
1

RAPID: AppRoximAte Pipelined Soft MultIpliers and
Dividers for High-Throughput and Energy-Efficiency
Zahra Ebrahimi, Muhammad Zaid, Mark Wijtvliet, Akash Kumar, Senior Member, IEEE

Abstract—The rapid updates in error-resilient applications along with
their quest for high throughput has motivated designing fast approximate
functional units for Field-Programmable Gate Arrays (FPGAs). Studies
have proposed various imprecise functional techniques, albeit posed
with three shortcomings: first, most existing inexact multipliers and
dividers are specialized for Application-Specific Integrated Circuit (ASIC)
platforms. Therefore, due to the architectural differences of underlying
building blocks in FPGA and ASIC, ASIC-customized designs have
not yielded comparable improvements when directly synthesized and
ported to FPGAs. Second, state-of-the-art (SoA) approximate units are
substituted, mostly in a single kernel of a multi-kernel application.
Moreover, the end-to-end assessment is adopted on the Quality of Results
(QoR), but not on the overall gained performance. Finally, existing
imprecise components are not designed to support a pipelined approach,
which could boost the operating frequency/throughput of, e.g., division-
included applications. In this paper, we propose RAPID, the first pipelined
approximate multiplier and divider architectures, customized for FPGAs.
The proposed units efficiently utilize 6-input Look-up Tables (6-LUTs)
and fast carry chains to implement Mitchell’s approximate algorithms.
Our novel error-refinement scheme not only has negligible overhead over
the baseline Mitchell’s approach, but also boosts its accuracy to 99.4%
for arbitrary size of multiplication and division.

Experimental results obtained with Xilinx Vivado demonstrate the
efficiency of the proposed pipelined and non-pipelined RAPID multipliers
and dividers over accurate counterparts. In particular, 4-stage pipelined
architecture of 32-bit RAPID multiplier (divider) enables 3.3× (5.1×)
higher throughput, 2.3× (6.8×) higher throughput/Watt, and 52% (31%)
savings of LUTs, over their 4-stage pipelined, accurate IP counterparts.
Moreover, the end-to-end evaluations of non-pipelined RAPID, deployed
in three multi-kernel applications in the domains of bio-signal processing,
image processing, and moving object tracking for Unmanned Air Vehicles
(UAV) indicate up to 35%, 33%, and 45% improvements in area, latency,
and Area-Delay-Product (ADP), respectively, over accurate kernels, with
negligible loss in QoR. To springboard future research in reconfigurable
and approximate computing communities, our implementations will be
available and open-sourced at https://cfaed.tu-dresden.de/pd-downloads.

Index Terms—Field-Programmable Gate Arrays, Approximate Com-
puting, Pipeline, Multiplier, Divider, Mitchell’s Algorithm, Bio-signal Pro-
cessing, Unmanned Air Vehicles, High-Throughput, Energy-Efficiency.

I. INTRODUCTION

The ever-growing demand for edge computing has become pro-
nounced in the Internet of Things (IoT) era for a wide domain
of applications, from bio-signal to various cutting-edge image pro-
cessing. For example, wearable 24/7 health monitoring gadgets
are becoming ubiquitous, especially noting that 47% of cardiac
diseases – the main cause of death, worldwide – occur outside
of hospitals [1, 2]. Unmanned Aerial Vehicles (UAVs) such as
drones are also proliferating for e.g., object/self tracking, search
and surveillance, agricultural operations, and entertainment. Although
Application-Specific Integrated Circuits (ASICs) are highly power-
efficient for implementing the above-mentioned programs, off-the-
shelf Field-Programmable Gate Arrays (FPGAs) have shown to serve
as commercially-viable options owing to their rapid prototyping and
post-fabrication datapath versatility which can address the outpacing
speed of algorithmic updates over the updates in hardware [3, 4, 5].
For example, the hardware of health gadgets should be able to adapt
with various patients’ physiological traits and the changes in heart’s
activity. High-throughput and/or energy-efficiency are also of high
desire for the acceleration of such parallelizable applications that are
repeatedly fed with a bulk of data.

1.9

3.7

0.9
0.6 0.6

1.5 1.8

8-bit 16-bit 32-bit

Area Delay Energy

3.5

6.3

N
o

rm
al

iz
ed

 t
o

Sa
m

e
-B

it
 M

u
l�

p
lie

r

Fig. 1: Comparing area, delay, and energy of 8-, 16-, and 32-bit
multiplication and division functions, implemented in Virtex-7 FPGA
through Look-up Table (LUT) based accurate IPs.

FPGAs are equipped with hard-wired DSP blocks to speed-up
multiplication, being the commonly-used function in bio-signal or
image processing workloads. However, exploiting DSP blocks may
not fulfill design requirements due to three reasons: first, their limited
ratio versus Look-up Tables (LUTs), i.e., <0.001 could be insufficient
for concurrent or multiplication-intensive applications. Second, their
fixed locations in FPGAs impose routing overhead and may result in
reduced performance for some applications [6, 7, 8]. Finally, DSPs
are unable to be efficiently-utilized for multiplication with precision,
smaller than 18×18 bit [9, 10]. Therefore, designers are compelled to
also employ soft Intellectual Properties (IPs) for e.g., multiplication
and division functions, proposed by major FPGA vendors such as
Xilinx and Intel [11, 12]. In fact, exploitation of soft IPs instead
of DSPs, for low bit-width operations, has also been suggested by
academia and industry [13, 14]. Nonetheless, the long latency and
high resource footprint of LUT-based IPs still needs to be decreased
to facilitate the deployment of off-the-shelf FPGAs in aerial platforms
and wearable gadgets. On the other hand, to boost the throughput in
despite of stagnant clock speed, pipelined IPs have been proposed
as a promising solution, albeit leaving the the quest for reducing the
resource-gap unaddressed.

To minimize the resource footprint in aforementioned error-
resilient programs, many approximation techniques have been
emerged, however, three main challenges are attributed to them. First,
approximation approaches customized in ASIC platforms have not
yielded comparable performance gains when directly synthesized and
ported to FPGAs, due to their different architectural specifications
[7]. Second, approximation is often applied on a single kernel of a
multi-kernel application, e.g., replacing multiplication (or division)
with imprecise versions in the DCT (quantization) stage of JPEG
compression. Their performance gain is also often evaluated and
reported for that single kernel and not in the end-to-end implemen-
tation of the application. Third, while most efforts are concentrated
on multiplication, studies like [15, 16] and our analysis shown in
Fig. 1, consider the longer latency and higher energy of division
compared to the multiplication. In fact, division is often the speed-
bottleneck arithmetic operation in soft processors and can constrain
the speed of application. Therefore, approximation of division has
also become pronounced as, although less frequent, this operation
is unavoidable in image processing and vision applications (Harris
corner detection and K-means in unsupervised clustering) as well
as bio-signal processing (heartbeat detection). In this context, a
pipelined/low-latency divider is of high desire. Nevertheless, among

ar
X

iv
:2

20
6.

13
97

0v
1

 [
cs

.A
R

]
 2

8
Ju

n
20

22

https://cfaed.tu-dresden.de/pd-downloads

2

the imprecise dividers in the literature only one is targeted for LUT-
based architectures [15] and none is specialized toward a pipelined
design. In fact, pipelining has been mostly applied, in coarse-grain
granularity, in a processor datapath while the fine-grained approach
has been overlooked, especially in approximate designs.

To cope with the first challenge, we have designed LeAp [17] as
the first logarithmic multiplier specialized for FPGAs. The motivation
behind devising LeAp is based on translation of multiplication to
addition in the logarithmic presentation, through Mitchell’s algorithm
[18] (P = A×B

Approx.−−−−→
Log

L̃ogP = L̃ogA + L̃ogB
Approx.−−−−−→
Anti-Log

P̃ = 2L̃ogP).

Transforming the 2D array structure of multiplication to 1D addition sig-
nificantly reduces the design complexity. Specifically, it reduces the long
latency and energy of an accurate divider, close to those of an accurate
multiplier of the same-size. This translation is also suited for FPGAs
and enables substantial gains as they already encompass fast carry chains
to expedite addition. Implementation of Mitchell’s algorithm consists of
three steps: approximate the log of inputs (by finding the position of
the leading one), addition of two logs, and finally anti-log (a shift
operation). LeAp has taken major leaps toward speeding-up Leading
One Detection (LOD) and error-reduction steps: in the former, the
LOD is accelerated by probing the 4-bit segment in parallel, and
then finding the leading one in the most significant segment. For the
latter, we have augmented the original Mitchell’s algorithm with three
novel error-reduction schemes (independent from multiplier-size).
The proposed error-reduction schemes allow the addition of the error
coefficient concurrently with the fractional addition step and within
the same resource footprint, used for implementing the baseline
Mitchell’s designs [19]. Furthermore, LeAp [17] is customized in a
way that effectively utilizes FPGA primitives, based upon the fact that
LUTs and carry chain (having fixed latency), can also be configured
to perform a ternary addition (frac1+frac2+error coefficient). This is
in contrast to previous approaches (MBM [20] and INZeD [16]), for
which an additional circuitry was necessary for the addition of error-
reduction terms to the original Mitchell’s circuits.

To surmount the rest of foregoing challenges in FPGAs, we further
expand LeAp multiplier [17] and propose RAPID, which sets out to
enable the first architectures for approximate fine-grained pipelined
multiplier and divider. Our novel contributions in RAPID archi-
tectures are highlighted from three perspectives: first, following
the light-weight error-reduction scheme of LeAp, we propose a
logarithmic divider. Second, we further boost the accuracy of our
designs by proposing various configurations for both multiplication
and division that also surpass the SoA counterparts in terms of
accuracy and/or performance metrics. Finally, we tailor our non-
pipelined architectures for fine-grain pipelining and propose various
versions of approximate multiplier and divider, having different num-
ber of stages. Such a spectrum of configurations also enables diverse
power-throughput trade-offs, suited for different operating frequency
levels within FPGAs. It is worth underlining that featuring fine-
grained pipelining at an intra-unit granularity could enable operating
at a higher frequency-level versus coarser-granularity (i.e., inter-
unit), especially in applications including division operation. Note
that although our circuits are specialized for FPGAs, our fine-grain
pipelining approach is also applicable to ASIC-based architectures.
In short, we make the following key technical research contributions
in this journal version:

• Near-zero biased multiplier & divider with extendable accu-
racy. We further increase accuracy of LeAp multiplier and propose
three versions of divider. The accuracy of error-reduction schemes
are further increased so that the minimally-biased designs confine
the average of absolute relative error (ARE) from >3.8% to <0.6%,
through a limited number of coefficients.

• First approximate pipelined multiplier and divider. We design
2- 3-, and 4-stage pipeline architectures that achieve up to 8.1×
higher throughput and 6.8× higher throughput/Watt over accurate
IP-based counterparts from Xilinx Vivado.

• End-to-end performance-QoR evaluation on three application
domains. The efficacy of the proposed multiplier and divider is
evaluated in the end-to-end implementation of three applications:
Pan-Tompkins heartbeat QRS detection, JPEG compression, and
Harris Corner Detection (HCD).

• Open-source model. The implementations of RAPID multipliers,
dividers, and FPGA-customized programs will be open-sourced at
https://cfaed.tu-dresden.de/pd-downloads, to fuel further research
in reconfigurable and approximate computing communities.
The rest of this article is organized as follows: Section II presents a

brief survey on the imprecise multipliers and dividers and distinguish
the contribution of this work. Section III summarizes a background
on Mitchell’s Mul/Div algorithms We elaborate upon the proposed
architectures and pipelining approach in Section IV, respectively.
Experimental setup, circuit- and application-level results (on three
multi-kernel applications) are detailed in Section V. Finally, Section
VI draws the conclusion with an outlook to interesting future tracks.

