
A Hybrid Agent-based Design Methodology for Dynamic
Cross-layer Reliability in Heterogeneous Embedded Systems

Siva Satyendra Sahoo, Bharadwaj Veeravalli
National University of Singapore, Singapore
satyendra@u.nus.edu,elebv@nus.edu.sg

Akash Kumar
Technische Universität Dresden, Germany

akash.kumar@tu-dresden.de

ABSTRACT
Technology scaling and architectural innovations have led to in-
creasing ubiquity of embedded systems across applications with
widely varying and often constantly changing performance and re-
liability specifications. However, the increasing physical fault-rates
in electronic systems have led to single-layer reliability approaches
becoming infeasible for resource-constrained systems. Dynamic
Cross-layer reliability (CLR) provides scope for efficient adaptation
to such QoS variations and increasing unreliability. We propose a
design methodology for enabling QoS-aware CLR-integrated run-
time adaptation in heterogeneous MPSoC-based embedded sys-
tems. Specifically, we propose a combination of reconfiguration
cost-aware optimization at design-time and an agent-based opti-
mization at run-time. We report a reduction of up to 51% and 37%
in average reconfiguration cost and average energy consumption
respectively over state-of-the-art approaches.

KEYWORDS
Cross-layer Reliability, Run-time Resource Management, Embedded
Systems, Reinforcement Learning

1 INTRODUCTION
Modern embedded systems are being used in an ever-increasing
number of application areas with widely varying Quality of Ser-
vice (QoS) requirements. The aggressive transistor scaling, en-
abling the cheaper design of Heterogeneous Multiprocessor System-
on-Chip (HMPSoC)-based systems, has been the major driving
force behind such ubiquity. However, the resulting increase in
power density, manufacturing defects and Soft Error Rate (SER)
[15] have also led to decreased hardware reliability. Traditional
single-layer reliability-aware design methodologies, using meth-
ods such as uniform Triple Modular Redundancy (TMR), adopt an
other-layer-agnostic approach and, with the resulting high costs
(power/area/timing), are becoming increasingly infeasible for em-
bedded systems with resource constraints.

In contrast, Cross-layer Reliability (CLR)-based design approach
involves distributing fault-mitigation activities across multiple lay-
ers of the system stack. The joint optimization of reliability methods
across multiple layers enables leveraging the implicit fault-masking
at different layers [14]. Further, this approach can be used to modu-
late the CLR configuration to exploit the application-specific tol-
erances to degradation in one or more QoS metrics. However, to
maximize the benefits from such an approach, the system needs
to adapt to changes in the operating environment dynamically. As
an example, consider the case of satellite-based surveillance where
perpetual processing is of paramount importance. The varying
battery levels, as a function of the exposure to sunlight and prior
processing, can pose a significant challenge to the perpetuity of
operation. Therefore, to ensure continuous processing, the system

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
DAC ’19, June2ś6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317746

0

2

4

6

8

10 60
HW-Only CLR1 CLR2

0

25

50

75

HWOnly CLR1 CLR2

Figure 1: Motivation for Dynamic CLR

may need to conserve energy at the cost of higher application error
rate. The variation in acceptable error rate can also be a function
of the terrain under surveillance.

Figure 1 shows a case-study with Pareto-front of design points
showing the trade-off between energy consumption and application
error rate. These design points are shown for a system implement-
ing task-mapping with cross-layer reliability (CLR1 and CLR2), and
the one implementing only hardware reliabilitymeasures. As shown
in the bar-graphs, the average energy consumption (Javд) in the
dynamic CLR systems with run-time adaptation is much lower than
a fixed configuration-based approach. The additional reduction of
Javд in CLR2 over CLR1 is due to the increased number of design
points (9 over 6) providing finer granularity for adaptation. The
Javд was estimated for a normal distribution of the QoS require-
ment of acceptable application error rate. A worst-case scenario for
energy ś ensuring lower than 2% error rate at all times ś was used
for the fixed configuration.

