
Embracing Approximate Computing for Energy-Efficient 
Motion Estimation in High Efficiency Video Coding 

Walaa El-Harouni, Semeen Rehman3, Bharath Srinivas Prabakaran3, Akash Kumar3,  
Rehan Hafiz2, Muhammad Shafique1 

1Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria 
2National University of Sciences and Technology, Islamabad, Pakistan 

3Chair for Processor Design, TU Dresden, Germany 
Corresponding Authors: muhammad.shafique@tuwien.ac.at, semeen.rehman@tu-dresden.de 

 
Abstract— Approximate Computing is an emerging paradigm 

for developing highly energy-efficient computing systems. It 
leverages the inherent resilience of applications to trade output 
quality with energy efficiency. In this paper, we present a novel 
approximate architecture for energy-efficient motion estimation 
(ME) in high efficiency video coding (HEVC). We synthesized our 
designs for both ASIC and FPGA design flows. ModelSim gate-
level simulations are used for functional and timing verification. 
We comprehensively analyze the impact of heterogeneous 
approximation modes on the power/energy-quality tradeoffs for 
various video sequences. To facilitate reproducible results for 
comparisons and further research and development, the RTL and 
behavioral models of approximate SAD architectures and 
constituting approximate modules are made available at 
https://sourceforge.net/projects/lpaclib/. 

Keywords— Approximate Computing, Hardware Accelerator, 
Motion Estimation, HEVC, Video Coding, Energy Efficiency. 

I. INTRODUCTION AND MOTIVATION 
Approximate computing has recently gained a lot of interest by the 
industrial (Intel [1], IBM [2], Microsoft [3]) and academic research 
groups [4][5] as a new paradigm for developing highly energy-
efficient computing systems. Approximate computing relaxes the strict 
Boolean/Numeric equivalence of underlying computing hardware, and 
trades the computation accuracy loss to obtain significant area, 
power/energy, and performance efficiency. The key is to leverage the 
inherent error resilience properties of target applications, i.e., their 
ability to tolerate approximation errors and yet produce useful output 
(of acceptable quality to users) [1]-[5]. Therefore, approximate 
computing is highly amenable to image/video processing applications, 
which are widely proliferated in entertainment, consumer, automotive, 
security, and communication industries. Their inherent resilience 
comes from the fact that camera sensors already provide noisy input 
data with high correlation, and the application output is graded by 
different users based on their visual perception and psychological 
factors [1]-[5]. Moreover, various algorithms have inherent error 
masking data/control paths [6], as also shown in Fig 1 and Section I.B. 

Get value of A from user
If (A+5) = ODD
{

…
run code snippet I

}else
{

…
run code snippet II

}

Carry 1 1 1
A 1 0 1 1 1
+5 0 0 1 0 1

1 1 1 0 0

Carry Ignored
A 1 0 1 1 1
+5 0 0 1 0 1

1 0 0 1 0
100% Accuracy

Carry Chain Length = 4
Maximum Effort

64.28% Accuracy
Carry Chain Length = 0

Minimum Effort
Despite the accuracy loss, Option 2 produces correct result due to algorithm’s inherent resilience

Option 1 Option 2

 
Fig 1: An example showing algorithm’s resilience to approximation errors. 

Resilience Example: Fig 1 presents an abstract example showing 
algorithmic resilience for a code snippet, and additions using accurate 
and approximate adders. In this example, the approximation is done 

by ignoring the output carry of each 1-bit Full Adder (FA). It is 
noteworthy that although the accuracy loss is about 35%, the outcome 
of the algorithm is still correct because the result of both accurate and 
approximate adders is an Even number, and the code snippet II is 
executed. Option 2 however provides much lower power and energy 
consumption by eliminating the carry generation and propagation 
logic. Section IV provides the circuits and corresponding power-
accuracy tradeoffs for different approximate adder designs. 