II. RELATED WORK

Although substantial effort has been dedicated to ASIC-based
inexact multipliers and dividers (a quantitative evaluation of them can
be found in [21]), FPGA-specialized counterparts have also recently
gained traction. The approaches in both landscapes are discussed
herein and their compendium is highlighted in Table I.

Partial product (PP) approximation: a wide class of works
targeting imprecise multipliers have mostly applied approximation
on: 1) PP generation by simplification of truth table in e.g., 2×2
and 4×4 multipliers and use them in a modular design [22]. 2)
Reduction/accumulation of PP rows into two, using 3:2 and 4:2
imprecise compressors [23, 24, 25, 26, 14, 27, 28] in Dadda- or
array-based multipliers. or 3) Adding the reduced PP rows by e.g.,
splitting the carry propagation path [7, 29]. The main drawback of
these approaches is weak-scalability to larger input-width, as error
may drastically increase, when accumulated in a hierarchical design
approach. Furthermore, compressor-based designs are posed with
high average relative error (ARE), or render moderate performance
gain when applied on few least significant PP columns.

Resizing to narrower-width multiplier/divider: another category
of works utilize a smaller instance of the arithmetic unit, based on a
dynamic selection of most significant bits, starting from the position
of the leading one ([35, 34, 36, 47] for multiplier and [37, 38, 48]
for divider). Although offering high resource improvements, these
truncation techniques suffer from error cases up to 100%. In addition,
the latency of an accurate smaller-divider could be still multiple times
of a same-sized multiplier.

Division with inexact subtractor: this branch of studies have trun-
cated or replaced accurate subtractors with imprecise counterparts, in
2N-by-N non-restoring and restoring array dividers [49, 50, 51, 52].
The main difference between the two is in the remainder output, non-
restoring version does not correct the remainder when subtraction has
a negative result. Thus, a correction circuit is added to its hardware
implementation. It has been shown that an approximate restoring
version dissipates less power than its non-restoring counterpart, while
introducing slightly larger accuracy degradation [52]. Such cells are
also exploited in combinational implementation of higher radix SRT
dividers. Generally approximate array dividers offer high accuracy,
however, the resource savings achieved by them are small due to their
array structure [37, 38]. Furthermore, their latency remains multiple
times of a same-sized multiplier.

https://cfaed.tu-dresden.de/pd-downloads

3

TABLE I: Summary of state-of-the-art approximation approaches for ASIC- and FPGA-based multipliers and dividers [30]

Approach Mul/Div Pipelined
ARE1

up to (%)
Description Platform

Reported
Mul/Div Gain2 End-to-end4

Partial
Product

Generation/
Addition/

Accumulation

3/7 7

7.6 Inexact 4:2 compressor in Dadda Mul [24, 25, 26, 28, 27]

ASIC

{A, D, P} + In [27]
1.7 Asymmetrically utilize inexact compressor in 3/4 of LSB columns [23] {A, P} ++, D +

7

8.4 Simplified Karnaugh map of 4:2 compressor in Booth multiplier [31] A +, E ++
Config. Library of larger multiplier and adders using 2x2 instances [32, 22] {A, D, P} ++

0.3 Cutting the carry propagation path in 4-, 8-bit array multiplier [29, 7]
FPGA

{A, D, P} +
8.5 Truth table simplification 3:2/4:2 compressor for Dadda multiplication [14] {A, P} +

Config. Library of 4x4 and 8x8 with approximate partial products [33] {A, P, D} +

Truncated
Mul/Div

3/ 7
7

10.9 Leading one based: with error compensation [34], with rounding [35, 36]
ASIC

{A, P} ++
77/ 3 6.7 Leading-one position based 2k+2/k+1 Div plus error reduction circuit [37, 38] {A, D} +, E ++

3/ 7 7 1.2-4.7 Variable-precision multiplier based on 8-bit truncated instances [37, 38] {A, E} +

Multiplicative
Dividers

7/3
7

2.9 Piecewise linear approximation and rounding of reciprocal of divisor [39]

ASIC

{D, E} ++
76.4 Approximating reciprocal by bit manipulation [40], with truncation [40] {A, D, E} +++

16.3 Approximating reciprocal using a table indexed by upper bits of divisor [41] {A, D} +, E ++
3 4.9 Incremental approximation of reciprocal of divisor using Taylor series [42] {D, E} +++ 7

Mitchell’s
Multiplication
and Division
Algorithms

[18]

3/ 7
7

2.9 Enhance Log accuracy: round rather truncation in piecewise approximation [43]

ASIC

{A, P} ++, D +

7

> 3.9 Use different approximate adders in Mitchell’s multiplier [44] {A, P} +++
2.7 Improving accuracy of Mitchell’s Mul with adding one error-correction [20] {A, P} ++
2.7 Adding up to 256 error-coefficient to Mitchell’s muliplier [45] {A, P} +

7/ 3 3.0 Add one error-correction (with a similar approach to [20]) [16] A +, {D, E} ++
3/ 7 7 1-1.6 Adding one to five error-coefficient to Mitchell’s multiplier [17] FPGA {A, E} ++, T + 7

3/ 3 7 0.8 Adding 64 error-coefficients to Mitchell’s multiplier and divider [15, 30, 46] FPGA/ASIC {A, E} ++, T +++ In [30, 46]
3/3 3 0.6-1 Different pipelined designs for multiplier and divider with tunable accuracy FPGA {A, E} +++, T +++ 3

1 Average of Absolute Relative Error (a.k.a MRED), 2 Area/Delay/Energy/Power/Throughput 4 End-to-end performance gain

Multiplicative dividers: in another class of dividers, the reciprocal
of the divisor is calculated first and subsequently multiplied with the
dividend. Approximation is applied on the reciprocal of the divisor
(using Taylor series [53] or linear piecewise approximation [39]).
Encoding the reciprocal to lie in the range of (0.5, 1] is performed
usually using a table indexed by the upper bits of the divisor (similar
to [41]), or a series of bit manipulations, e.g., inverting all bits and
appending ’1’ at MSB (like [40]). In some studies operands are also
truncated/rounded to lie in some specific bit-width range. Overall,
these approaches impose significant resource cost in FPGAs, due
to requiring both reciprocal and multiplier IPs, separately. Moreover,
when truncating divisor goes beyond relatively few bits, the accuracy
of the reciprocated divisor degrades significantly [39].

FPGA-customized multipliers: it has been shown that ASIC-
based approximation approaches have not yielded comparable perfor-
mance gains when directly synthesized and ported to FPGAs [7, 33]
(primarily, due to the underlying architectural differences). To cope
with this challenge, recent works narrowed their focus toward special-
izing such techniques taking into account the LUT-based structure of
FPGAs. For example, modification of LUTs which calculate LSBs
in 4×4 multiplications have been customized separately, for array
based- [29, 7, 33], and Booth-based [54] architectures. Furthermore,
an approximate compressor has been proposed in [14], geared toward
an LUT-oriented implementation. Despite the specialized customiza-
tion in these schemes for reconfigurable platforms, their resource
savings have not been significant compared to logarithmic designs
(discussed in the following). Moreover, Booth-based designs suffer
from an increased critical path length [54]. This has highlighted the
need for exploring other avenues for FPGAs which can achieve higher
performance gain with an acceptable accuracy.

Logarithmic multiplier and dividers: In a more recent trend,
some works have adopted Mitchell’s approximate algorithms in lieu
of array-based designs. Mitchell’s algorithms translate multiplica-
tion (division) into log and addition (subtraction) in logarithmic
representation. Such logarithmic transformations generally render
higher resource gains compared to other approximation approaches.
Interestingly, the latency of a division is also reduced, comparable
to a same-sized multiplier, via this algorithm. However, these im-

provements come with the cost of relatively high error (ARE of
3.8% for multiplication and 4.1% for division). Therefore, various
schemes have been presented to reduce the error in the original
Mitchell’s algorithms. The authors of MBM [20] have proposed a
single error-reduction term for multiplication, and they employed a
similar scheme for division in INZeD [16]. However, a single error-
reduction term weakly fits all input combinations and eventuates in
many output overflow cases, when adding the error-reduction term.
In addition, their approaches are optimized for ASIC platforms. To
alleviate error and also targeting FPGAs, we have recently proposed
two FPGA-specialized designs, LeAp [17] and SIMDive [15] (a
similar error-reduction approach to SIMDive has also been adopted
in the REALM multiplier [45]). The approaches in these works
considers F MSBs of fractional parts for each operand. Therefore, the
possible combinations for the possible pairs makes a squarish region
which is then partitioned to 2F ×2F sub-regions, each assigned with
a unique error-coefficient. Although the error-reduction approaches
of these works are similar in spirit, each has been designed for
either ASIC or FPGA and targeted for different design goal. While
REALM [45] is an ASIC multiplier, SIMDive [15] implements
an FPGA-specific hybrid Mul/Div, aimed at applications with data
parallelism opportunities that can benefit from Single Instruction,
Multiple Data (SIMD) architectures. Moreover, as will be shown later,
RAPID enables higher accuracy than SIMDive, even with smaller
number of coefficients/LUTs.

Pipelined architectures: Fine-grain pipelining has recently gained
attention. In this context, authors in [55, 56] have applied pipelining
on PP generation and accumulation in the array-based accurate mul-
tipliers. Compared to accurate-, limited attention has been dedicated
to approximate-designs. SoA divider SAADI-EC [42] and a modified
version of the DRUM multiplier [57] have been the only works that
adopted intra-unit pipelining. Despite the possibility of increasing
throughput, these work lack a well-established pipelining strategy
as no analysis has been performed to uniformly divide the critical
path over pipeline stages, resulting in poor performance. To the
best of our knowledge, no other work has proposed approximate
pipelined multiplier or divider architectures, which is highly desired
for processing of cutting-edge applications. In fact, the achieved

4

substantial boost in throughput is pivotal in e.g., image processing
and health monitoring applications.

III. PRELIMINARIES AND BACKGROUND

Mitchell’s Multiplication and Division Algorithms: as shown in
Eq. 1, Mitchell’s algorithms perform imprecise multiplication and
division in the logarithmic representation of numbers. Consider the
binary representation for N -bit unsigned input A, which can be
written as Eq. 2, where k indicate the position of the leading one.
The rest of the bits (starting from position k−1 to 0) are considered
as the fractional part and fall in the range of 0 ≤ x < 1.

P = A×B
Approx.−−−−→

Log
L̃ogP = L̃ogA + L̃ogB

Approx.−−−−→
Anti-Log

P̃ = 2L̃ogP

D = A÷B
Approx.−−−−→

Log
L̃ogD = L̃ogA − L̃ogB

Approx.−−−−→
Anti-Log

D̃ = 2L̃ogD

(1)

A = 2k+

k−1∑
i=0

2ibi = 2k(1+x)
e.g.−−→ 58 = 25(1+0.11010)2, 18 = 24(1+0.001)2

(2)
In linear mathematics, log2(1 + x) is approximated to x for this

range of 0 ≤ x < 1; thus, the approximate log value of input A is:

Log2(A) ' k+x→ Log2(58) ' (101.11010)2, Log2(18) ' (100.001)2
(3)

After applying the same step on the second input to get its
approximate log, the summation (subtraction) of two parts is obtained
in Eq. 4 (Eq. 5).

L̃og2(P̃) = (k1 + k2) + (x1 + x2)→ Ks = (1001)2, Xs = (0.1111)2
(4)

L̃og2(D̃) = (k1 − k2) + (x1 − x2)→ Ks = (1)2, Xs = (0.1011)2 (5)

Finally, by applying the anti-log (which mathematically is a shift op-
eration), binary representation of the approximate product (quotient)
are derived by Eq. 6 (Eq. 7):

P̃=

{
2k1+k2 (1 + x1 + x2), x1 + x2 < 1

2k1+k2+1(x1 + x2), x1 + x2 ≥ 1
→ P̃ = 992, Pacc = 1044 (6)

D̃=

{
2k1−k2−1(2 + x1 − x2), x1 − x2 < 0
2k1−k2 (1 + x1 − x2), x1 − x2 ≥ 0

→ D̃ = (11)2 = 3, Dacc = 3

(7)

IV. PROPOSED PIPELINED AND NON-PIPELINED MULTIPLIER

AND DIVIDER ARCHITECTURES

In this section we initially present the proposed error-reduction
schemes, and afterwards elaborate on the structure of RAPID multi-
plier and divider architectures (non-pipelined and pipelined).