Most of the state-of-the-art methods for dynamic CLR do not
consider the optimization across heterogeneous Processing Ele-
ment (PE)s. The joint optimization across application-specific QoS
requirements and CLR configuration results in a further explosion
of the already vast design space for usual reliability-oriented task-
remapping. Hence, a purely run-time Design Space Exploration
(DSE) approach cannot provide efficient performance with guaran-
teed QoS. Similarly, purely design-time DSE approaches can result
in degraded average performance. To this end, we propose a hybrid
design methodology for enabling dynamic CLR in HMPSoC-based
embedded systems.
Contributions: Our contributions are listed below:

• We propose a hybrid DSE methodology for CLR-integrated run-
time task-remapping. Specifically, we use Genetic Algorithms
(GA)-based multi-objective optimization at design-time and an
agent-based dynamic adaptation at run-time.
• We propose a reconfiguration cost-aware DSE for enabling a
user-modulated trade-off between performance and adaptation
cost. The finer granularity of adaptations in CLR2 than CLR1 in
Figure 1, may result in more reconfigurations. We integrate the
cost of such dynamic adaptation in design-time DSE.
• We use an agent-based run-time adaptation to integrate any
prior knowledge about the operating conditions. Specifically, a
reinforcement learning-based approach is used to estimate the
average performance of the stored design points. This enables
the system to adapt to configurations with optimal average per-
formance rather than the best instant improvement.

Table 1: Comparing Related Works

Related Work
Dynamic
QoS-aware

Heterogeneous
Multiprocessor

Multi-objective
Reconfiguration

cost-aware

Rehman et al. [11] ✗ ✗ ✓ ✗

Henkel et al. [7] ✗ ✓ ✗ ✗

Cheng et al.[3] ✗ ✗ ✓ ✗

Glaß et al. [6] ✗ ✓ ✓ ✗

proposed ✓ ✓ ✓ ✓

The rest of the paper is organized as follows ś the relevant back-
ground and related research work are briefly discussed in Section
2. In Section 3, we specify the system model used for analysis and
optimization. The proposed methodology is explained in detail in
Section 4. The results from the experimental evaluation of the pro-
posed methodology are discussed in Section 5. Finally, we conclude
the paper in Section 6 the paper summary and discussions on the
scope of related future research.

2 BACKGROUND AND RELATEDWORK
The variation in QoS requirements is not limited to just across dif-
ferent applications. The same embedded system may be expected to
operate under different QoS requirements as well. Typical scenarios
include ś processing in minimal energy mode during low-battery,
high throughput to guarantee quality under increased packet arrival
rate and higher precision for some financial tasks. In the current
article, we express the QoS requirements of an embedded system in
terms of (1) functional reliability ś the probability of correctness in
computation results, and (2) average makespan ś the average time
taken for execution of the application. In addition to guarantees on
these two QoS metrics, we express the performance in terms of the
average energy consumption.

2.1 Cross-layer Reliability
Traditional single-layer reliability approaches focus on mitigating
all physical faults at the hardware layer. A phenomenon-based
approach is usually used, i.e., each fault mechanism (Negative-
bias Temperature Instability (NBTI), Electro-migration (EM), Sin-
gle Event Upsets (SEU) etc.) is mitigated separately to provide an
error-free hardware platform. Although it provides a convenient
abstraction to the software developer, the rising costs ś area and
power ś for mitigating the effects of increasing fault rates can make
such an approach infeasible for many applications. In contrast,
the cross-layer approach provides a more application-specific and
cost-efficient method for reliability-aware system design. Since the
fault-mitigation activities are not limited to the hardware layer, an
appropriate combination of methods that meets the design goals
and constraints can be implemented. As discussed in [8] and [12],
implementing separate fault tolerance stages at different layers can
result in reduced power and area overheads.

2.2 Run-time Task-remapping with CLR
Task-mapping of application tasks on MPSoCs involves assignment
and ordering of the tasks and their communications on the platform
resources given some optimization criteria. A survey of various
task-mapping methodologies, both design-time and run-time, based
on different optimization goals is presented in [16]. In [2], the au-
thors outline a methodology for implementing dynamic cross-layer
resilience. Additional subsystems ś Error handler routine, Resource
Map, Hardware Configuration Routine, and Task Scheduler ś in the
operating system are used to trigger the appropriate fault-tolerance
technique at the appropriate layer. However, the authors do not
provide any information about the optimization of run-time adap-
tation to various operating scenarios. In [11], the authors provide a
detailed methodology for hybrid CLR-based run-time adaptation
for multiple objectives. However, the methodology is limited to
single processor systems with fixed task-schedules. Similarly, the

L
o

cal

M
em

o
ry

Heterogeneous MPSoC

On-chip Interconnect

..PE0 PE1 PEp

DMA

Control Unit

Reconfigurable Logic

NI

Processor

ICAPDDR

NI

(a) Architecture model

S

D DD D

H1

H2

H3

H4

H5

QZ

(b) Application model
(JPEG Encoder)