Target Application and the Associated Energy Problem: We target 
the Motion Estimation (ME) for High-Efficiency Video Coding 
(HEVC, [7]). It is the latest video coding standard that provides 1.6x – 
2x improved coding efficiency compared to the H.264/AVC standard 
[7] at the cost of >40% more computation effort and higher energy 
consumption [8][9]. This is mainly due to the increased ME effort and 
mode decision space considering the HEVC’s novel Coding Tree Unit 
(CTU) structure. According to the studies of [8][10], multi-mode ME 
for different block sizes requires about 80% of the total energy 
consumption of HEVC encoder. Similar observations were also made 
by our recent experiments in Fig 2. It shows the energy distribution for 
“BasketballDrive” Full-HD (1920×1080) sequence using 5 reference 
frames and CTU size of 
64x64. Note, the energy of 
Inter-prediction is more 
than 80%, which is mostly 
taken by the ME process 
for different block modes 
(see Section III for 
complexity analysis). 

Therefore, reducing the energy-consumption of the ME process is one 
of the major research challenges for realizing energy-efficient HEVC 
systems. 

In this paper, we aim at embracing the emerging trend of approximate 
computing to develop energy-efficient ME architectures.  

Our motivational case study in Section I.B illustrates the available 
potential of approximate computing and inherent resilience of the 
motion estimation process, which can be leveraged for energy 
reduction without significant quality loss. Before that, we present the 
experimental setup for better understanding of the results. 

A. Experimental Setup and Tool Flow (Fig 3) 
The RTL (in VHDL code) of accurate and different approximate 
adders and SAD variants are synthesized using: (1) ASIC design flow 
with Synopsys Design Compiler, 45 nm technology, WCCOM (Worst-
Case Commercial) operating conditions, Wire_load_model set to 
segmented, and the area optimization option enabled; and (2) FPGA 
design flow with Xilinx ISE 14.7 for VIRTEX 7 XC7VX330T FPGA 
device. The generated netlist is verified using gate-level simulations 
and detailed area, power/energy, latency estimation is performed, e.g., 
using ModelSim to obtain VCD (Value Change Dump) and SAIF 

 
Fig 2: Energy distribution [%] of the HEVC 
encoder for the “BasketballDrive” sequence. 
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(Switching Activity Interchange Format) files, which are then used for 
power estimation using PrimeTime in the ASIC flow. For elementary 
approximate designs, error analysis is performed using number of error 
cases, maximum error magnitude, and occurrences of maximum error 
cases. For full-application evaluation, we developed the equivalent 
behavior models of these approximate accelerators (in C, C++, and 
MATLAB), and integrated into an open-source optimized HEVC 
implementation called x265 [11]. The quality evaluation, in terms of 
motion vector difference (MVD), SAD value, bit rate, and video 
quality (PSNR), is performed for various test video sequences for 
different block sizes. 
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Fig 3: Our experimental flow showing the hardware and software tools. 

B. Motivational Case Study: Resilience Analysis of ME 
The main processing kernel of motion estimation (ME) is SAD (Sum 
of Absolute Difference) computation for different candidate blocks; 
see ME overview in Section III. Finding the best matching candidate 
block is primarily a minimization problem, i.e. finding the candidate 
block with the minimum SAD value out of N candidates. Let us 
consider Fig 4(a) that shows four example SAD values computed using 
accurate and approximate SAD accelerators, which are composed of 
approximate adders and subtractors (see Section IV for designs). Note, 
approximate adders are also used for approximate subtractors using 2’s 
complement. Throughout this paper, only approximate adders are 
discussed. 
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Fig 4: Illustrating the inherent resilience of the ME process  
(a) An abstract example illustrating that the selection of minimum value is 
unaffected due to approximations; (b) Error surface plots for accurate and four 
different approximate SAD architectures [4]. 

Although the approximate values have errors in the absolute 
magnitude, it is noteworthy that the minimum solution is always the 
case “S3”. This phenomenon can be best understood by analyzing the 
error surface plot of Fig 4(b) [4], which shows the SAD values for 
different candidates using accurate and four different approximate 
designs of SAD accelerators. 