A. Proposed light-weight & minimally-biased error-reduction schemes

Mitchell’s error for 8-bit multiplication and division are formulated
in the Equation 8 and 9. Inspecting the behavior of the error has
provided the following insights, some of which are also noted and
endorsed by SoAs [45, 15, 20, 16]:

EP = P − P̃ =

{
2k1+k2 (x1x2), x1 + x2 < 1

2k1+k2 (1− x1 − x2 + x1x2), x1 + x2 ≥ 1
(8)

ED = D − D̃ =

2k1−k2 (x1(x2−1)+x2−(x2)
2)

2(1+x2)
, x1 − x2 < 0

2k1−k2 (x1x2−(x2)
2)

1+x2
, x1 − x2 ≥ 0

(9)

• The equations demonstrate the different error magnitude in each power-
of-two interval. Therefore, merely adding a single correction term to the
output (as proposed in INZeD [16] and MBM [20]) is not efficient and
results in many output overflow cases [45, 15].

• The equations also reflect the proportional replication of error in each
power-of-two. This behavior is repeated for each size of multiplication
or division (irrespective of k1 and k2). This repetition allows applying
the same error-reduction approach for all multiplier or divider sizes. In
fact, a set of coefficients can be added to fractional parts, before that their
summation become scaled [20, 16]).

• As can be seen in Fig. 2 (a), and (e), some of nearby sub-regions have
very small error (less than 2%), while the changes of error occurs is
more pronounced in other sub-regions. This motivates grouping the regions
having similar error as well as assigning more coefficients to the sub-regions
having higher error (to efficiently reduce the error to a certain bound).
It is also worth noting that an efficient partitioning should result in a

small number of coefficients to minimize the overhead of error-reduction.
Partitioning approaches such as REALM [45] and SIMDive [15] results in
superfluous number of error-coefficients when targeting high accuracy. Note,
considering even four MSBs of fractional parts results in 24 × 24 = 256
coefficients and limits the scalability of such schemes (especially for FPGAs,
as will be discussed later). It fact, the resource-efficiency of the error-reduction
strategy proposed in SIMDive depends on the number of LUT inputs and is not
easily extendable when when targeting higher accuracy. Going into the details,
to generate 256 coefficient through SIMDive approach, four MSBs from each
fractional part should be considered, which requires the direct utilization of
8-LUTs for each bit of error-reduction term. Otherwise the usage of a 256-
to-1 Mux (each input is 8- or 16-bit) is inevitable. Implementing this mux or
8-LUT out of 6-LUTs increases the error-reduction overhead of SIMDive to
nearly 4× of its original idea (well-suited for considering 3 or less MSBs of
fractional part). This overhead is not negligible, especially when targeting a
small-sized multiplier or divider. Building upon this discussion, we propose
RAPID to enable reaching higher accuracy with even smaller overhead.

Proposed light-weight error-reduction scheme: to cope with the overflow
problem in INZeD and MBM, and the over-provisioned number of coefficients
(i.e., 256) in REALM, the insights obtained from aforementioned observations
incentivize reducing the error-reduction terms by efficiently clustering them in
fewer groups. In RAPID, we divide the squarish region between each power-
of-two pair to different, and fewer, regions than REALM/SIMDive. In our
partitioning we consider the following factors:
1) Consider four rather than three MSBs of fractional parts, to increase the
accuracy.
2) Minimize the number of sub-regions while considering four MSBs, to
constrain resource cost for selection of the coefficient.
3) Minimize error distribution× error magnitude in each region (can
be estimated to the integral of error-magnitude for that region).
We have proposed three error-reduction schemes in Fig. 2, based on the
in-depth analysis of error and the resource-usage reports from Vivado. To
minimize the average of absolute relative error (ARE), various partitionings
have been investigated. The goal of partitioning is to keep the error of grouped
sub-regions nearly uniform and below pre-defined thresholds, e.g., ∼4%,
3%, and 2.5% for 3-, 5-, and 10-coefficient multiplier schemes, respectively.
Further, the error-reduction coefficient for each group of sub-intervals, are
derived by following the mathematical approach detailed in [45]. The binary
representation of the proposed coefficients for multiplier and divider are also
shown in Table II. From the implementation point of view, partitioning is
implemented via small-sized multiplexers (coded via casex statement in HDL).
In such implementation, the LUT usage depends on the number of error-
coefficients as the Mux-inputs and the complexity of conditional statements in
the casex statement. In order to minimize the former (number of Mux-inputs)
we have proposed three schemes, having most 10 coefficients. In order to
minimize the latter (complexity of conditional statements for selecting the
coefficients), we only consider comparing 4 MSBs of fractional parts for the
partitioning. Moreover, in this partitioning, neighbouring sub-regions having
the same coefficient are packed to reduce the complexity for each conditional
statement. From the hardware-usage perspective, each 6-LUT functions as
a 4-MUX (in which 4 inputs and the 2 select lines are the LUT inputs).
Further, as also denoted by [58], a 16:1 multiplexer requires a single FPGA-
slice having four 6-LUTs. Based upon this, we have also chosen a a squarish
partitioning through a MUX-based approach, to minimize the overhead for
the proposed error-reduction strategy. This is while, checking the rhombus
borders (see the original error shape in Fig. 2) is very costly in hardware and
could nullify the LUT-saving, gained from approximating approach. It should
be noted that the proposed partitioning is also scalable, as the resource cost for
choosing one of few coefficients does not grow exponentially, contrary to the
REALM/SIMDive approaches. In fact, the proposed partitioning surpasses the
SoAs in terms of resource-error trade-off: not only with 10 error-coefficients
and considering 4 MSBs we achieve Average Relative Error (ARE) of 0.6%,
which is better than SIMDive/REALM (0.8% ARE, considering 3 MSBs),
but also the resource footprint of this scheme is 193 LUTs, still lower than
SIMDive/REALM counterparts (see Table III).

5

(a) 3‐coefficient (b) 5‐coefficient (c) 10‐coefficient (d) Exemplar of error‐reduced (5‐coefficient)

M
u

l�
p

lic
a�

o
n

1

2

3

1
2

5

3
4

1 2

5 6
3 4

7
8
9

10
D

iv
is

io
n

3‐coefficient 5‐coefficient 9‐coefficient(e) (f) (g) (h) Exemplar of error‐reduced (5‐coefficient)

1 1
2

2 3
1 2

4
3

4
3
2 1

5

1
1

2 3
4 5
6 7
8

234567
8

9

Fig. 2: Proposed error reduction schemes of RAPID for multiplication and division, based on 4 MSBs of fractional parts.

TABLE II: Binary representation of error-reduction coefficients in 16-bit multiplier & divider (3/4 MSBs are zero for Mul/Div and excluded)

Multiplier Divider
3-coefficient 5-coefficient 10-coefficient 3-coefficient 5-coefficient 9-coefficient

1) 100000100111 1) 1001111111111 1) 1001111000110 6) 0101110011111 1) 1000011111111 1) 1001111000100 1) 1001110001111 6) 0110010100101
2) 010011101100 2) 1000011011101 2) 1000110110001 7) 0100101000011 2) 0100010111111 2) 1000001000111 2) 1000110111100 7) 0101000101011
3) 000100101001 3) 0110010001010 3) 0111111000100 8) 0100001011101 3) 0001011111111 3) 0110110001101 3) 1000000010100 8) 0100111101000

4) 0011110010111 4) 0111000110101 9) 0011110000011 4) 0101010100111 4) 0111001100010 9) 0100001101100
5) 0000111110000 5) 0110010100011 10) 0010101111111 5) 0011011100100 5) 0110100001101

Output Barrel ShifterApproximate Product (Quotient)

Input2
8-bit

3-bit
Integer Part

Approximate
Log Calculator

Ternary Adder with Error Compensation
Slice 0

Approximate
Log Calculator

7-bit
Fractional

Part

Light-Weight Error
Coefficient Selection

4-bit 4-bit

7-bit
Fractional
Part

Input1
8-bit

3- bit
Integer PartBinary Adder

(Subtractor)

Slice 1Slice 2Slice 3

Slice 0Slice 1

Fig. 3: Overall structure of proposed RAPID multiplier and divider

B. Structure of RAPID multiplier and divider (Non-Pipelined)

Fig. 3 illustrates the structure of the proposed multiplier and divider. The
overall design is designed based on Res = A ×÷ B

Approx.−−−−→
Log

L̃ogRes =

L̃ogA ± L̃ogB
Approx.−−−−−→
Anti-Log

R̃es = 2
˜LogRes .

Leading-one detection: To accelerate leading one detection in our
FPGA-customized method, this process is calculated based upon 4-
bit LODs (implemented by directly configuring LUTs). In the first
step, we prob the presence of bit value ‘1’, simultaneously, in each
4-bit segment of the operands. To this end, one LUT is configured
as a logical OR function, applied on 4-bits of each group to reveal
whether the segment contains a bit with value ‘1’ (acts as a zero-
detection flag). In parallel, another 6-LUT is configured to two 5-
LUTs in such a way that it determines the position of leading-one
in the 4-bit segment (LOD4-LUT). Finally, based on the resulting
bits from the output of these 6-LUTs, we determine the position of
leading one in the most significant group, through the priority logic.

For example, the position of leading one in the 8-bit LOD equals
to the concatenation of {Location index of most significant segment,
Leading one position in that segment}, e.g., the leading one position
in ”01010101” is {{1},{10} => {110}} in binary. The first part
({1}) is the output of Flag-LUT that has been employed for upper
4-bit segment. The second part ({10}) is the result of LOD4-LUTs
on the upper segment. A similar method has been also exploited for
16- and 32-bit LODs. For example, in a 16-LOD, if the upper half
of the operand is zero, the 16-bit LOD is equal to the lower 8-bit
LOD. Else, the position of leading-one is 8+leading-one position in
the upper-half 8-LOD. This can be obtained by applying a logical-
OR function on the outputs of Flag-LUTs on the 4-bit segments of
the upper-half. In LeAp [17], LOD step was orchestrated through an
FSM and performed in, at most, five clock-cycles. In order to achieve
efficient pipelining and minimize the number of registers, the LOD is
implemented as combinational logic. Subsequently, the critical path
is analyzed in order to achieve balanced partitioning for pipelining.

Addition of integer parts: as shown in Fig. 3, each 4-bit addition
is fulfilled by one Virtex-7 slice which includes four 6-LUTs and its
associated fast carry chains. Together, these implement a Carry Look-
Ahead Adder (CLA). Extending the 4-bit addition to 8-bits is easily
achievable by connecting the Cout from a previous slice to the Cin

of the next slice. Recalling Eq. 4 and Eq. 5, division is performed by
changing additions to subtractions, through 2’s complement modules.