Figure 2: System model

methods proposed in [3, 6] are primarily suited for system synthe-
sis at design-stage and are orthogonal to our proposed approach.
In [7], the authors propose various cross-layer techniques ś from
micro-architecture to application level ś for both general purpose
processor-based and reconfigurable processor-based embedded sys-
tems. The dynamic task-remapping method outlined in [7] is pri-
marily aimed at reducing the aging-related stress pro-actively, and
reacting to permanent faults. However, the authors do not consider
QoS-aware optimization and run-time adaptation costs.

A comparison of our proposed methodology with related re-
search works is shown in Table 1. Most proposed approaches do
not consider changing QoS requirements and the effect of run-time
reconfiguration costs during design-time optimization in hetero-
geneous systems. To this end, we propose a novel method for in-
tegrating the consideration of the run-time reconfiguration costs
during design-time optimization to provide more efficient design
points for dynamic CLR.

3 SYSTEM MODEL

3.1 Architecture Model
For the architecture model, we assume an HMPSoC with a dis-
tributed shared memory architecture, similar to the one shown in
Figure 2a, with centralized control of task-remapping and CLR im-
plementation, and containing P processing elements (PEs). Each of
the PEs, PEp is characterized by the tuple: (IDp , PETypep): the PE’s
index and type.We denote the heterogeneity among PEs by the term
PETypep to represent the combinations of one or more of the fac-
tors ś (1) the type of processor, such as general purpose embedded
processors or accelerator on reconfigurable logic (2) aging-related
fault profile of the PE (characterized by βp) and (3) soft-error mask-
ing factor for the PE such as the Architectural Vulnerability Factor
(AVF) [9].

3.2 Application Model
We model the application as a task-graph Gapp , represented by a
tuple (Tapp ,Eapp , Papp), the set of task nodes, the directed connec-
tivity of the nodes representing task dependencies, and the peri-
odicity of the application respectively. Figure 2b shows a sample
task-graph for an application with 11 tasks and 13 edges. Each edge,
Ee ∈ Eapp , is characterized by the tuple (IDe , Srce , Dste ,CommTe):
the edge index, source and sink task nodes, and the data transfer
time. Similarly, each task, Tt ∈ Tapp , in the task-graph is charac-
terized by the tuple (IDt ,Typet , Implt): the task index, task type

(functionality) and the set of implementations for the task. Each ith

implementation of Tt , Impl(t,i) ∈ Implt , is characterized by the fol-
lowing: (1) the type of PE, (2) system software ś bare-metal system

Table 2: CLR Model and Task-level performance metrics

Abstraction
Layer

Redundancy
Type

Sample
Methods

Task-level Performance
Metrics of Impl(t,i)

Hardware Spatial
HWRel Scale parameter

(stress indicator): η(t, i)
Minimum execution time:
MinExT(t, i)
Average execution time:
AvgExT(t, i)
Probability of error during
execution: ErrProb(t, i)
Mean time to failure:
MTTF(t, i)
Average power:W(t, i)

Partial TMR,
Circuit Hardening

System
Software

Temporal
SSWRel

Retry,
Checkpointing

Application
Software

Information
ASWRel

Code Tripling,
Hamming Correction

Checksum [10]

Table 3: System-level QoS and performance Estimation

Metric Estimation Method

Average Makespan

(Sapp)
Sapp = max

Tt ∈Tapp

{

SETt
}

(1)

Functional Reliability

(Fapp)

Ft = 1 − ErrProb(t,i),

where Impl(t,i) is used f or Tt

Fapp =
∑

Tt ∈T

Ft × ζt

where ζt = Normalized criticality o f Tt

(2)

Power (Wapp),
Energy (Japp)

Wapp = max
x ∈(0,Sapp]

∑

Tt ∈Tapp

I(x) ×Wt

where, I(x) =

{

1, i f x ∈
(

SSTt ,SETt
]

0, else

Japp =
∑

Tt ∈Tapp

AvдExTt ×Wt

(3)

or some operating system and (3) application software ś algorithms
and programming languages.