Note that the complete error surface plots in Fig 4(b) are shifted for 
different approximate designs, and follow almost similar minimization 
trends for local and global minimas. Therefore, when finding the best 
match, although the individual SAD values for different candidates 
have errors due to approximations, the candidate with minimum SAD 
value remains the same in most of the cases. The trend is very similar 

for different approximate variants of the SAD accelerator, which can 
be realized by using different types of approximate arithmetic modules 
and different number of LSBs to be approximated (see design details 
in Section IV). This shows the inherent resilience of the ME process 
that can be leveraged to achieve significant energy savings through 
(relaxed or aggressive) approximations. 

The error in the decision process of ME can only happen if two 
candidates have very close SAD values, and the impact of 
approximations is different due to different input values. This can be 
understood from Fig 4(a): if S3 would have not been a potential 
candidate in the matching process, then S4 would have been selected 
in the accurate case, while S1 would have been selected in the 
approximate case. However, there is another interesting point to note: 
since the SAD values of these candidates are close, even a wrong 
decision would not lead to a significant degradation of output quality 
because the resulting residual to encode after the inter-prediction will 
also be in close range. 

C. Our Novel Contributions and Open-Source Library 
In this paper, we demonstrate how the emerging trend of approximate 
computing can be leveraged for energy-efficient motion estimation in 
HEVC. Besides presenting the energy distribution of HEVC (Section 
1), resilience analysis of ME (Section I.B) and computational 
complexity analysis of HEVC ME (Section III), we make the following 
further novel contributions: 

1) An approximate architecture for energy-efficient motion 
estimation (Section V) that employs different SAD accelerators with 
accurate and heterogeneous approximation modes for different block 
sizes. It provides different tradeoff points in terms of energy 
consumption, area, resulting bit rate, and output video quality, and 
allows user to select an appropriate variant depending upon their 
requirements, e.g., in terms of bit rate and required energy savings. 
2) Tradeoff analysis of heterogeneous approximate SAD variants 
(Section VI) for energy, area, power, quality and bit rate for different 
video sequences. These designs are synthesized and validated using 
ASIC and FPGA design flows. These accelerators are then integrated 
into the HEVC motion estimation for further analysis in terms of bit rate, 
video quality, and motion vector difference. 
An open-source library of approximate SAD accelerators and 
constituting modules (i.e. approximate multipliers and adders) is 
provided at https://sourceforge.net/projects/lpaclib/ [17]. It contains 
the RTL (in form of VHDL codes) and behavioral models (in form of 
C-/C++ and MATLAB codes). This library facilitates reproducible 
results for comparisons and further research/development of energy-
efficient video coding systems based on approximate computing. 

II. RELATED WORK 
Approximate Computing: Comprehensive surveys on approximate 
computing can be found in [4][12]. A majority of the work is done on 
developing elementary approximate arithmetic blocks like 
approximate adders [13][14][15] and approximate multipliers [16] 
[17][23], error correction in high-performance approximate 
accelerators [24], approximate cache [26], and some works have been 
done at the programming language [3] and application-level 
approximations [25]. There are two types of approximate adder 
designs: (1) Low-latency approximate adders (like ACA and GeAr 
[15]) that break the carry chain to achieve high performance design. 
However, these designs employ overlapping sub-adders to 
approximately predict the carry, which incur high area and power, and 
therefore only beneficial for high performance, high-power designs. 
(2) Low-power 1-bit approximate full-adders (like IMPACT [13][14]) 
that approximate the circuit logic of single-bit full adders through 
different circuit decimation and simplification techniques. Similar 



concept for multipliers is proposed in [16][23]. Hardware-level 
approximate computing research has primarily targeted circuit and 
elementary arithmetic blocks, and has not explored the design of low-
power approximate architecture and approximate accelerators, 
especially for video coding, and in particular for the HEVC.  

Fast and Energy-Efficient Motion Estimation in HEVC: Much of 
the energy-efficient ME works exist for H.264, which primarily 
employ techniques like early search termination and SAD decimation 
[10][18], modification of SAD formula [19], and voltage over-scaling 
[19][20]. Many of these techniques provide fixed low-power solution 
without run-time adaptability, or employ standard low-power 
techniques and suffer from significant quality loss, but do not exploit 
the potential of heterogeneous approximation modes. Besides 
computation, memory energy reduction during ME can also be 
achieved through search window design, exploitation of data reuse, 
and power-gating of memory blocks [8]. 