LUT-optimised ternary addition: recalling that in LeAp [17], we
have proposed error reduction coefficients such that it only depends
on the fractional bits (and not the intermediate result of Mitchell
Mul/Div, contrary to MBM/INZeD [20, 16]). On the other hand,
LUTs and their associated fast carry chain in Xilinx UNISIM
library [59] can be configured to implement a ternary adder. To

6

6.1 0.8 171 64

6.6 1.5 173 98

6.9 2.12 174 126

7.2 2.71 175 141

Non-
Pipelined

2-stage
Pipeline

LUT
Total
Reg

Latency

3-stage
Pipeline

4-stage
Pipeline

Relative
Throughput

Error Coeff. Sel. Ternary Add
Fracs+Error [11:0]

Integer Parts Add Anti-Log
Barrel Shifter

Approx Log
(. ns)(.3 ns)Calculator

Reg
0.2 ns

Ternary Add
Fracs+Error [15:12]

Error Coeff. Sel Fracs+Error
[3:0]

Approx
Log (. ns)

Fracs + Error [15:4]

(ns)
Integer Parts
Add

Barrel
Shifter(. ns)

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Approx
Log

Error Coeff.
Sel.(. ns)

Fracs + Error [7:0]
(. ns)

Fracs + Error [15:8]
(.4 ns)

Integer Parts
Add

Barrel
Shifter(.6 ns)

Approx Log
Calculator (1.2 ns)

Error Coefficient
Selection (0.9 ns)

Ternary Addition

(Fracs+Error) (2.4 ns)
Integer Parts

Addition (0. ns)
Barrel Shifter

Anti-Log (1.2 ns)9

0 3 1

2 21 1 8

1 6 1 4 1 1

6.4 2.84 112 41

7.2 5.19 121 70

8.4 6.67 127 98

9.2 8.12 130 119

Non-
Pipelined

2-stage
Pipeline

LUT
Total
Reg

Latency = N×Clock Period = N (Max of Stages' delay+Reg delay)× (N = # of Pipeline stages), Relative Throughput = N×
Latency of Non-pipelined Accurate Unit

Latency of pipelined Approximate Unit

Latency

3-stage
Pipeline

4-stage
Pipeline

Relative
Throughput

Error Coeff. Ternary Add
Fracs+Error [11:0]

Integer Parts Add Anti-Log
Barrel Shifter

Approx Log
(. ns)(.3 ns)Calculator

Reg
0.2 ns

Ternary Add
Fracs+Error [15:12]

Error Coeff. Two's
Comp.

Approx
Log (. ns)

Fracs + Error [15:0]

(. ns)
Integer Parts
Add

Barrel
Shifter(. ns)

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Reg
0.2 ns

Approx
Log

Error Coeff.
Sel.(. ns)

Fracs + Error [3:0]
(. ns)

Fracs + Error [15:4]
(. ns)

Integer Parts
Add

Barrel
Shifter(.7 ns)

Approx Log
Calc. (1.2 ns)

Error Coeff.
Select. (0.9 ns)

Ternary Addition

(Fracs+Error) (2.4 ns)
Integer Parts

Addition (0. ns)
Barrel Shifter

Anti-Log(1.2 ns)9

4 3 2

2 23 6 1 8

1 8 1 1

MUL

DIV
Two's Comp.

(0.4 ns)

Two's Comp.

2 12

Two's Comp.

Fig. 4: Proposed 2-, 3-, and 4-stage pipelining for 16x16 RAPID-5 multiplier (top) and RAPID-9 16/8 divider (bottom).

this end, we have manually configured the LUTs and carry chain
primitives of the FPGA in such a way that they implement a ternary
adder. This highly suits our error-reduction approach as enables
combining the process of adding error-reduction coefficient with
fractional parts with the same resource footprint and in a single
step. In fact, regardless of the ternary adder size and compared to
the binary version, only one more bit at MSB position is needed,
as frac1i+frac2i+error coefficienti+Cin (Cout from prior bit) may
result in 3 bits, requiring another LUT at the end of the chain
[19]. Moreover, the delay of FPGA primitives is fixed. Therefore,
adding error-reduction term at the same time as fractional parts does
not impose additional overhead to the design. On the contrary, in
REALM [45], MBM [20], and INZeD [16] an additional circuit is
needed to add the error-reduction term (or half of it) to the original
Mitchell’s circuits, based on the intermediate summation/subtraction
of fractional parts.

It should be noted that to prevent overflow in 2N-by-N bit standard
division, the condition for dividend < 2N × divisor needs to be
satisfied [60]. This means that scaling of the divider lies in the range
of 20 to 2N−1 (similar to [16]). Therefore, only N-1 bits are used
from the subtractors for the output and N LSBs from l̃ogdividend is
neglected. This also reduces the resource footprint for subtractor and
barrel shifter and does not affect the accuracy.

C. Proposed Pipelined Architectures for Multiplier and Divider

In order to minimize the latency overhead, the combinational
datapath of multiplier and divider should be partitioned for near
uniform latency over the pipelined stages. To achieve this, we have
adopted the following steps: first, each stage of the multiplication
or division is synthesized in isolation to get an estimation of the
delay for each stage. Fig. 4 shows the latency of individual stages in
non-pipelined and various pipelined configurations for a 5-coefficient
multiplier and divider (the results for all designs are shown in Table
III). Note that after integrating the sub-modules and synthesizing
the entire component, the end-to-end latency may change due to

the default-optimizations and structural-modification applied by the
tool. Based on this analysis, the pipelining registers were inserted
in the proper locations of the non-pipelined design. Afterwards, re-
synthesis has been performed to assess whether a marginal fine-tuning
for the adopted partitioning can result in better end-to-end latency.
It can be inferred from Fig. 4, that through the adopted pipelining
approach, the latency of stages become similar. Moreover, the delay
overhead of a pipeline register is small, particularly since the divider
is in the critical path in most applications. Moreover, each of the
proposed soft-core designs has a different operating frequency and
can be utilized w.r.t the different frequency levels offered by a single
or various FPGA families. Finally, different pipeline versions enable
a spectrum of latency-throughput trade-offs. Therefore, the proper
configurations can be loaded w.r.t. the application’s requirement.

V. RESULTS AND DISCUSSION

In this section, we first present the implementation results of
the proposed RAPID multipliers and dividers (pipelined and non-
pipelined configurations). We have also implemented the compared
the proposed RAPID against the following designs: DSP- and
pipelined/non-pipelined IP-based accurate counterparts, dynamically
truncated DRUM [47] and AAXD [37], hierarchical-based AFM
multiplier [29], SAADI-EC pipelined divider [42], and Mitchell-
based counterparts (SIMDive multiplier and divider [15], MBM
multiplier [20], and INZeD divider [16]). We compare the designs
w.r.t different performance metrics including Performance (herein
throughput) per Watt which is considered by industry to be the very
new Moore’s Law [61]. Afterwards, the end-to-end performance gain
on three multi-kernel applications is assessed.

A. RAPID versus SoA multipliers & dividers (circuit-level evaluation)

Experimental Setup: to evaluate performance metrics, all the de-
signs are developed in Verilog HDL, synthesized, and implemented
in Xilinx Vivado 2019.2 for the Virtex-7 FPGA. To ensure scalability

7

TABLE III: Accuracy-resource trade-off of accurate/approximate multipliers & dividers (pipelined/non-pipelined) in FPGA implementation
Multiplier Divider

8×8 Mul LUT FF
E2E 1

Latency
(ns)

Rel.2

Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel. 3

Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

8/4 Div LUT FF
E2E

Latency
(ns)

Rel.
Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel.
Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

DSP-based
7 +

1 DSP
31 3.72 1.97 17.52 10.3 1.77 1.13 - - - DSP-based

11+

2 DSPs
63 7.48 1.44 19.80 11.6 2.25 0.44 - - -

Acc IP NP 4 60 48 3.67 1.0 15.91 - 1.0 1.0 - - - Acc IP NP 51 42 10.74 1.0 9.62 - 1.0 1.0 - - -

Acc IP P2 60 88 4.30 1.71 23.19 37.5 2.23 0.45 - - - Acc IP P2 55 59 13 1.67 21.09 18.4 2.43 0.41 - - -

Acc IP P3 60 112 5.10 2.16 47.5 43 2.64 0.38 - - - Acc IP P4 69 89 23.7 1.81 26.27 29.1 3.14 0.32 - - -

RAPID-3 NP 57 39 4.97 0.74 12.06 - 1.03 0.97 1.02 6.1 0.06 RAPID-3 NP 41 20 5.20 2.06 9.72 - 0.48 2.06 0.99 5.74 0.02

RAPID-5 P25 62 56 5.45 1.35 18.17 22.9 1.91 0.52 0.91 4.45 0.05 RAPID-5 P2 44 20 5.18 4.15 14.74 20.8 0.88 1.13 0.79 4.34 0.01

RAPID-10 P3 71 69 6.88 1.60 24.31 34.0 2.29 0.44 0.64 3.69 0.05 RAPID-9 P3 51 20 5.34 8.05 22.66 30.6 0.91 1.47 0.58 3.48 0.01

AFM1 69 58 5.50 0.67 18.66 - 1.76 0.57 0.23 16.52 0.23 SIMDive-DIV 44 20 5.23 2.09 9.23 - 0.45 2.20 0.77 5.20 0.01

SIMDive-MUL 61 32 5.13 0.72 16.34 - 1.44 0.7 0.82 4.76 0.05 INZeD 47 21 6.12 1.75 11.14 - 0.65 1.53 2.93 9.53 0.02

MBM 64 33 5.16 0.71 17.48 - 1.54 0.65 2.60 8.59 0.09 Mitchell 36 20 5.10 2.11 8.53 - 0.42 2.40 3.90 13.00 3.90

Mitchell 51 32 4.82 0.76 13.39 - 1.11 0.9 3.77 11.11 3.77 SAADI-EC (16) 103 42 13 0.84 24.42 - 2.99 0.33 2.37 8.82 1.92

DRUM-4 53 32 5.08 0.72 14.33 - 1.25 0.81 5.82 25.35 1.84 AAXD (6/3) 38 20 6.06 1.77 9.01 - 0.52 1.91 2.08 100.00 1.49

16×16 Mul LUT FF
E2E

Latency
(ns)

Rel.
Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel.
Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

16/8 Div LUT FF
E2E

Latency
(ns)

Rel.
Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel.
Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

DSP-based
8 +

1 DSP
32 4.11 1.19 17.48 9.8 0.48 2.08 - - - DSP-based

197+

7DSP
131 10.36 1.76 51.62 25.1 2.34 0.43 - - -

Acc IP NP 287 64 4.88 1.0 47.81 - 1.0 1.0 - - - Acc IP NP 169 76 18.23 1.0 17.97 - 1.0 1.0 - - -

Acc IP P2 249 176 6.14 1.60 64.86 65.3 1.71 0.59 - - - Acc IP P2 175 104 19.59 1.86 38.82 12.3 1.47 0.68 - - -

Acc IP P3 249 245 8.88 1.65 94.49 75.0 2.15 0.46 - - - Acc IP P4 181 168 20.09 3.63 56.21 24.5 1.68 0.6 - - -

Acc IP P4 249 343 9.60 2.03 150.73 130.0 2.89 0.35 - - - RAPID-3 NP 112 41 6.38 2.98 18.67 - 0.34 2.98 1.02 5.74 0.02

RAPID-3 NP 168 64 5.90 0.83 31.43 - 0.86 1.17 1.03 6.1 0.06 RAPID-5 P2 121 70 7.07 5.16 27.77 19.5 0.49 2.04 0.79 4.34 0.01

RAPID-3 P2 169 98 6.11 1.52 47.35 40.7 1.21 0.85 1.03 6.1 0.06 RAPID-9 P3 127 98 8.35 6.62 30.29 24.3 0.44 2.28 0.58 3.48 0.01

RAPID-5 P3 177 126 6.87 2.25 75.35 58.2 1.27 0.81 0.93 4.45 0.05 RAPID-9 P4 130 119 9.2 8.01 34.68 27.7 0.42 2.40 0.58 3.48 0.01

RAPID-10 P4 193 141 7.25 2.52 84.75 87.4 1.46 0.7 0.56 3.69 0.23 SIMDive-DIV 143 64 5.68 3.28 23.84 - 0.39 2.57 0.78 5.20 0.01

AFM1 261 66 7.32 0.67 44.78 - 1.41 0.71 1.34 17.80 1.34 INZeD 165 41 6.28 2.90 27.50 - 0.51 1.97 2.93 9.54 0.02

SIMDive-MUL 216 64 5.95 0.82 37.06 - 0.95 1.06 0.82 4.90 0.05 Mitchell 106 64 5.56 3.39 17.34 - 0.32 3.11 4.11 13.00 4.11