3.3 Cross-layer Reliability Model
For our current work, we consider fault-mitigation methods across
three layers ś Hardware (HWRel), System Software (SSWRel)
and Application Software (ASWRel). Varying the selection and
configuration of reliability methods for each layer leads to varying
performance of the tasks’ implementations. We follow the frame-
work proposed in [13] to determine the task-level performance
metrics. These metrics, as described in Table 2, are used for system-
level analysis and design. The scale parameter η(t,i) is a function
of the thermal profile of executing Impl(t,i), and can be used in
estimating the system’s lifetime. Similarly, the ErrProb(t,i) is a
function of the Impl(t,i), the CLR configuration and the masking
factor of the PE.

3.4 System-level QoS Metrics Estimation
CLR-integrated task scheduling involves executing any implemen-
tation, Impl(t,i), with any CLR configuration, say Ct , for every task,
Tt ∈ Tapp , on any of the available PEs of the hardware platform
in some order. With the resulting execution schedule, the relevant
system-level QoS and performance metrics are estimated as shown
in Table 3. SSTt and SETt refer to the average start and end execu-
tion time respectively for task Tt . We use a task criticality-based
method for functional reliability estimation.

3.5 Reconfiguration Model
Dynamic CLR-based adaptation in HMPSoCs can involve any of
the following modes ś (1) re-ordering execution of tasks mapped
on each PE, (2) changing the CLR configuration for the reliability
methods for each layer, (3) changing the implementation used for a
task (4) varying the task-to-PE binding for some tasks. We assume

Monte

Carlo-based

Prediction

Run-time

Adaptation

Reconfiguration

cost-aware

MOEA

System-level MOEA

Architecture model, Application Model, CLR methods QoS metrics’ range, Storage Constraints,

DSE for

Run-time

Adaptation

Discrete

Event

Run-time

Reconfiguration

Design-time

Exploration

Design points

database

User

Preference

Prior

Knowledge

Value

functions

AuRA

B
a

se
D

uRA

ReD

Figure 3: Hybrid Run-time Adaptation Methodology

each PE has fixed amount of local memory to store the binaries for
the tasks mapped on it. Therefore, the first two methods do not
incur any reconfiguration cost due to task-migration. The latter
two methods, however, involve copying of tasks’ implementation
binaries to appropriate PEs. Further, using different accelerators to
the partially reconfigurable regions (PRRs) in the reconfigurable
area involves changing the bit-stream mapped for the PRRs. We
use the term dRC to denote the reconfiguration cost between two
CLR-integrated task-mapping configurations. The average recon-
figuration cost can affect the system availability, communication
energy of transferring the binaries and bit-streams and the reli-
ability of on-chip interconnect. We use the reduction of average
run-time adaptation costs as a generic method of improving such
related metrics.

4 HYBRID DSE METHODOLOGY
Dynamic CLR is used for adapting to some change in the system’s
operating scenario. The change could be internal: for example a
permanent fault to one of the PEs resulting in reduced resource
availability ś or external: a change in QoS requirements or Single
Event Upset (SEU) rate, λSEU . For our current work, we consider
the case of run-time adaptation to varying QoS requirements at
constant resource availability and λSEU as the working scenario.
Variations in other factors can be considered as separate instances
of this scenario with different values for λSEU , and the number of
available PEs. As shown in Figure 3, the proposed hybrid methodol-
ogy broadly consists of two stages ś (1) During design/compile-time,
a set of CLR configurations that form the Pareto-frontier w.r.t. the
QoS and performance metrics are generated and (2) These set of
points, along with a set of supporting data, are used during run-time
to find the appropriate next configuration. The details of proposed
methods during each stage are explained below.

4.1 Problem Statement

maximize
Xi ∈Xapp

R(Xi)where, Xapp =
∏

∀Tt ∈Tapp

Ψt

R(Xi) = −1 × Japp (Xi)

i, j ∈ R , Sapp (Xi) ≤ SSPEC and Fapp (Xi) ≥ FSPEC

Ψt =

{

Mt , f or task −mappinд only
Ct , f or CLR − Implementation only

Mt × Ct , f or CLR − Inteдrated task −mappinд

(4)