There has been some early works from error-tolerant computing domain 
[19][20] where voltage over-scaling has been employed in ME 
architectures to save power at the cost of voltage-induced timing errors. 
Similar concepts have also been applied to fault-tolerant JPEG2000 [21], 
and frame buffer memory of H.264 decoder [22], but not motion 
estimation. This is somewhat analogous to approximate computing, 
except the source of errors, which is incorrect functionality (i.e. 
functional errors) in approximate hardware. This feature requires 
completely different design principles and architectural concepts, as 
explored in this paper. The work in [19] performs input sub-sampling for 
power reduction, but incurs severe PSNR (Peak Signal to Noise Ratio) 
losses for videos containing high texture and motion content. We do not 
incur significant PSNR losses by exploiting heterogeneous approximate 
modes. The work in [20] performs error-inducing voltage-scaling for the 
less-significant computations. The above works employ their concepts 
to a three-step search based motion estimator of an old-generation of 
codec to analyze the error tolerance. However, they have two main 
limitations: (1) They do not exploit the potential of emerging 
approximate arithmetic blocks (like adders). (2) The three-step search 
gets trapped into local minima, therefore the best accurate answer is 
already highly erroneous compared to any good adaptive ME algorithm. 
Therefore, the analysis of voltage-overscaling induced errors is not 
representative in terms of realistic benefits vs. error rates. 

In short, state-of-the-art has not yet systematically explored the 
potential of approximate accelerator-based architecture for energy 
reduction in motion estimation (also not in HEVC) and the energy-
quality tradeoff analysis for heterogeneous approximation modes. This 
paper makes the first attempt to bridge this gap, and facilitates further 
research towards this growing field through first open-source 
contributions in approximate accelerators for video coding. 

Note: our proposed concepts and techniques are orthogonal to most of 
the related works based on SAD decimation, search window re-sizing, 
and memory energy reduction, and thereby can be employed in 
conjunction with those techniques. 

III. BACKGROUND KNOWLEDGE AND COMPUTATIONAL 
COMPLEXITY ANALYSIS OF HEVC MOTION ESTIMATION 

Coding Structure of HEVC: The key processing block in HEVC is 
called Coding-Tree Block or Unit (CTB, CTU), which defines a 
flexible variable-sized block structure for coding. Each CTU is 
partitioned into multiple Coding Units (CU) of sizes 64x64, 32x32, 
down to 4x4 pixels. The search for the best CU mode, that provides 
the best coding efficiency in terms of coded video quality and bitrate, 
is done recursively in a tree structure, starting from the Largest CU 
(LCU). Fig 5 depicts an example of CTU partitioning. For each CU, 
the motion estimation is performed for (multiple) reference frames. 
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Fig 5: The organization of the coding-tree unit/block in HEVC. 

Overview of Motion Estimation (ME): For each CU in the CTU of the 
current video frame (C), the motion estimator finds out its best match by 
comparing it with different selected candidate blocks (R), of same size 
as of CU, in one or multiple reference video frames (i.e. previously 
encoded and reconstructed frames). The selection of candidate depends 
upon the ME algorithm, while the search is performed in a restricted 
search window. The most widely used matching metric is Sum of 
Absolute Differences (SAD, Eq. 1). CUheight and CUwidth are the height 
and width of a given CU in number of pixels. 

0 0
( , ) ( , )

CUheight CUwidth

y x
SAD C x y R x y

= =

= −∑ ∑  (1) 

The candidate with the minimum SAD is given as the best match, and 
its distance from the current CU is given as the motion vector. The 
selection of best CU for final encoding is done through the rate-
distortion optimization process. Since ME can be performed for each 
possible CU inside a CTU, it results in a very high energy cost as 
discussed in Section I. Fig 6 illustrates the ME process and the generic 
data path of the SAD accelerator.  
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Fig 6: (a) Motion estimation/search process; (b) SAD accelerators data path. 