MBM 204 65 6.59 0.74 35.34 - 1.0 1.0 2.63 8.83 0.09 SAADI-EC (16) 342 126 25.70 0.71 57.01 - 4.31 0.23 2.14 8.82 1.76

Mitchell 167 64 5.51 0.99 31.46 - 0.64 1.56 3.85 11.11 3.85 AAXD (8/4) 151 155 12.51 1.46 25.17 - 0.93 1.08 2.99 100 0.90

DRUM-6 233 64 5.34 0.91 38.43 - 0.88 1.14 1.47 6.31 0.04 AAXD (12/6) 207 233 21.26 0.86 34.51 - 2.16 0.46 0.74 100 0.30

32×32 Mul LUT FF
E2E

Latency
(ns)

Rel.
Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel.
Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

32/16 Div LUT FF
E2E

Latency
(ns)

Rel.
Tput

Circuit
Power
(mW)

Clk
Power
(mW)

Rel.
Energy
per inst

Rel.
Tput/
Watt

ARE
(%)

PRE
(%)

Error
Bias
(%)

DSP-based
18 +

4 DSPs
75 6.93 1.04 35.48 14.8 0.47 2.28 - - - DSP-based

359+

9DSP
228 11.65 3.62 92.91 28.7 0.98 1.02 - - -

Acc IP NP 1012 128 6.69 1.0 110.56 - 1.0 1.0 - - - Acc IP NP 597 139 42.24 1.0 34.16 - 1.0 1.0 - - -

Acc IP P2 1012 291 7.82 1.71 154.26 92.8 1.31 0.76 - - - Acc IP P2 607 208 47.48 1.78 74.55 10.4 1.4 0.74 - - -

Acc IP P3 1012 835 9.74 2.06 218.32 146.6 1.6 0.63 - - - Acc IP P4 607 339 56.95 2.97 111.04 21.9 1.75 0.76 - - -

Acc IP P4 1014 1119 11.73 2.28 330.64 250.8 2.31 0.43 - - - RAPID-3 NP 378 85 6.70 6.30 42.70 - 0.19 5.04 1.04 5.74 0.02

RAPID-3 NP 434 128 6.30 1.06 90.08 - 0.77 1.3 1.05 6.1 0.07 RAPID-5 P2 389 128 8.43 10.02 49.07 16.5 0.2 5.22 0.79 4.34 0.01

RAPID-3 P2 450 184 6.74 1.98 131.22 62.7 0.88 1.13 1.05 6.1 0.07 RAPID-9 P3 399 173 9.86 12 59.20 20.2 0.2 5.24 0.61 3.48 0.01

RAPID-5 P3 462 242 7.38 2.72 181.53 95.1 0.92 1.09 0.95 4.45 0.05 RAPID-9 P4 417 213 11.10 15.22 67.59 26.7 0.2 5.53 0.61 3.48 0.01

RAPID-10 P4 490 276 8.04 3.33 253.12 124.2 1.03 0.97 0.58 3.64 0.06 SIMDive-DIV 381 80 6.84 6.18 43.04 - 0.2 4.90 0.81 5.16 0.02

AFM1 995 317 10.76 0.62 119.63 - 1.74 0.57 2.88 22.40 2.88 INZeD 422 81 8.15 5.18 47.67 - 0.27 3.71 2.96 9.47 0.03

SIMDive-MUL 521 128 6.88 0.97 83.50 - 0.78 1.29 0.91 4.72 0.05 Mitchell 349 80 6.21 6.91 39.42 - 0.17 5.99 4.19 13.00 4.19

MBM 533 129 7.51 0.89 89.94 - 0.91 1.09 2.69 8.74 0.10 SAADI-EC (16) 822 228 51.60 0.82 92.86 - 3.32 0.30 2.33 9.04 1.85

Mitchell 428 128 6.23 1.12 60.25 - 0.55 1.83 3.91 11.11 3.91 AAXD (8/4) 361 278 24.66 1.71 40.78 - 0.70 1.43 3.04 100 1.10

DRUM-6 616 128 6.35 1.05 88.85 - 0.76 1.31 1.53 5.88 0.05 AAXD (12/6) 513 505 37.20 1.14 57.95 - 1.49 0.67 0.79 100 0.35

1End-to-end 2Throughput 3Energy per instruction = total dynamic power× clock period 4Non-Pipelined 5 5-Coeff. 2-stage pipelined

of multipliers and dividers, they are compared for precisions of 8-,
16-, and 32-bit. Area and latency are collected from Vivado reports.
Power and energy dissipations1 are obtained through simulations in
Xilinx Power Estimator (XPE) over 100 million inputs, uniformly
distributed in a random order over the whole input interval. For
a precise measurement, we used the clock gating command to
prevent superfluous switching activity in unused resources. To assess
accuracy metrics for different partitioning, the behavioral structure
of multipliers and dividers are developed in C++. To calculate the
average of absolute relative error (ARE), peak absolute relative error
(PRE), and error bias in 8- and 16-bit designs, exhaustive testing is
performed. For 32-bit error characterization, 232,∼ 4.3 billion input
pairs, uniformly distributed over the whole 32-bit interval have been

1Similar to prior works, only dynamic power is reported from Xilinx
Vivado, as the static power analysis of Vivado is for the entire FPGA [6, 54].

evaluated in Monte Carlo simulations2. Post-implementation results
are summarized in Table III. The following conclusions can be made
based on the results:
• RAPID multipliers and dividers versus DSP-based and ac-

curate Vivado IPs: the results corroborate prior studies [9, 10]
stating that DSPs are able to be efficiently-utilized, only for
large bit-width precision. The reason behind this degraded per-
formance is that DSP48E1 hosts a 25×18 hard-wired multiplier
and is not optimized for smaller multipliers. This has been the
main motive that FPGA designers have recommended utilizing
of soft multipliers should be used for implementing lower bit-
widths [9, 10, 13, 12]. In particular, compared to LUT-based
implementation, DSP-based dividers are less energy-efficient, for
both 8- and 16-bit precision. Targeting higher-order precision of
32-bit, the proposed RAPID multiplier and divider have lower

2Simulated on Rack Server: Intel Xeon E5-2667 @3.2 GHz, 512 GB RAM

8

latency than DSP-based counterparts. In terms of energy-efficiency
(relative energy/instruction), DSPs are better than RAPID, only for
multiplication. In contrast, RAPID dividers are significantly better
than DSP-based implementation (especially in 32-bit precision).
Compared to LUT-based IPs, the results exhibit the efficiency of
RAPID divider in all performance metrics, when targeting division
of any precision. In case of multiplication, although accurate
IP renders better performance in 8-bit over RAPID, the area-
and/or energy-saving of RAPID over accurate Vivado IP becomes
substantial in 16-bit. Moreover, the latency of RAPID also becomes
smaller when targeting 32-bit. Overall, the improvements become
more pronounced, when architectures are implemented for higher
bit-width. This is due to: first, transforming the 2D array-based
structure of Mul/Div to 1D Add/Sub through Mitchell’s algorithms,
as discussed earlier. Second, the cost of error coefficients gets
amortized in higher-order designs.

• RAPID multipliers and dividers render better perfor-
mance over hierarchical structures: comparing Mitchell-based
RAPID with modular counterpart AFM (structured by incorpo-
rating smaller inexact instances) demonstrates three points: first,
thanks to transforming the 2D array structure of multiplication
to 1D addition in the logarithmic representation, the area of
Mitchell-based unit grows by the factor of ∼2.6, less aggressive
compared to ∼3.7 for the array-based counterparts. This further
accentuates the efficiency of RAPID, particularly in larger bit-
width. Second, comparing the results of 8- versus 16-bit asserts
that approximation applied on hierarchical approaches is beneficial
in accuracy-resource trade-off, only when it is done from scratch
for each multiplier size, otherwise accumulated error in larger
designs significantly sacrifices output accuracy to achieve resource
efficiency. On the other hand, accuracy metrics in Mitchell-based
designs do not undergo notable changes. Finally, as already dis-
cussed in earlier work [17], some modular architectures sacrifice
delay for LUT saving [7].

• RAPID designs establish better resource-accuracy trade-off
than leading-one based truncated counterparts: the higher
accuracy levels of DRUM and AAXD come at the cost of higher
resource consumption than logarithmic counterparts (due to using
an accurate core unit). Furthermore, employing an accurate in-
stance of a divider still results in a long latency, multiple times
that of a same-size multiplier. RAPID, on the other hand, has
reduced the high latency of accurate divider, nearly to latency of
its same-size multiplier. Overall, our proposed architectures yield
better resource-accuracy trade-off, especially in higher bit-width.
Finally, there are many cases with an error near or equal to 100%
in the truncation-based AAXD divider. Such high error cases can
result in false positive peaks in heartbeat and corner detection, as
will be discussed later.

• The proposed error-reduction outperforms other Mitchell-
based architectures: the error-reduction strategy of RAPID sur-
passes SIMDive/REALM in three aspects. First, the proposed error-
reduction scheme achieves a higher accuracy level, even with fewer
coefficients/LUTs. This is due to the better partitioning scheme
of RAPID, while it still considers 4 MSBs of fractional parts.
Second, the exponential increase in the number of coefficients (256
for 4 MSBs) of REALM/SIMDive not only poses a noticeable
resource penalty, but also would nullify the gain, when realized
in a LUT-based implementation. Overall, RAPID enables a more
cost-effective strategy for partitioning the squarish zone. Third,
in addition to error-reduction strategy, RAPID can achieve a
higher throughput, energy, and throughput per Watt, compared to
SIMDive, in non-pipeline configuration (except for 8- and 16-
bit division). Albeit, as noted previously, the higher throughput

enabled by pipelining RAPID comes at the cost of increased
throughput per Watt, when compared to SIMDive.
Please note although comparing the SIMD and pipelined architec-
tures is not in the scope of this paper, herein some of the key dif-
ferences between RAPID and SIMDive are discussed. Supporting
higher throughput through SIMDive has added to the complexity
of the sub-modules. For example, 4×3=12 bit is used for LOD
in 32-bit SIMDive or 2- and 4-MUX units are used to select
the functionality and sub-word length in the intermediate adders.
Moreover, integration of a multiplier and divider into a hybrid
design marginally affects the complexity of the circuit through
including 2-MUX units to select the mode in sub-modules. Finally,
in order to support simultaneous scalings for sub-word length in
SIMD mode, the LOD, error-reduction, and final shifter become
more complex. For example, in a 32-bit LOD, instead of 5 bit for
the SISD mode, 4×3=12 bit is used to also support simultaneous
8-bit leading one detection for the SIMD mode (the complexity
overhead is also posed to integer/fractional part adder).

