265 Reconstructed Video
Fig 13 analyzes the impact of heterogeneous approximate SAD
variants on the coding efficiency, in terms of bit rate, output stream
size, and PSNR video quality for the reconstructed video when
executing the full x265 video encoder flow. We notice that
approximating 6-bits of the adders in the SAD accelerator results in
very high increase in the bit-rate (which may be unacceptable), while
approximating 2- and 4-bits results in a marginal bit-rate increase,
which shows that they are good tradeoff options w.r.t. quality and
power/energy reduction. It is noteworthy that the video quality in
terms of PSNR stays within the range of 33.01 and 33.58, i.e. only a
minimal PSNR degradation of 0.57 dB is incurred. Since the net
coding efficiency is determined by both bit rate and PSNR, Fig 13
shows that our approximations maintain the video quality in terms of
PSNR, but lead to bit rate increase due to high prediction error in the
motion estimation process in case the best matches are different for
accurate and approximate versions.

0

5

10

15

20

25

30

35

40

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1 2 3 4 5 6 7 8 9

Approximate Variant Number (V)
0 1 2 3 4 5 6 7 8 90

20

40

60

80

Si
ze

 [K
B]

0

10

20

30

40

PS
N

R
[d

B]

Output Stream Size Avg.PSNR Bit Rate

Bi
t R

at
e

[k
bp

s]

Fig 13: Comparing the bit-rate, output stream size, and PSNR quality for
different approximate SAD variants for “Foreman” sequence.

C. Energy Consumption of Motion Estimation
Table V shows the average energy vs. average MVD results for selected
approximate SAD variants for the “Waterfall” sequence. We selected
this sequence as it presents a counter-example. From this table, we can
conclude that, for the same adder type, increasing the number of
approximate bits will increase the average MVD indicating quality
degradation. However, an increase of average energy is also noted. For
instance, Variant-7 (with 6 approximate bits) consumes as much energy
as the accurate variant, which is due to more candidate evaluations, as
the stopping criteria of the ME is not achieved due to the high texture
content and camera panning motion in this sequence. That is, it may
happen that for certain video contents, not all approximate variants
bring energy benefit for the ME process. In this case, Variant-3 is the
best in terms of energy vs. quality tradeoff.

Table V: Energy consumption vs. MVD Analysis for ME for “Waterfall”.
Variant 0 2 3 5 7
Avg. MVD 0.307 0.330 0.328 0.371 0.462
Avg. Energy [mJ] 1.24 1.15 1.14 1.24 1.24

VII. CONCLUSION
We presented an approximate computing architecture for HEVC
motion estimation. Our architecture employs various tiles of accurate
and heterogeneous approximate variants of the SAD kernel, which

enables a wide-range of energy-quality tradeoffs for the user. We
analyzed the inherent resilience of the motion estimation process,
performed detailed characterization of heterogeneous approximate
SAD variants in terms of power/energy, area, and latency. We
synthesized our designs for both ASIC and FPGA design flows and
integrated into a real-world HEVC applications (x265). We also made
the RTL and behavioral implementations of our various designs open-
source at https://sourceforge.net/projects/lpaclib/, which enable
reproducible comparisons and further research and development.
Embracing approximate computing unleashes new avenues for
energy-efficient embedded multimedia systems employing highly
complex HEVC codecs, which will particularly be beneficial for
battery-constrained mobile devices.

REFERENCES
[1] A. K. Mishra, R. Barik, S. Paul, “iACT: A Software-Hardware Framework for

Understanding the Scope of Approximate Computing”, Workshop on Approximate
Computing Across the System Stack (WACAS), 2014.

[2] R. Nair, “Big data needs approximate computing: technical perspective”, ACM
Communications, 58(1): 104, 2015.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Architecture support for
disciplined approximate programming”, International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2012.

[4] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, “Cross-Layer
Approximate Computing: From Logic to Architectures”, IEEE/ACM DAC, 2016.

[5] V. Chippa, S. Chakradhar, K. Roy, A. Raghunathan, “Analysis and characterization
of inherent application resilience for approximate computing”, DAC, 2013.

[6] M. Shafique, S. Rehman, P. V. Aceituno, J. Henkel, “Exploiting Program-Level Masking
and Error Propagation for Constrained Reliability Optimization”, DAC, 2013.

[7] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, T. Wiegand, “High Efficiency Video Coding
(HEVC) text specification draft 7”, May 2012.

[8] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel, "Energy-Efficient Architecture
for Advanced Video Memory", IEEE ICCAD, pp. 132-139, 2014.

[9] M. Shafique, J. Henkel “Low Power Design of the Next-Generation High Efficiency Video
Coding”, ASP-DAC, pp. 274-281, 2014.

[10] M. Shafique, L. Bauer, J. Henkel, “enBudget: A Run-Time Adaptive Predictive
Energy-Budgeting Scheme for Energy-Aware Motion Estimation in H.264/MPEG-4
AVC Video Encoder”, IEEE/ACM DATE, pp. 1725-1730, 2010.

[11] X265: http://www.codeforge.com/article/364279.
[12] S. Mittal, “A Survey of Techniques for Approximate Computing”, ACM Computing

Surveys (CSUR), vol. 48 no. 4, article 62, May 2016.
[13] V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, “IMPACT: IMPrecise adders for

low-power approximate computing”, IEEE ISLPED, pp. 409 – 414, 2011.
[14] V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, “Low-Power Digital Signal

Processing Using Approximate Adders”, IEEE TCAD 32(1): 124-137, 2013.
[15] M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, “A Low Latency Generic Accuracy

Configurable Adder”, IEEE/ACM DAC, 2015.
[16] P. Kulkarni, P. Gupta, M. Ercegovac, “Trading Accuracy for Power with an

Underdesigned Multiplier Architecture”, VLSI Design, pp. 346 – 351, 2011.
[17] Open-Source Library of Low-Power Approximate Computing Modules:

https://sourceforge.net/projects/lpaclib/.
[18] C. Kim, et al., “Complexity scalable motion estimation for H.264/AVC”, Proc. SPIE,

Visual Comm. Image Proc., vol. 6077, pp. 109-20, Jan 2006.
[19] G. V. Varatkar and N. R. Shanbhag, “Energy-efficient motion estimation using error-

tolerance”, IEEE ISLPED, pp. 113-118, 2006.
[20] D. Mohapatra, G. Karakonstantis, K. Roy, “Significance driven computation: a

voltage-scalable, variation-aware, quality-tuning motion estimator”, IEEE ISLPED,
pp. 195-200, 2009.

[21] M. A. Makhzan, A. Khajeh, A. Eltawil, F. J. Kurdahi, “A low power JPEG2000
encoder with iterative and fault tolerant error concealment”, IEEE TVLSI, vol. 17,
no. 6, pp. 827-837, 2009.

[22] A. K. Djahromi, A. Eltawil, F. J. Kurdahi, “Exploiting fault tolerance towards power
efficient wireless multimedia applications”, IEEE CCNC, pp. 400-404, 2007.

[23] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, “Architectural-Space
Exploration of Approximate Multipliers”, IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2016.

[24] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, “An Area-Efficient
Consolidated Configurable Error Correction for Approximate Hardware
Accelerators”, ACM/IEEE Design Automation Conference (DAC), 2016.

[25] D. Palomino, M. Shafique, A. Susin, J. Henkel, “Thermal Optimization using
Adaptive Approximate Computing for Video Coding”, IEEE/ACM DATE, 2016.

[26] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel, “Approximation-Aware Multi-
Level Cells STT-RAM Cache Architecture”, IEEE International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2015.

https://sourceforge.net/projects/lpaclib/