We consider the maximization reduction in energy consumption
under constrained maximum average makespan and application
error rate as a representative example of a typical dynamic CLR
problem. The set of all possible cross-layer reliability configurations
for each task can be represented by:
Ct = HWRel t × SSWRel t × ASWRel t , ∀Tt ∈ Tapp
It denotes the Cartesian product of the combinations of masking,
detection and tolerance methods for each layer. Similarly, the pos-
sible task-to-PE binding and scheduling options the tasks can be
represented by the set:
Mt = Pt × It × Qt , ∀Tt ∈ Tapp ,
the product of the set of PEs that the task Tt can be executed on,
the set of possible implementation choices for task Tt , and the
set of possible positions of the task in the execution schedule re-
spectively. Hence, for any arbitrary CLR-integrated task-mapping
configuration of Gapp , Xi , the objective function for the run-time
optimization problem can be expressed as shown in Eq. (4). We
use the term R(Xi) to denote the performance of a any arbitrary
task mapping Xi . In our current work, we use the reduced energy
consumption to signify improved performance. Other metrics such
as Mean Time to Failure (MTTF) can be added to R(Xi) for opti-
mization of system lifetime.

4.2 Design/Compile-time DSE
max

pi ⊂Papp
V(pi)where, Papp = {Xi } ,∀Xi ∈ Xapp

V(pi) =
∑

∀Xi ∈pi

v(R(Xi),Fapp (Xi),Sapp (Xi))

s .t . ∀Xr ∈ pi ,Sapp (Xr) ≤ max(SSPEC),

and Fapp (Xi) ≤ min(FSPEC)

(5)

To integrate the effect of varying QoS requirements of Sapp and
Fapp , Eq. (4) can be converted into a multi-objective optimization
problem as shown in Eq. (5). It involves finding an optimal set of
task-mapping design points which are not dominated by any other
design point w.r.t. Sapp , Fapp and R(Xi). The solution technique
involves maximizing the sum of the hyper-volume, V(pi), of all
the non-dominated points in the collection pi . Figure 4a shows
an example of hyper-volumes of design points in the minimiza-
tion of objectives O1 and O2. The reference point R denotes the
constraints (maximum) for both the objectives. The hyper-volume
of the feasible design point, F1, represents it’s fitness and is equal
to the (green) area swept by the point relative to R. Similarly, the
fitness of infeasible design points is represented by the negative of
the (red) areas between R and those points.

4.2.1 Run-time Reconfiguration cost-aware DSE (ReD). In order
to integrate the effect of run-time reconfiguration cost into the
design-time optimization problem, we introduce an additional opti-
mization stage that considers the reconfiguration distance between
two arbitrary task-mapping configurations ś dRC . For each of the
design points in the solution set of Eq. (5), we use the point as initial
seeding to generate a set of points that are within some tolerance
limit w.r.t the degradation of that point’s QoS metrics and R(Xi).
The new design point’s average dRC from the optimal set of design
points is used as an additional objective in the new multi-objective
optimization problem. Consider the typical scenario shown in Fig-
ure 4b, where the QoS requirements change from the point S to
S ′. Using the Pareto design points solely for reconfiguration would
result in changing the operating point from FOp to F ′

Op
. However,

there might be some non-dominant point, F ′′
Op

, that meets the QoS

constraints of S ′ and incurs lesser task-migration and related recon-
figuration costs. The additional optimization step aims at finding

(a) Hypervolume maximization (b) Reconfiguration cost-aware DSE

Figure 4: Design-time Exploration

Algorithm 1 User-modulated Run-time Adaptation (uRA)

Require: Stored design points:pi ; User parameter:pRC
1: loop
2: if discrete event: then
3: F EAS ← Feasible desiдn points in pi
4: for all p ∈ F EAS do
5: {Estimate reconfiguration cost}
6: dRC (p) ← dRC f rom current conf iдuration
7: {Estimate performance (−1 × Japp (Xi)}
8: R(p) ← R(Xi) of p
9: RET (p) ← pRC ×norm(R(p)) − (1−pRC) ×norm(dRC (p))
10: end for
11: Select argmax

p∈F EAS

RET (p) for re-configuration.

12: end if
13: end loop

such design points for enabling efficient reconfiguration-aware
run-time DSE.

4.3 Run-time Adaptation
The run-time decision making involves changing the operating
point to a configuration that ś (1) satisfies the new QoS require-
ments and (2) provides a user-defined balance between performance
(R(Xi)) and average reconfiguration cost.

4.3.1 User-modulated Run-time Adaptation (uRA). The proposed
run-timeDSEAlgorithm is shown in Algorithm 1. The first DSE step
involves filtering the feasible design points based on the newSSPEC
and FSPEC constraints. The filtered set of points are evaluated
based on the weighted costs of normalized dRC from the current
configuration and the normalized performance degradation of R
(Eq. (4)). A parameterpRC is used to enable user-specific importance
to qualitymetric improvement and reconfiguration cost. The system
is reconfigured to the lowest cost design point.