• Comparing latency, throughput and throughput per Watt in
pipelined and non-pipelined designs: overall, operating at a
higher frequency and producing one-operation-per-cycle through
pipelining has resulted in additional flip-flops, increased end-to-end
latency, and higher dynamic power dissipation. However, pipelining
enables significant improvement in throughput. In fact, higher
throughput enabled by increasing the number of pipeline stages
comes at the cost of lower Throughput per Watt as well. This
descending trend is mainly due to the increase in the number
of FFs and end-to-end latency in such designs. In particular, the
analysis of latency and throughput per Watt highlights the efficacy
of pipelining for RAPID circuits from three perspectives. First,
comparing accurate- and RAPID-pipelined designs demonstrates
that, even with increasing the number of pipelining stages, the end-
to-end latency for each x-stage based RAPID remains smaller than
its x-stage based accurate counterpart (except for 8-bit multiplica-
tion). Second, the x-stage based pipelined RAPID enables higher
throughput per Watt versus its x-stage based accurate counterpart.
Third, while increasing the number of pipeline stages results in a
descending trend in throughput per Watt for RAPID multipliers and
accurate IPs (both multiplier and divider), this trend is ascending
for RAPID dividers. This means that increasing the pipeline depth
is highly beneficial for dividers. Moreover, the relative throughput
per Watt ratio for RAPID dividers are higher than 1, meaning that
pipelined RAPID dividers achieve a better throughput per Watt
than their accurate counterparts (even when compared to the non-
pipelined mode). On the other hand, as discussed in Section II the
reciprocal-based dividers are not suited for LUT-based platforms.
In fact, the poor performance of pipelined SAADI-EC is due to two
reasons: first, its datapath is divided into three non-uniform stages
(normalizing block, multiplier, and error-correction accumulator
based on Taylor iterations). Second, generating the reciprocal of the
divisor (even through utilizing reciprocal IP of Vivado, as adopted
herein) is a costly operation for LUT-based designs.
It is worth noting that Xilinx Vivado offers different imple-
mentation strategies to reduce the dynamic power, including
Power DefaultOpt, Power ExploreArea (in which sequential re-
sources are combined) and system-level power reduction tech-
niques such as voltage scaling [62]. Overall, it is reported that
such optimizations can enable up to 30% improvement in dynamic
power [62]. However, considering the trade-off between area/power
and performance, exploiting such techniques will increase the
critical path delay. As pipelining has increased the critical path
delay by itself, we have refrained from applying further directives,
but users can utilize such options w.r.t. their constraints.

9

Low-Pass Filter High-Pass Filter Differentiator Squarer Sliding Window

3 4

Fig. 5: The structure of Pan Tompkins QRS detection application [30]

Color Conversion
(RGB to YCbCr)

3x3

Coeff.

R

G

B

2D-DCT (1D 1D)

8x8
2D-DCT

8x8
DCT
Coeff.

8x8
Image
Pixels

Quantization
To user's compression factor

Huffman
Encoding

Y

Cb

Cr

transpose

8x8
2D-DCT
Output

User
Quality
Factor

8x8
Quant.
Table

8x8
Quant.
Output

Filter

 Zig-zag

Arrangement

Fig. 6: The structure of JPEG Compression application [30]

B. Evaluation of RAPID in three multi-kernel applications

The efficacy of RAPID over accurate and SoA multipliers3 and
dividers has been also appraised by deploying them in the end-to-end
implementation of three multi-kernel applications. The application,
shown in figures 5, 6, and 7 include JPEG compression, heart-beat
detection through Pan-Tompkins algorithm, and HCD (the corners
are further employed to generate movement vectors, which is used
in object tracking programs).
Hardware implementation and performance analysis of applications:
the source-code of applications is synthesized with Xilinx Vivado for
the usually-adopted kernel configuration of 16-bit. The implemen-
tation of Pan-Tompkins algorithm is adopted from [63]. The base
of JPEG compression is adopted from AxBench [64] and further
optimized for a resource-efficient implementation on FPGA, by e.g.,
transforming 2D-DCT calculations to the butterfly-based 1D-DCT
approach [64, 65]. We have developed both JPEG and HCD in C++
and synthesized them through Vivado High-Level Synthesis (HLS)
and disabled DSPs. HLS has two key advantages: first, it facilitates
applying various directives, in a system-level implementation as well
as the process for generating different, customized configurations.
Second, it simplifies the high-level behavioral evaluation of the entire
design. To efficiently reflect the optimizations of RAPID in the
final HDL design and to overcome the resource gap between HLS
generated and HDL, we have employed a three-step approach. In
the first step we have coded each of accurate multiplication and
division functions in the applications. This scheme has facilitated
replacing each function with its optimized RAPID versions, later in
step 3. Second, the compiler has been forced, via HLS inline pragmas,
to generate an independent HDL file for each of multiplication
and division functions. In the third step, the HDL description of
the respective functions are replaced by HDL-optimized versions of
RAPID modules. Finally, for the end-to-end performance analysis,
the HLS-synthesized designs for all accurate and approximate appli-
cations have been further passed to the downstream implementation
phase, placed and routed on Virtex-7.
QoR analysis on real-world benchmarks: for assessing the end-to-
end accuracy of Pan-Tompkins, we measured the QRS and Peak
Signal to Noise Ratio (PSNR) for 30k ECG samples from the MIT-
BIH database [66] in MATLAB. For quality measurements on JPEG-
compressed images PSNR is used, while the percentage of correct
vectors is considered as the application-level metric for HCD. In fact,
similar to [67], the extracted corners from HCD algorithm are passed

3Herein the SISD mode of SIMDive has been analyzed. Detailed compar-
ison of SIMD architectures with pipelining for multi-kernel applications and
resolving instruction dependencies are targeted as interesting future works.

Color Conversion
(RGB to Grayscale)

Gray
Scaled

0.299

0.587

0.114

R

G

B

Gaussian Smoothing
5x5

Smoothed
Output

5x5
Gaussian

Coeff.

5x5
Image
Pixels

Derivative Mask
(Gradient Calc. via Sobel)

5x5
Sobel - x

Coeff.

5x5
Image
Pixels

5x5
Sobel - y

Coeff.

5x5
Image
Pixels

Ix

Iy

Struct Tensor and
Calc. Harris Response

Auto -
Correlation
Matrix (M)

Ix Ix Ix Iy
Ix Iy Iy Iy

R = det (M) k trace (M)2

Normalize Response

Dynamic-Max = Max (Scores)

Response Dynamic-Max

Normalized Score =

Corner
Selection Via

Non-Maximum
Suppression

_

Fig. 7: The structure of Harris Corner Detection application [30]

to MATLAB for generating the motion/terrain vectors4. The accuracy
changes in these applications are measured by conducting analysis on
50 images from three aerial imagery datasets [68, 69, 70]. To remain
inline with industrial standards, we refrained from applying approx-
imations to zigzag and Huffman kernels in JPEG which implement
a re-arrangement and encoding scheme, respectively. Moreover, the
corner selection via non-maximum suppression in HCD have also
been remained accurate, as it is mainly comprised of comparison
operations and has moderately low resource footprint. In this article
we have considered the PSNR of, at least, 28 dB for ECG and JPEG
compression and 90% correct vectors for HCD application (reported
to be an acceptable confidence level for moving object tracking [67]).
Please note, although a relatively low PSNR of 11-19 dB, and thereby,
95-100% detection ratio has been allowed in XBioSip [63], we adhere
to a high PSNR in this article, that is also expected to render 100%
detection accuracy [63].
Post-implementation results: Fig. 10 shows the obtained area, delay,
and Area-Delay-Product (ADP) improvements of approximate de-
signs, in the three applications5. The comparison is among three con-
figurations: adopting with RAPID multipliers and dividers, adopting
SoA SIMDive multiplier and divider, or dynamically truncated de-
signs, i.e., DRUM-6 multiplier together with AAXD-8/4 divider. The
following inferences are highlighted on the efficacy of RAPID de-
signs, after appraising the end-to-end performance gain:

First, referring to Fig. 8 and Fig. 9 the quality drop by designs
having a near-unbiased error characteristic (both RAPID and SIM-
Dive) is smaller than when truncated counterparts are adopted. As
discussed before, the biased error of truncated designs, i.e., DRUM
and AAXD, results in accumulation of errors in consecutive kernels.
In fact, our profiling has revealed that the near-zero biased errors of
the RAPID multiplier and divider have been able to cancel out each
other in consecutive operations/kernels and prevent a drastic error
accumulation in the aggregation-based (mostly Add/Mul) structure of
kernels. Such observations also corroborate [71, 72] in that error-bias
feature plays a pivotal role in approximation of consecutive kernels
having an aggregation-based structure, e.g., neural networks. Second,
the negligible accuracy loss after deployment of RAPID is partly
due to the small average and peak error of the proposed multiplier
and divider, as compared to high peak error in DRUM/AAXD, (up
to 100% in hundreds of input cases). In fact, the analysis shows
that a high peak error is also reflected as incorrect vectors in the
HCD application (especially due to the presence of division in the
last stage of the HCD algorithm). This also holds true for false
positive heartbeat (QRS peaks), as by utilizing both DRUM and
AAXD the detection accuracy of heartbeat has dropped by ∼1%.

4In [67], only DCT adders are approximated (DCT is used as a pre-
processing compression step in UAV programs).

5Comprehensive energy analysis for multi-kernel programs on large
image/ECG datasets is for follow-up track

10

(a) Accurate multiplication and division (PSNR = 30.9) (b) RAPID multiplier-10 and divider-9 (PSNR = 28.7)

(c) SIMDive multiplication and division (PSNR = 29.3) (d) DRUM-6 multiplication and AAXD-8/4 division (PSNR = 24.4)

Fig. 8: Comparison of JPEG compression on aerial images with accurate and different approximate multipliers and dividers (16-bit).

(a) Accurate multiplication and division (baseline) = 100% (b) RAPID multiplier-10 and divider-9 = 94%

(c) SIMDive multiplication and division = 97% (d) DRUM-6 multiplication and AAXD-8/4 division = 83%

Fig. 9: Tracking via Harris Corner Detection: changes in Harris score range also enables detection of new vectors in the threshold- based
selection of tracking algorithm in MATLAB. Average of false positive vectors is less than 5%.

11

QRS=100%
QRS=99%

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

 to
 1

6-
bi

t A
cc

ur
at

e)

ECG Pan-Tompkins mpression Harris Corner Detection

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

 to
 1

6-
bi

t A
cc

ur
at

e)

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

 to
 1

6-
bi

t A
cc

ur
at

e)PSNR PSNR
QRS=100%

QRS=100% Correct Vectors %

JPEG Co

90

91

92

93

94

95

96

97

98

0.5

0.6

0.7

0.8

0.9

1.0

RAPID-3 RAPID-10 SIMDive DRUM/AAXD

Area Delay ADP Correct Vectors

20

22

24

26

28

30

32

0.5

0.6

0.7

0.8

0.9

1.0

RAPID-3 RAPID-10 SIMDive DRUM/AAXD

Area Delay ADP PSNR

20

25

30

35

40

45

0.5

0.6

0.7

0.8

0.9

1.0

RAPID-3 RAPID-10 SIMDive DRUM/AAXD

Area Delay ADP PSNR

0.65
0.69

0.75
0.80

0.87 0.87
0.86

0.97

0.56
0.60

0.64

0.78

26.8 27.9
29.8

23.2

0.83
0.88

0.92 0.94

0.67 0.68
0.65

0.70

0.55
0.60 0.60

0.66

34.7
39.4

41.4

28.5
0.76

0.85
0.88

0.92

0.82

0.83

0.81

0.89

0.62

0.71 0.69

0.82

93%
96%

97%

91%

Fig. 10: End-to-end performance of applications utilizing RAPID multiplier and divider, compared to accurate and SoA approximate designs.

Acc_P2 Acc_P4 RAPID-5_NP

Latency ThroughputLatency Throughput Latency Throughput

RAPID-5_P2 RAPID-5_P4 Acc_P2 Acc_P4 RAPID-5_NP RAPID-5_P2 RAPID-5_P4

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

 to
 1

6-
bi

t A
cc

_N
P)

ECG Pan-Tompkins JPEG Compression Harris Corner Detection

1.01 1.21
0.67 0.70 0.79

1.28
1.61

0.87 0.91 1.05 1.04 1.17
0.82 0.84 0.91

1.76

2.81

1.54

2.90

4.92

1.73

2.66

1.37

2.59

4.38

1.68

2.43

1.14

2.17

3.67

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Acc_P2 Acc_P4 RAPID-5_NP RAPID-5_P2 RAPID-5_P4

Fig. 11: The end-to-end latency and throughput of applications utilizing RAPID multiplier and divider, compared to accurate IP counterparts,
in pipelined and non-pipelined format.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 0.7

Dominated Points Pareto Points

0.9 1.1 1.3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.7 0.9 1.1 1.3

T
hr

ou
gh

pu
t

(N

or
m

al
iz

ed
 to

 A
cc

ra
te

_N
P

)
-1

RAPID-5_P2

RAPID-5_P4

ECG Pan-Tompkins JPEG Compression Harris Corner Detection

RAPID-5_NP
RAPID-5_NP

Acc_NP Acc_NP

Acc_P2

Acc_P4

Acc_P2

Acc_P4

RAPID-5_P2

RAPID-5_P4

RAPID-5_NP

Acc_NP

Acc_P2

Acc_P4
RAPID-5_P2

RAPID-5_P4

Latency (Norm. to Acc_NP)

Fig. 12: Comparing the latency and throughput trade-off in applica-
tions exploiting pipelined and non-pipelined version of RAPID and
accurate multiplier and divider.