Complexity Analysis of ME in HEVC: The energy consumption is 
proportional to the computational requirements of the ME, which 
directly depend upon the number of operations in one SAD, and the 
number of computed SADs for candidate blocks. While the first factor 
is fixed, the latter depends upon the search algorithm and mode 
decision. A full search ME (FME) exhaustively evaluates all candidate 
blocks within in the search window. For instance, for each CU size, 
for a search window of size 32x32, there are 1024 candidates for SAD 
computation (4096 for 64x64, and 16384 for 128x128 search window). 
Typically, in energy-efficient real-world implementations, fast 
adaptive search (AME) algorithms like TZ, EPZS, or UMHexagonS are 
used. A good fast ME algorithm will cut down the search complexity 
(i.e. number of candidates for SAD evaluation) of full search by about 
80%-90% [10]. However, in general, the computation complexity of 
ME increases with the number of CU sizes. Table I illustrates the 
number of CTUs, CUs, and candidates evaluated per frame using FME 
and AME, for different video resolutions. 

Note, one block SAD (for a 32x32 CU size) requires 1024 subtractions 
for difference computation and 1023 additions for the adder tree (see 
data path in Fig 6), i.e. about 2K arithmetic operations per CU. 
Therefore, even using AME, the compute effort for one frame of 
HD1080p and CIF videos will require more than 1.8 T and 5.4 B 
operations, respectively. For a frame rate of 30fps, this corresponds to 
more than 50 T and 160 B operations for HD1080p and CIF videos, 
respectively. Such a high number of arithmetic operations in SAD 



computations illustrates a high potential of energy reduction through 
using approximate computing modules, besides providing parallel 
SAD arrays for high throughput. 

Table I: Complexity Analysis for Different Video Resolutions. 
(AME, with 90% complexity reduction compared to FME) 

Resolution QCIF CIF 480p HD720p HD1080p 
Width × Height 176 x 144 352 x 288 640 x 480 1280 x 720 1920 x 1080 
LCU Size 16 16 32 32 64 
#CTUs in 1 frame 99 396 300 900 510 
#CUs in 1 CTU 65 65 273 273 1105 
Search Window  32x32 32x32 64x64 64x64 128x128 
#Cand. FME 1024 1024 4096 4096 16384 
#Cand. FME/frame 6.6M 26.4M 335.4M 1B 9.2B 
#Cand. AME [10%] 102 102 410 410 1639 
#Cand. FME/frame 0.6M 2.64M 33.5M 0.1B 0.92B 

IV. APPROXIMATE ADDERS: DESIGN AND ANALYSIS 

A. Designing Approximate Adders 
In this paper, we deploy the approximate 1-bit full adders (FA) of 
IMPACT designs [13][14], and the multi-bit approximate adders from 
the open-source library of [23]. In the following, we provide only the 
necessary background information required to understand the novel 
contributions of this paper. 

Approximate 1-Bit Full Adders (FA): Fig.7 shows the circuit 
diagrams of accurate adder (AccuAdd) and 3 approximate adders 
(AppxAdd1, AppxAdd2, and AppxAdd3) based on the designs of 
[13][14]. The VHDL codes of these designs can be found in our open-
source library of [17]. The area, latency, power, and error results are 
depicted in Table II, which were observed exactly the same as reported 
in the [23], thus also validating the reproducibility. Note, AppxAdd3 
offers the best area, power, and latency results, because it is simply a 
short-circuit logic, and does not incur any switching power. However, 
it also has the highest error rate. AppxAdd1 and AppxAdd2 are 
reasonable tradeoff points w.r.t. power and error rate. 
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Fig.7: (a) Accurate 1-bit FA; (b, c, d) Approximate 1-bit FA of [13][14];  
(e) Power-quality impact of approximate adders for low-pass image filtering. 