4.3.2 Agent-based uRA (AuRA). The approach in uRA is myopic
and does not consider the uncertainties w.r.t. QoS requirements
variations and other changes in the operating scenario. Further, it
does not provide any way of integrating prior knowledge about
the operating environment. To overcome these limitations, we use
a reinforcement learning (RL) agent-based run-time adaptation
method ś AuRA. Due to space constraints, we list only the major
features of the approach below.

• State space: Each of the stored design points is treated as a single
state.
• Policy:We use a fixed policy, similar to that in uRA . However,
the next state evaluation (lines 5-9 in Algorithm 1) is based on
the value functions of the feasible states instead of their R(p) and
dRC (p) values. It can be noted that the uRA method is subsumed
into AuRA by setting the discount factor γ = 0 during policy
evaluation.

Table 4: Percentage reduction in task-migration cost using
using ReD over BaseD [11] for a CSP w.r.t. the QoS metrics

Number of Tasks 10 20 30 40 50 60 70 80 90 100

% Reduction over [11] 23 34 47 37 28 49 39 27 36 56

• Value optimization: With the fixed policy we use the returns
from each episode (typically a thousand number of application
execution cycles) to update the states’ value functions.
• Prior knowledge: In the purely online approach the agent starts
with uniform value functions for each state and learns about the
operating environment from experience. However, to incorporate
prior information about the distribution of QoS requirement
variations we use a Monte Carlo simulation with the fixed policy
for estimating the initial value functions of each state.

5 EXPERIMENTS AND RESULTS

5.1 Experiment Setup
The experiments were performed on a computer with two CPUs ś

IntelTM XeonTM E5-2609 v2 @ 2.50GHz (each CPU is quad-core)
and 32 GB of memory. Experiments were conducted for synthetic
applications with the number of tasks varying from 10 to 100. The
task-graphs and tasks’ execution times for the synthetic applica-
tions were generated using Task Graphs For Free (TGFF) tool [4].
All the applications were mapped to an HMPSoC with 5 PEs of 3
different types that vary in masking factor. Additionally, 3 partially
reconfigurable regions (PRRs) were used to execute accelerators for
the tasks. The optimization methods were implemented in Python
using the DEAP [5] and PYGMO [1] packages for GA. Probability
parameters of 0.7 and 0.03 were used for crossover and mutation
respectively. Tournament selection with 5 individuals was used
for evolving the new generation. The experimental evaluation of
the proposed DSE approaches involved estimating the effects of
using different reliability methods at multiple layers. Models for the
methods mentioned in Table 2 were used for the different layers.
Bivariate Gaussian and exponential distributions, with a rate of 100
cycles, were used in the Monte Carlo simulation of run-time DSE
for emulating changes in QoS specification and the time between
discrete events respectively.

5.2 Evaluation of Reconfiguration cost-aware
Dynamic Adaptation

Evaluation of the reconfiguration cost-aware optimization prob-
lem involved Monte Carlo simulations of the run-time DSE with
two different stored database of design points, for a million ap-
plication execution cycles. The first database contained a purely
performance oriented set of only the Pareto-front design points
(BaseD). This approach is similar to the ones used in [11] for hybrid
task-remapping. The second database (ReD) contained additional
non-dominant design points obtained from the additional multi-
objective optimization problem explained in Section 4.2.1.

For a graphical explanation of the improvement in results, we
use the results from solving a constraint satisfaction problem (CSP)
for ensuring QoS w.r.t. average makespan and functional reliability.
This is achieved by setting R(Xi) = 0 in Eq. (5). Figure 5 shows the
design points used for dynamic adaptation in the application with
80 tasks. The additional non-dominant design points are marked
with a ‘>’. As shown in Table 5, a reduction in average reconfigu-
ration cost of up to 56% was observed using the additional design
points. The task-migration costs incurred as a reaction to the first
50 instances of QoS variation, obtained from a section of the Monte
Carlo simulation, are shown in Figure 6. The two sets of traces in
the figure correspond to the results from using the two different
databases for the application with 80 tasks. The higher number of

2.5

3.5

4.5

5.5

6.5

7.5

8.5

1700 2700 3700 4700

Figure 5: Pareto front and additional points from reconfigu-
ration cost-aware optimization