Second, RAPID-configured applications also have better area- and
ADP- gains, compared to both SIMDive and truncated counterparts
(see Fig. 10). SIMDive on the other hand has marginally better end-
to-end latency (by at most 3%), since it’s error-reduction circuitry is
customized for performance-efficiency by directly configuring LUTs.
Nonetheless, the difference of QoR and performance-gain between
RAPID and SIMDive is not significant at application-level.

To compare the throughput of applications in pipelined and non-
pipelined configuration, we have also deployed the 2- and 4-stage
pipelined versions of the RAPID multiplier and divider (along with
their accurate counterparts). For a fair comparison, we have avoided
user-specified optimizations such as function pipelining pragmas
(e.g., on matrix multiplication) and the applications are also im-
plemented on the basis of streaming approach. Fig. 11 compares
the end-to-end latency and throughput of both pipelined and non-
pipelined configurations. Please note, the area difference by only
replacing the non-pipelined RAPID multipliers and dividers with their
pipelined versions is not significant (see Fig. 10). The throughput
is estimated as the inverse of the clock period for the applications,

especially as they are constantly fed with bulk of data. As can be
seen in Fig. 11, the throughput of the applications increases after
applying the pipelining, but this comes with the cost of increase in the
end-to-end latency. Nevertheless, the latency overhead of converting
RAPID P2 configuration to RAPID P4 is less than of the overhead
from converting Acc P2 to Acc P4. Similar observation also holds
true for the improvement in the throughput. Moreover, application
configurations having the RAPID P2 reach smaller latency along
with the higher throughput than when incorporating Acc NP or
Acc P2. Finally, Fig. 12 illustrates the Pareto points in the trade-
off between Latency and throughput for pipelined an non-pipelined
architectures. As can be observed, RAPID P2 and RAPID P4 render
the Pareto points having better trade-off in latency and throughput
than other configurations.

Discussion: it should be highlighted that although more compli-
cated object tracking or heart arrhythmia programs utilize machine-
learning techniques for feature extraction, continuously offloading the
complete video stream (for the former) or patient bio-signal data (for
the latter) to the insecure/untrustworthy network, or process/store it
on the third-party cloud can pose performance bottleneck for a real-
time processing and deplete the battery in a short interval. Therefore,
enabling extraction of some features at the edge is highly desired.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed RAPID, the first fine-grain pipelin-
ing architecture for approximate multiplier and divider. The proposed
error-reduction schemes of RAPID enable 99-99.4% accuracy with
smaller cost, compared to the existing approaches. In particular,
pipelined RAPID multipliers (dividers) enable up to 3.3× (8.1×)
higher throughput, 2.3× (6.8×) higher throughput/Watt, and 56%
(36%) savings of LUTs, over pipelined accurate IPs. The end-to-
end evaluations of RAPID in heartbeat detection, JPEG compres-
sion, and Harris corner detection demonstrate up to 35%, 33%,
and 45% improvements in area, latency, and Area-Delay-Product,

12

respectively, over accurate configuration, with negligible loss in QoR.
RAPID pipelined designs are interesting candidates to speed up the
execution of a wide domain of stream-based applications that are
constantly fed with a bulk of data. 35%, 33%, and 45% improvements
in area, latency, and Area-Delay-Product (ADP), respectively, over
accurate kernels, with negligible loss in QoR.

For future work, we intend to assess the efficacy of the
RAPID pipeline mode in different application domains, e.g., Neural
networks which offers both SIMD and pipelining opportunities. The
challenge is resolving data dependencies in consecutive instructions.
Such challenges are usually partially addressed through out-of-order
execution in processors. However, this technique cannot fully utilize
the pipelining potentials. Therefore, we target providing specialized
versions of the pipelined multiplier and divider, which will be able
to support internal data forwarding [55, 56] and able to resolve data
dependencies. It should be noted that bypassing would be faster and
posed with smaller overhead, when implemented through an intra-
unit granularity.

Furthermore, we plan to design an approximate Arithmetic Logic
Unit (ALU) and assess its applicability in the data-path of soft
processors such as RISC-V. In fact, RAPID bears a great potential to
be deployed in the mantissa multiplier/divider which consume more
than 95% of the total area and power in the floating point unit (in
which division latency is up to 35× of addition operation) [20, 73].
Recently, this track has attracted noticeable attention, especially due
to the ever-growing usage of 3D computer graphics [74, 75].

ACKNOWLEDGEMENT

This research is co-funded by the projects X-ReAp: Cross(X)-
Layer Runtime Reconfigurable Approximate Architecture (Number
380524764), funded by the German research foundation Deutsche
Forschungsgemeinschaft (DFG) and Re-learning: Self-learning and
flexible electronics through inherent component reconfiguration
(Number 100382146), funded by the European Social Fund (ESF).

REFERENCES

[1] World Health Organisation. 2018. Cardiovascular diseases (CVDs).
https : / /www.who. int /news- room/fact - sheets /detail /cardiovascular-
diseases-(cvds). (2018).

[2] P. Kostic. 2017. Heart Disease and Early Heart Attack Care.
https : / / www . bnl . gov / hr / occmed / hpp / linkable files / pdf /
EarlyHeartAttackSymptoms.pdf. (2017).

[3] Y. Yang et al. 2019. FPNet: Customized Convolutional Neural Network
for FPGA Platforms. In IEEE International Conference on Field-
Programmable Technology (ICFPT).

[4] X. Gu et al. 2016. A Real-Time FPGA-Based Accelerator for ECG
Analysis and Diagnosis Using Association-Rule Mining. ACM Trans-
actions on Embedded Computing Systems (TECS), 15, 2.

[5] H.K. Chatterjee et al. 2015. Real–time detection of electrocardiogram
wave features using template matching and implementation in FPGA.
International Journal of Biomedical Engineering and Technology (IJ-
BET), 17, 3.

[6] S. Ullah et al. 2021. High-Performance Accurate and Approximate
Multipliers for FPGA-based Hardware Accelerators. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD).

[7] S. Ullah et al. 2018. Area-Optimized Low-Latency Approximate Mul-
tipliers for FPGA-Based Hardware Accelerators. In IEEE/ACM Design
Automation Conference (DAC).

[8] I. Kuon and J. Rose. 2007. Measuring the gap between fpgas and asics.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 26, 2.

[9] A. Boutros et al. 2018. Embracing Diversity: Enhanced DSP Blocks
for Low-Precision Deep Learning on FPGAs. In IEEE International
Conference on Field Programmable Logic and Applications (FPL).

[10] S. Lee et al. 2019. Double MAC on a DSP: Boosting the Performance
of Convolutional Neural Networks on FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
38, 5.

[11] Xilinx. 2015. LogiCORE IP multiplier v12.0. https://www.xilinx.com/
support / documentation / ip documentation / mult gen / v12 0 / pg108 -
mult-gen.pdf. (2015).

[12] Xilinx. 2016. LogiCORE IP Divider v5.1. https: / /www.xilinx.com/
support /documentation/ ip documentation/div gen/v5 1/pg151- div-
gen.pdf. (2016).

[13] Xilinx. 2018. 7 Series DSP48E1 Slice. https://www.xilinx.com/support/
documentation/user guides/ug479 7Series DSP48E1.pdf. (2018).

[14] N. Van Toan and J. Lee. 2020. FPGA-Based Multi-Level Approximate
Multipliers for High-Performance Error-Resilient Applications. IEEE
Access, 8.

[15] Z. Ebrahimi et al. 2020. SIMDive: Approximate SIMD Soft Multiplier-
Divider for FPGAs with Tunable Accuracy. In ACM Great Lakes
Symposium on VLSI (GLSVLSI).

[16] H. Saadat et al. 2019. Approximate Integer and Floating-Point Dividers
with Near-Zero Error Bias. In IEEE/ACM Design Automation Confer-
ence (DAC).

[17] Z. Ebrahimi et al. 2020. LeAp: Leading-one Detection-based Softcore
Approximate Multipliers with Tunable Accuracy. In Asia & South
Pacific Design Automation Conference (ASP-DAC).

[18] J. N. Mitchell. 1962. Computer Multiplication and Division us-
ing Binary Logarithms. IRE Transactions on Electronic Computers
(IRETEC), 11, 4.

[19] A. R. Baranwal et al. 2020. ReLAccS: A Multi-level Approach to Ac-
celerator Design for Reinforcement Learning on FPGA-based Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD).

[20] H. Saadat et al. 2018. Minimally Biased Multipliers for Approxi-
mate Integer and Floating-Point Multiplication. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
37, 11.

[21] H. Jiang et al. 2020. Approximate Arithmetic Circuits: A Survey,
Characterization, and Recent Applications. Proceedings of the IEEE,
108, 12.

[22] S. Rehman et al. 2016. Architectural-space exploration of approximate
multipliers. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD).

[23] M. Wang et al. 2020. An Optimized Compression Strategy for
Compressor-Based Approximate Multiplier. In IEEE International
Symposium on Circuits and Systems (ISCAS).

[24] A. G. M. Strollo et al. 2020. Comparison and Extension of Approxi-
mate 4-2 Compressors for Low-Power Approximate Multipliers. IEEE
Transactions on Circuits and Systems I (TCAS-I): Regular Papers, 67,
9.

[25] P. J. Edavoor et al. 2020. Approximate Multiplier Design Using Novel
Dual-Stage 4:2 Compressors. IEEE Access, 8.

[26] D. Esposito et al. 2018. Approximate Multipliers Based on New
Approximate Compressors. IEEE Transactions on Circuits and Systems
I (TCAS-I): Regular Papers, 65, 12.

[27] S. Venkatachalam and S. Ko. 2017. Design of Power and Area Efficient
Approximate Multipliers. IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), 25, 5.

[28] O. Akbari et al. 2017. Dual-Quality 4:2 Compressors for Utilizing in
Dynamic Accuracy Configurable Multipliers. IEEE Transactions on
Very Large Scale Integration Systems (TVLSI), 25, 4.

[29] Y. Guo et al. 2020. Small-Area and Low-Power FPGA-Based Multipli-
ers using Approximate Elementary Modules. In Asia & South Pacific
Design Automation Conference (ASP-DAC).

[30] Z. Ebrahimi, et al. 2021. Plasticine: A Cross-Layer Approximation
Methodology for Multi-Kernel Applications through Minimally Biased,
High-Throughput, and Energy-Efficient SIMD Soft Multiplier-Divider.
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 27, 2.

[31] M. S. Ansari et al. 2018. Low-Power Approximate Multipliers Using
Encoded Partial Products and Approximate Compressors. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems (JETCAS),
8, 3.

[32] V. Mrazek et al. 2017. EvoApprox8b: Library of Approximate Adders
and Multipliers for Circuit Design and Benchmarking of Approxima-
tion Methods. In Design, Automation & Test in Europe (DATE).

[33] S. Ullah et al. 2018. SMApproxLib: Library of FPGA-based Approxi-
mate Multipliers. In IEEE/ACM Design Automation Conference (DAC).