Table II Characterization of Approximate 1-Bit Full-Adders. 
(Our results came out same as reported in the open-source library of [23]) 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number  
of Error 
Cases 

Max  
Error 

Magnitude 

Occ.  
of Max 
Error  

AccuAdd 4.41 0.12 1130 0 0 0 
AppxAdd1 1.94 0.07 294 2 1 2 
AppxAdd2 1.59 0.05 198 3 1 3 
AppxAdd3 0 0.00 0 4 1 4 

Approximate Multi-Bit Adders: For building the multi-bit adders, 
we follow the design method depicted in Fig.8 [23], where 
approximations are only done for the LSBs to avoid high error 

magnitude. For an N-bit adder, only k-bits are approximated using one 
of the three types of approximate 1-bit FAs (FAapx) as shown in Fig.7, 
while for N-k bits accurate 1-bit FA (FAacc) are used. To avoid design 
complexity, each approximate multi-bit adder variant has only one 
type of approximate 1-bit FA for all the k-approximated bits. 
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Fig.8: Multi-Bit Adder Chain using Accurate or Approximate 1-Bit Adders. 

B. Power-Quality Analysis for Approximate Adders 
To validate our implementations and to analyze the power-quality 
impact of these multi-bit approximate adders, we deployed accurate 
and two approximate 8-bit adders in a low-pass image filtering 
applications. Fig.7(e) shows the results for power (normalized to that 
of the accurate version), adder accuracy (% loss compared to accurate 
version), and output quality in terms of subjective quality (images) and 
objective quality (PSNR – Peak Signal to Noise Ratio, compared to 
the output of accurate adder-based filtering). It is interesting to see that 
the AppxAdd2, though having reduced PSNR, still produces similar 
subjective quality as of the accurate design. However, the subjective 
quality of the AppxAdd3 is degraded yet recognizable, but provides a 
very high power reduction.   

V. APPROXIMATE ARCHITECTURE FOR MOTION 
ESTIMATION IN HEVC 

A. Approximate ME Architecture 
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Fig 9: Hardware architecture of our approximate motion estimator. 

Fig 9 illustrates our approximate ME architecture for HEVC. It 
contains an array of SAD accelerators organized in form of 
heterogeneous approximate SAD tiles. Each tile contains multiple 
instances of a particular type of SAD variant. The approximate variant 
selection unit contains a look up table (LUT) filled with entries like 
power/energy and quality obtained from the design time analysis for 
heterogeneous approximate SAD variants for different block sizes. 
Depending upon the user requirements in terms of tolerable error and 
required energy reductions, tiles of appropriate approximate SAD 
variants are powered-on, while keeping all unrequired tiles in power-
gated states. The HEVC and motion estimation algorithm execute on 



the general-purpose processor core. The candidate vectors and pointer 
addresses are forwarded to the Address Generation Unit (AGU), which 
generates the memory address to fetch the data from on-chip memories 
storing the current CTU data and the search windows from reference 
frame(s). In case the required data is not in the on-chip memories, it is 
fetched from the main memory which stores the complete current and 
reference frames. The data from on-chip memories is forwarded to the 
SAD accelerators for computing the matching cost. The monitoring 
unit is responsible for maintaining the intermediate SAD and motion 
vector (MV) values, such that, the motion estimator can make fast 
search decisions, and can determine the best match, i.e. the one with 
the minimum SAD value. 

B. Heterogeneous Approximate Variants of SAD Accelerator 
We developed different SAD units of sizes 8x1, 8x8, 16x16, and 
32x32. The elementary accelerator is 8x1, which is then re-used to 
build bigger SAD blocks. For instance, we constructed 8x8 SAD unit 
out of one 8x1 SAD units that runs for 8 cycles. Alternatively, 8 such 
units can also be placed in parallel to obtain a single cycle 
implementation with more area cost. A 32x32 SAD unit was built 
using four 8x1 units and runs for 32 cycles. 

Accurate and heterogeneous approximate variants of SAD accelerators 
(numbered as “V”) are built using accurate or three approximate 
adders, and choosing 2, 4, or 6 LSBs for approximation. The area, 
power, and energy results for 8x8 and 32x32 SADs using the ASIC 
design flow are shown in Table III. 