Figure 6: Comparing reconfiguration cost trace for a se-
quence of 50 QoS requirement changes

Table 5: Percentage increase in energy consumption and re-
duction in dynamic adaptation costs with reconfiguration-
cost minimization on a single set of design points

Number of Tasks 10 20 30 40 50 60 70 80 90 100

% Reduction in Average
Reconfiguration cost

38 45 28 8 51 44 30 49 43 39

% Increase in Average
Energy Consumption

10 13 4 0 4 1 0 2 2 2

reconfigurations in this window, 31 compared to 24, for the Pareto
performance-oriented approach ś can be attributed to the search
for the best hyper-volume design point for every change in QoS
requirements. However, in the case of the other approach, the run-
time adaptation is performed only during a violation of the QoS
requirements. This is demonstrated clearly in the first few samples
in Figure 6. While the reconfiguration cost-aware approach does
not trigger any adaptations, the other approach results in continu-
ous adaptations in the region A shown in the figure. Further, the
maximum reconfiguration cost incurred with the set of Pareto de-
sign points, BaseD, shown as ∆dRC , is considerably higher than that
using the alternative approach (ReD). All these factors contribute
to the increased run-time reconfiguration cost in BaseD.

5.3 Evaluation of DSE methods
Using a reconfiguration cost minimization approach can result in re-
duced performance for a problemwith additional objectives (similar
to Eq. (5)). Table 5 shows the increase in average energy consump-
tion in different tasks with solutions that minimize the average
reconfiguration cost. These results are from simulations on a single

0.4

0.5

0.6

0.7

0.8

0.9

1

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7: Relative variation of average energy (in green) and
reconfiguration cost (in red) with pRC

Table 6: Percentage improvements using ReD compared to
Based with relevant values of pRC

Number of Tasks 10 20 30 40 50 60 70 80 90 100

% Reduction in Average
Reconfiguration cost

(with pRC = 0)
19.6 26.0 4.6 0.2 0.2 0.1 4.0 9.0 7.3 1.7

% Reduction in Average
Energy Consumption

(with pRC = 1)
36.8 27.5 0.0 0.0 0.8 0.0 3.9 3.5 0.0 0.0

set of design points. The use of user modulation parameter pRC
enables the user to switch dynamically between varying priority
modes. The effect of using pRC is shown in Figure 7 for 5 applica-
tions with a varying number of tasks. The parameter pRC can be
used to tune between the two extremes ś run-time reconfiguration
cost minimization and performance maximization. Here, perfor-
mance refers to the improvement in energy reduction. Figure 7
shows the variation of average reconfiguration cost (in red) and
average energy consumption (in green) at different values of pRC .
For each application, maximum adaptation costs were observed for
pRC = 1, which also corresponds to the best gain inR. The run-time
adaptation costs do not decrease continuously as only a limited
number of non-dominant points ś the ones primarily responsible
for the reduced costs ś are present in the solution set.

Table 6 shows the percentage improvementswith ReD over BaseD
using appropriate values of pRC for energy (pRC = 1) and reconfig-
uration cost minimization (pRC = 0) for different application sizes.
The additional non-dominant points in ReD result in reduced aver-
age reconfiguration cost of up to 26% (average 7.3%). Similarly, the
average energy consumption is also reduced by up to 37% (average
7.3%).

Similar comparison of the performance of AuRA over that of uRA
are presented in Table 7. The use of prior knowledge about varia-
tions in QoS requirements with off-line Monte Carlo simulation-
based value function optimization resulted in improved metrics for
most of the cases. However, in some cases the value functions did
not converge due to a large number of design points, resulting in
slightly reduced performance.

6 CONCLUSION
With increasing susceptibility of hardware to physical faults and
the increasing variability in the operating scenarios of embedded
systems, cross-layer reliability-integrated run-time adaptation is a
growing necessity. In order to ensure the development of low-cost
embedded systems, such an approach is necessary to enable the
usage of commercial off-the-shelf component-based systems in a
wider variety of applications. However, the joint optimization of

Table 7: Percentage improvements usingAuRA compared to
uRA with relevant values of pRC