[34] F. Frustaci et al. 2020. Approximate Multipliers With Dynamic Trun-
cation for Energy Reduction via Graceful Quality Degradation. IEEE
Transactions on Circuits and Systems II (TCAS-II): Express Briefs, 67,
12.

https://cfaed.tu-dresden.de/PD-Project-REAP
https://cfaed.tu-dresden.de/PD-Project-REAP
https://gepris.dfg.de/gepris/projekt/380524764?context=projekt&task=showDetail&id=380524764&
https://gepris.dfg.de/gepris/projekt/380524764?context=projekt&task=showDetail&id=380524764&
https://cfaed.tu-dresden.de/PD-Project-REAP
https://cfaed.tu-dresden.de/PD-Project-REAP
https://ec.europa.eu/esf/home.jsp
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.bnl.gov/hr/occmed/hpp/files/pdf/EarlyHeartAttackSymptoms.pdf
https://www.bnl.gov/hr/occmed/hpp/linkable_files/pdf/EarlyHeartAttackSymptoms.pdf
https://www.bnl.gov/hr/occmed/hpp/linkable_files/pdf/EarlyHeartAttackSymptoms.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

13

[35] S. Vahdat et al. 2019. TOSAM: An Energy-Efficient Truncation- and
Rounding-Based Scalable Approximate Multiplier. IEEE Transactions
on Very Large Scale Integration Systems (TVLSI), 27, 5.

[36] R. Zendegani et al. 2017. RoBA Multiplier: A Rounding-Based
Approximate Multiplier for High-Speed yet Energy-Efficient Digital
Signal Processing. IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), 25, 2.

[37] H. Jiang et al. 2019. Low-Power Unsigned Divider and Square Root
Circuit Designs Using Adaptive Approximation. IEEE Transactions on
Computers (TC), 68, 11.

[38] H. Jiang et al. 2018. Adaptive approximation in arithmetic circuits: A
low-power unsigned divider design. In Design, Automation & Test in
Europe (DATE).

[39] M. Vaeztourshizi et al. 2018. An Energy-Efficient, Yet Highly-
Accurate, Approximate Non-Iterative Divider. In International Sym-
posium on Low Power Electronics and Design (ISLPED).

[40] S. Vahdat et al. 2017. TruncApp: A truncation-based approximate
divider for energy efficient DSP applications. In Design, Automation
& Test in Europe (DATE).

[41] R. Zendegani et al. 2016. SEERAD: A high speed yet energy-efficient
rounding-based approximate divider. In Design, Automation & Test in
Europe (DATE).

[42] J. Melchert et al. 2019. SAADI-EC: A Quality-Configurable Approxi-
mate Divider for Energy Efficiency. IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), 27, 11.

[43] M. S. Ansari et al. 2019. A Hardware-Efficient Logarithmic Multiplier
with Improved Accuracy. In Design, Automation & Test in Europe
(DATE).

[44] W. Liu et al. 2018. Design and Evaluation of Approximate Logarithmic
Multipliers for Low Power Error-Tolerant Applications. IEEE Trans-
actions on Circuits and Systems I (TCAS-I): Regular Papers, 65, 9.

[45] H. Saadat et al. 2020. REALM: Reduced-Error Approximate Log-based
Integer Multiplier. In Design, Automation & Test in Europe (DATE).

[46] Zahra Ebrahimi and Akash Kumar. 2021. BioCare: An Energy-Efficient
CGRA for Bio-Signal Processing at the Edge. In IEEE International
Symposium on Circuits and Systems (ISCAS).

[47] S. Hashemi et al. 2015. DRUM: A Dynamic Range Unbiased Multiplier
for approximate applications. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

[48] S. Hashemi et al. 2016. A low-power dynamic divider for approximate
applications. In IEEE/ACM Design Automation Conference (DAC).

[49] E. Adams et al. 2020. Approximate Restoring Dividers Using Inexact
Cells and Estimation From Partial Remainders. IEEE Transactions on
Computers (TC), 69, 4.

[50] S. Venkatachalam et al. 2019. Design of Approximate Restoring
Dividers. In IEEE International Symposium on Circuits and Systems
(ISCAS).

[51] L. Chen et al. 2018. Design, Evaluation and Application of Ap-
proximate High-Radix Dividers. IEEE Transactions on Multi-Scale
Computing Systems (TMSCS), 4, 3.

[52] L. Chen et al. 2016. On the Design of Approximate Restoring Dividers
for Error-Tolerant Applications. IEEE Transactions on Computers (TC),
65, 8.

[53] S. Behroozi et al. 2019. SAADI: A Scalable Accuracy Approximate
Divider for Dynamic Energy-Quality Scaling. In Asia & South Pacific
Design Automation Conference (ASP-DAC).

[54] S. Ullah et al. 2020. Area-optimized Accurate and Approximate Soft-
core Signed Multiplier Architectures. IEEE Transactions on Computers
(TC).

[55] J. Seo and D. H. Kim. 2019. Dependency-Resolving Intra-Unit Pipeline
Architecture for High-Throughput Multipliers. In Design, Automation
& Test in Europe (DATE).

[56] J. Seo and D. H. Kim. 2019. High-Throughput Multiplier Architec-
tures Enabled by Intra-Unit Fast Forwarding. In IEEE International
Symposium on Computer Arithmetic (ARITH).

[57] S. Scarfone et al. 2021. Design and Analysis of a Leading One
Detectorbased Approximate Multiplier on FPGA. In International
Conference on Synthesis, Modeling, Analysis and Simulation Methods,
and Applications to Circuit Design (SMACD).

[58] K. Chapman. 2013. Multiplexer design techniques for datapath per-
formance with minimized routing resources (Xilinx Application Note).
https://docs.xilinx.com/v/u/en-US/xapp522-mux-design- techniques.
(2013).

[59] Xilinx. 2013. Xilinx 7 Series FPGA Programmable Guide for HDL
Designs. https://www.xilinx.com/support/documentation/sw manuals/
xilinx14 7/7series hdl.pdf. (2013).

[60] B. Parhami. 2010. Computer Arithmetic: Algorithms and Hardware
Designs. Volume 20. Oxford university press.

[61] ARM. 2021. Performance per Watt Is the New Moore’s Law. https:
//www.arm.com/blogs/blueprint/performance-per-watt. (2021).

[62] Xilinx. 2021. Vivado Design Suite User Guide: Power Analysis and
Optimization. https : / /www.xilinx .com/content /dam/xilinx / support /
documents/sw manuals/xilinx2021 2/ug907- vivado- power- analysis-
optimization.pdfhttps://docs.xilinx.com/v/u/2019.1- English/ug907-
vivado-power-analysis-optimizationversion2019andbetter. (2021).

[63] B. Prabakaran et al. 2019. XBioSiP: A Methodology for Approximate
Bio-Signal Processing at the Edge. In IEEE/ACM Design Automation
Conference (DAC).

[64] A. Yazdanbakhsh et al. 2017. AxBench: A Multiplatform Benchmark
Suite for Approximate Computing. IEEE Design & Test, 34, 2.

[65] M. Jridi et al. 2013. Low complexity DCT engine for image and
video compression. In Real-Time Image and Video Processing (RTIVP).
Volume 8656.

[66] A. L. Goldberger et al. 2000. PhysioBank, PhysioToolkit, and Phys-
ioNet: Components of a New Research Resource for Complex Physi-
ologic Signals. Circulation.

[67] T. Nomani et al. 2020. xUAVs: Towards Efficient Approximate Com-
puting for UAVs—Low Power Approximate Adders With Single LUT
Delay for FPGA-Based Aerial Imaging Optimization. IEEE Access, 8.

[68] M. Mueller et al. 2016. A Benchmark and Simulator for UAV Tracking.
In European Conference on Computer Vision (ECCV).

[69] H. Fan et al. 2020. VisDrone-SOT2020: The Vision Meets Drone
Single Object Tracking Challenge Results. In Workshops in European
Conference on Computer Vision (ECCV).

[70] Y. Lyu et al. 2020. UAVid: A semantic segmentation dataset for UAV
imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165.

[71] M. S. Ansari et al. 2020. Improving the Accuracy and Hardware
Efficiency of Neural Networks Using Approximate Multipliers. IEEE
Transactions on Very Large Scale Integration Systems (TVLSI), 28, 2.

[72] Z. G. Tasoulas et al. 2020. Weight-Oriented Approximation for Energy-
Efficient Neural Network Inference Accelerators. IEEE Transactions on
Circuits and Systems I (TCAS-I): Regular Papers, 67, 12.

[73] S. Tamimi et al. 2019. An Efficient SRAM-Based Reconfigurable Ar-
chitecture for Embedded Processors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 38, 3.

[74] Juwon Yun et al. 2020. A latency-effective pipelined divider for double-
precision floating-point numbers. IEEE Access, 8.

[75] Yuheng Yang et al. 2021. An architecture of area-effective high radix
floating-point divider with low-power consumption. IEEE Access, 9.

https://docs.xilinx.com/v/u/en-US/xapp522-mux-design-techniques
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.arm.com/blogs/blueprint/performance-per-watt
https://www.arm.com/blogs/blueprint/performance-per-watt
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-analysis-optimization.pdf https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization version 2019 and better
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-analysis-optimization.pdf https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization version 2019 and better
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-analysis-optimization.pdf https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization version 2019 and better
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug907-vivado-power-analysis-optimization.pdf https://docs.xilinx.com/v/u/2019.1-English/ug907-vivado-power-analysis-optimization version 2019 and better

14

Zahra Ebrahimi received her B.Sc. and M.Sc.
degrees in computer engineering at Sharif Univer-
sity of Technology (SUT), Iran, in 2014 and 2016,
respectively. Meanwhile, she was also a Research
Assistant at the Data Storage, Networks, and Pro-
cessing Laboratory, at SUT. She started her Ph.D.
at the Center for Advancing Electronics Dresden
(cfaed), Technische Universität Dresden, Germany,
in 2018. Her research interests include approximate
computing, reconfigurable accelerator design, and
energy-efficient edge computing.

Muhammad Zaid received his B.Sc. degree in
Electrical Engineering from National University of
Sciences and Technology (NUST), Islamabad, Pak-
istan, in 2017. He is currently pursuing the M.Sc.
in Nanoelectronic Systems at Technische Universität
Dresden. His research interest includes HW/SW co-
design of embedded AI systems.

Mark Wijtvliet received his MS.c. and Ph.D. de-
grees at the Electronic Systems group at Eindhoven
university of technology in 2011 and 2020, respec-
tively. His Ph.D. topic focused at energy efficient re-
configurable processor architectures. Afterwards, he
worked as a post-doctoral researcher at TU Dresden
at the processor design chair in the field of hard-
ware security. Currently he works as a researcher at
ASMPT in the Netherlands. His interests include re-
configurable hardware, hardware security, processor
optimization, chip design, and space applications.

Akash Kumar (SM’13) received the joint Ph.D.
degree in electrical engineering and embedded sys-
tems from the Eindhoven University of Technology,
Eindhoven, The Netherlands, and the National Uni-
versity of Singapore (NUS), Singapore, in 2009.
From 2009 to 2015, he was with NUS. He is
currently a Professor with Technische Universität
Dresden, Dresden, Germany, where he is directing
the Chair for Processor Design. His current research
interests include the design, analysis, and resource
management of low-power and fault-tolerant embed-

ded multiprocessor systems.

	I Introduction
	II Related Work
	III Preliminaries and Background
	IV Proposed Pipelined and Non-Pipelined Multiplier and Divider Architectures
	IV-A Proposedlight-weight&minimally-biasederror-reductionschemes
	IV-B Structure of RAPID multiplier and divider (Non-Pipelined)
	IV-C Proposed Pipelined Architectures for Multiplier and Divider

	V Results and Discussion
	V-A RAPID versus SoA multipliers & dividers (circuit-level evaluation)
	V-B Evaluation of RAPID in three multi-kernel applications

	VI Conclusions and Future Work
	Biographies
	Zahra Ebrahimi
	Muhammad Zaid
	Mark Wijtvliet
	Akash Kumar