Table III Area, Power, and Energy Results for Heterogeneous 
Approximate SAD Variants: (a) 8x8 SAD; (b) 32x32 SAD 

V 8x8 SAD Approx 
LSBs 

Area 
[GE] 

Power 
[µW] 

Energy 
[pJ] 

32x32 
SAD 

Approx 
LSBs 

Area 
[GE] 

Power 
[µW] 

Energy 
[pJ] 

0 AccuAdd 0 1383 190.4 4.90 AccuAdd 0 4038 567.1 14.61 
2 AppxAdd1 2 1336 176.4 4.54 AppxAdd1 2 3847 506.7 13.05 
5 AppxAdd1 4 1257 154.9 3.99 AppxAdd1 4 3531 411.8 10.60 
7 AppxAdd1 6 1178 133.7 3.44 AppxAdd1 6 3215 318.8 8.21 
3 AppxAdd2 2 1323 175.0 4.51 AppxAdd2 2 3794 503.0 12.96 
6 AppxAdd2 4 1233 151.3 3.90 AppxAdd2 4 3433 401.0 10.33 
8 AppxAdd2 6 1143 128.2 3.30 AppxAdd2 6 3071 302.0 7.78 
1 AppxAdd3 2 1280 173.5 4.47 AppxAdd3 2 3626 495.3 12.76 
4 AppxAdd3 4 1100 142.4 3.67 AppxAdd3 4 2887 363.0 9.35 
9 AppxAdd3 6 912 112.7 2.90 AppxAdd3 6 2119 237.6 6.12 

We additionally evaluated the efficacy of designs using the FPGA design 
flow. The area (in terms of LUTs and Slices), power and latency (critical 
clock delay and circuit’s delay after place-and-route) results are shown 
in Fig 10 for 8x8 and 32x32 SAD accelerators, using three approximate 
adders (AppxAdd1, AppxAdd2, and AppxAdd3) with 6 LSBs 
approximated. It is noteworthy that S3 has the lowest power and latency, 
and therefore is the most aggressive approximate variant, while S1 is the 
worst w.r.t. power and S2 in the middle. 

VI. RESULTS AND DISCUSSION 
Area, latency, and power/energy results have already been presented 
in the previous sections. Now, we will discuss the following three 
major results, analyzing the impact of our approximations on the: 

1) output of ME in terms of MV difference and SAD, 
2) bit-rate and PSNR of x265 reconstructed videos, and 
3) energy consumption of ME vs. MV difference. 

Due to long encoding delays and memory constraints, we present 
results mostly for CIF sequences, though our approach is equally valid 
for HD sequences, as we will show for one experiment. 

A. Impact of Approximation on the outcome of ME 
Approximation impact can be studied in form of (1) change in the SAD 
values (as also demonstrated in Section I.B); and (2) change in the 
motion vector in form of motion vector difference (MVD, as defined 
in Eq.2).  

sqrt[(MV.Xaccurate - MV.Xapprox)2 + (MV.Yaccurate - MV.Yapprox)2]  (2) 

Fig 11 shows the average MVD for different approximate variants (as 
defined in Table III) for different video sequences, considering 16x16 
SAD accelerators and a search range of 32. The resulting non-zero 
differences are averaged to obtain single bar for each case as shown in 
Fig 11. Note, increasing the number of approximate LSBs does not 
necessarily decrease accuracy. This is the case, for example, for “Bus” 
sequence when comparing AppxAdd1 with 2-, 4-, and 6-bits 
approximation (i.e. variants V=2, 5, and 7). There is no general rule 
for which adder performing generally better than another adder, i.e. 
when arranging the approximate variants ascendingly according to 
their corresponding MVDs will not result in the same order. Table IV 
illustrates the variant order w.r.t. increasing MVD values. 
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Fig 11: Average motion vector difference (MVD) for different video sequences at 
different approximation levels (see level description in Table III). 