Number of Tasks 10 20 30 40 50 60 70 80 90 100

% Reduction in Average
Reconfiguration cost

(with pRC = 0)
-6.9 49.5 3.3 20.9 58.5 25.7 23.9 -1.2 0.6 7.2

% Reduction in Average
Energy Consumption

(with pRC = 1)
1.2 7.0 -2.5 2.6 1.6 -1.0 -0.1 0.5 3.2 3.0

task-mapping, scheduling, QoS-awareness and cross-layer configu-
ration during run-time form a major impediment to CLR-integrated
design. In this paper, a hybrid methodology for enabling CLR-
integrated runtime-adaptation is proposed. An user-modulation
enabled method for dynamically assigning priority to reconfigura-
tion cost and performance improvements was used for run-time
DSE. Further, a technique for integrating the effect of run-time re-
configuration overheads into the design time optimization problem
is evaluated. With our proposed methods, up to 51% reduction in
average reconfiguration cost and 37% reduction in average energy
consumption was observed. The frequently used hybrid approach of
storing multiple design points for each possible operating scenario
can lead to inadequate storage and longer run-time DSE. Future
research would involve using cross-layer reliability to alleviate such
issues in hybrid run-time adaptation.

ACKNOWLEDGMENTS
This work is supported in part by the German Research Foundation (DFG)
within the Cluster of Excellence łCenter for Advancing Electronics Dresdenž
(CfAED) at the Technische Universität Dresden.

REFERENCES
[1] F. Biscani and D. Izzo. 2018. esa/pagmo2: pagmo 2.9. https://doi.org/10.5281/

zenodo.1406840
[2] N. P Carter, H. Naeimi, and D. S Gardner. 2010. Design techniques for cross-layer

resilience. In DATE.
[3] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Cher, H. Cho, K. Skadron, M. R. Stan, K.

Lilja, J. A. Abraham, P. Bose, and S. Mitra. 2016. CLEAR: Cross-Layer Exploration
for Architecting Resilience - Combining Hardware and Software Techniques to
Tolerate Soft Errors in Processor Cores. In Proceedings of the 53rd Annual Design
Automation Conference (DAC ’16).

[4] R. P. Dick, D. L. Rhodes, and W. Wolf. 1998. TGFF: Task Graphs For Free. In
CODES. IEEE Computer Society, 97ś101.

[5] F. Fortin, F. De Rainville, M. Gardner, M. Parizeau, and C. Gagné. 2012. DEAP:
Evolutionary Algorithms Made Easy. Journal of Machine Learning Research (July
2012).

[6] M. Glaß, H. Yu, F. Reimann, and J. Teich. 2012. Cross-Level compositional
reliability analysis for embedded systems. Computer Safety, Reliability, and
Security (2012), 111ś124.

[7] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique. 2014. Multi-Layer
Dependability: From Microarchitecture to Application Level. In DAC.

[8] K. Lee, A. Shrivastava, M. Kim, N. Dutt, and N. Venkatasubramanian. 2008. Miti-
gating the impact of hardware defects on multimedia applications: a cross-layer
approach. In Proceedings of the 16th ACM international conference on Multimedia.

[9] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. 2003. A
Systematic Methodology to Compute the Architectural Vulnerability Factors for
a High-Performance Microprocessor. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[10] Michael Nicolaidis. 2010. Soft Errors in Modern Electronic Systems (1st ed.).
Springer Publishing Company, Incorporated.

[11] S. Rehman, K. Chen, F. Kriebel, A. Toma, M. Shafique, J. Chen, and J. Henkel.
2016. Cross-Layer Software Dependability on Unreliable Hardware. IEEE Trans.
Comput. 65 (Jan 2016).

[12] S. S. Sahoo, B. Veeravalli, and A. Kumar. 2016. Cross-layer fault-tolerant design
of real-time systems. In DFTS.

[13] S. S. Sahoo, B. Veeravalli, and A. Kumar. 2018. CLRFrame: An Analysis Framework
for Designing Cross-Layer Reliability in Embedded Systems. In VLSID.

[14] T. Santini, P. Rech, A. Sartor, U. B Corrêa, L. Carro, and F. R Wagner. 2015.
Evaluation of Failures Masking Across the Software Stack. MEDIAN (2015).

[15] P. Shivakumar, M. Kistler, S. W Keckler, D. Burger, and L. Alvisi. 2002. Modeling
the effect of technology trends on the soft error rate of combinational logic. In
Dependable Systems and Networks,.

[16] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. 2013. Mapping on multi/many-
core systems: survey of current and emerging trends. In Proceedings of the 50th
Annual Design Automation Conference. ACM.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