Table IV Variant Order w.r.t. Increasing MVD for Different Videos 
Video Sequence Variant order according to increasing MVDs 

Foreman [9, 4, 7, 1, 8, 6, 3, 2, 5] 
Football [2, 5, 8, 7, 4, 9, 1, 3, 6] 
Bus [4, 9, 1, 7, 8, 6, 3, 5, 2] 
Mobile [7, 8, 3, 5, 6, 2, 9, 4, 1] 
Waterfall [8, 7, 1, 9, 4, 5, 3, 6, 2] 

Fig 12 shows the error surface plot (in terms of SAD values) for 
different approximate variants and for two HD720p video sequences, 
for a search window of 65x65. It is noteworthy that in several HD video 
sequences, the error surface degradation is not significant (row 1), and 
overall for all sequences, error surface degradation still follows the 
same minimization trend, illustrating the high resilience of ME, and low 
impact of our approximations on output quality degradation. 
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Fig 12: Error surface plots for accurate and different approximate SAD variants 
for HD720p video sequnces for 8x8 SAD and 16x16 SAD. 

B. Bit-Rate & Quality Analysis of x265 Reconstructed Video 
Fig 13 analyzes the impact of heterogeneous approximate SAD 
variants on the coding efficiency, in terms of bit rate, output stream 
size, and PSNR video quality for the reconstructed video when 
executing the full x265 video encoder flow. We notice that 
approximating 6-bits of the adders in the SAD accelerator results in 
very high increase in the bit-rate (which may be unacceptable), while 
approximating 2- and 4-bits results in a marginal bit-rate increase, 
which shows that they are good tradeoff options w.r.t. quality and 
power/energy reduction. It is noteworthy that the video quality in 
terms of PSNR stays within the range of 33.01 and 33.58, i.e. only a 
minimal PSNR degradation of 0.57 dB is incurred. Since the net 
coding efficiency is determined by both bit rate and PSNR, Fig 13 
shows that our approximations maintain the video quality in terms of 
PSNR, but lead to bit rate increase due to high prediction error in the 
motion estimation process in case the best matches are different for 
accurate and approximate versions. 
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Fig 13: Comparing the bit-rate, output stream size, and PSNR quality for 
different approximate SAD variants for “Foreman” sequence. 

C. Energy Consumption of Motion Estimation 
Table V shows the average energy vs. average MVD results for selected 
approximate SAD variants for the “Waterfall” sequence. We selected 
this sequence as it presents a counter-example. From this table, we can 
conclude that, for the same adder type, increasing the number of 
approximate bits will increase the average MVD indicating quality 
degradation. However, an increase of average energy is also noted. For 
instance, Variant-7 (with 6 approximate bits) consumes as much energy 
as the accurate variant, which is due to more candidate evaluations, as 
the stopping criteria of the ME is not achieved due to the high texture 
content and camera panning motion in this sequence. That is, it may 
happen that for certain video contents, not all approximate variants 
bring energy benefit for the ME process. In this case, Variant-3 is the 
best in terms of energy vs. quality tradeoff. 

Table V: Energy consumption vs. MVD Analysis for ME for “Waterfall”. 
Variant 0 2 3 5 7 
Avg. MVD 0.307 0.330 0.328 0.371 0.462 
Avg. Energy [mJ] 1.24 1.15 1.14 1.24 1.24 

VII. CONCLUSION 
We presented an approximate computing architecture for HEVC 
motion estimation. Our architecture employs various tiles of accurate 
and heterogeneous approximate variants of the SAD kernel, which 

enables a wide-range of energy-quality tradeoffs for the user. We 
analyzed the inherent resilience of the motion estimation process, 
performed detailed characterization of heterogeneous approximate 
SAD variants in terms of power/energy, area, and latency. We 
synthesized our designs for both ASIC and FPGA design flows and 
integrated into a real-world HEVC applications (x265). We also made 
the RTL and behavioral implementations of our various designs open-
source at https://sourceforge.net/projects/lpaclib/, which enable 
reproducible comparisons and further research and development. 
Embracing approximate computing unleashes new avenues for 
energy-efficient embedded multimedia systems employing highly 
complex HEVC codecs, which will particularly be beneficial for 
battery-constrained mobile devices. 
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