
1

SeqL+: Secure Scan-Obfuscation with Theoretical
and Empirical Validation

Seetal Potluri, Member, IEEE, Shamik Kundu, Student Member, IEEE, Akash Kumar, Senior Member, IEEE,
Kanad Basu, Senior Member, IEEE, and Aydin Aysu, Senior Member, IEEE.

Abstract—Scan-obfuscation is a powerful methodology to pro-
tect Silicon-based intellectual property from theft. Prior work
on scan-obfuscation in the context of logic-locking have unique
limitations, which are addressed by our previous work, SeqL,
which looks at functional output corruption to obfuscate scan-
chains, but is unable to resist removal attacks on circuits with
inadequate number of flip-flops without feedback. To address
this issue, we propose to scramble flip-flops with feedback to
increase key-length without introducing further vulnerabilities.
This study reveals the first formulation and complexity analysis
of Boolean Satisfiability (SAT)-based attack on scan-scrambling.
We formulate the attack as a conjunctive normal form (CNF)
using a worst-case O(n3) reduction in terms of scramble-graph
size n. In order to defeat SAT-based attack, we propose an
iterative swapping-based scan-cell scrambling algorithm that has
O(n) implementation time-complexity and O(2⌊

α.n+1
3

⌋) SAT-
decryption time-complexity in terms of a user-configurable cost
constraint α (0 < α ≤ 1).

Index Terms—IP Piracy, Scan-chains, Scan-scrambling.

I. INTRODUCTION

Scan-obfuscation is a powerful methodology and it has been
recently applied to defend logic-locking attacks on sequential
circuits [1]–[10]. These techniques have unique limitations,
including inability to handle reverse engineering [1], vulner-
ability to ScanSAT [3], and increasing layout complexity [4].
Our previous work, SeqL [11], addresses all these issues but is
unable to resist removal attacks on circuits without adequate
number of flip-flops without feedback (Rwof). To address
this concern, we propose SeqL+, a secure and scalable scan-
scrambling approach for flip-flops with feedback.

In order to launch ScanSAT [3], the adversary needs to
know the ordering of scan flip-flops (SFFs) in the scan-
chain in order to initialize them to known-values, and observe
the corresponding next-state responses. Since scan-scrambling
hides the ordering of SFFs in the scan-chain, the attacker is
unable to achieve this, thus preventing direct applicability of
SAT-based attack.

In ScanSAT [3], the authors consider the various inputs to
the scramble-MUX coming from different scan-chains. Since
the attacker knows that the correct input to the scramble-
MUX comes from the same scan-chain (which is unique), it

S. Potluri and A. Aysu are with the Electrical and Computer Engineering
Department, North Carolina State University, Raleigh, NC, 27606.

S. Kundu and K. Basu are with the Department of Electrical and Computer
Engineering, University of Texas at Dallas, Richardson, TX, 75080.

A. Kumar is with the Department of Computer Science, Technical Univer-
sity of Dresden, 01062 Dresden, Germany

Manuscript received September, 2021; revised December, 2021; revised
February, 2022; revised April, 2022; revised July, 2022.

Fig. 1. Sample circuit consisting of four gates and four flip-flops.

Fig. 2. (a) Sample scrambled scan-chain corresponding to Figure 1 and (b)
Corresponding scramble-digraph

is impractical/insecure. Hence, in SeqL+ we consider all the
inputs to the scramble-MUX come from the same scan-chain
and proceed with the security analysis. Moreover, the existing
scan obfuscation approaches have been recently shown to be
vulnerable to new attacks [3], [12], [13]. The novelty of our
work is to use scrambling of scan flip-flops, so as to exponen-
tially increase the number of equivalence classes to defend
SAT attack, and without introducing further vulnerabilities.

II. SEQL+: SCRAMBLING FOR DESIGNS WITH SMALL Rwof

The key research question is: “Would scan-scrambling
form equivalence classes (ECs) like conventional,
combinational logic-locking, causing a vulnerability
against SAT-based attacks?”. This subsection conducts
complexity analysis and formulation of scan-scrambling
against such attacks, and proves crucial properties of ECs.

Graph-based Formulation: Every scan-scrambled instance
can be formulated as a digraph G = (V,E) where (i) Scan-
input (SI), all SFFs and scan-output (SO) are represented
as vertices (V) in G; and; (ii) The connections between SI ,
SFFs and SO in the circuit are represented as directed edges
(E) between corresponding vertices in G, where the direction
signifies the signal flow. A Hamiltonian path in a digraph is
a path that visits each vertex exactly once.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3199153

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on August 23,2022 at 15:25:26 UTC from IEEE Xplore. Restrictions apply.

Figure 1 shows a sample circuit with 4 2-input nand
gates and 4 flip-flops (prior to scan-insertion). Figure 2(a)
shows an example of scrambled scan-chain corresponding
to this circuit, and Figure 2(b) shows the corresponding
scramble-digraph. There are 2 possible Hamiltonian Paths
(HPs) in Figure 2(b), 1 → 2 → 3 → 4 corresponding to
{sck0, sck1, sck2} = (011)2 and 1 → 3 → 2 → 4 corre-
sponding to {sck0, sck1, sck2} = (100)2. The scramble-keys
corresponding to the HPs in G ensure that all the SFFs are
connected together along with SI and SO to form the scan-
chain. The remaining scramble-key-combinations disassociate
some of the SFFs from the scan-chain.

Theorem II.1. Every HP in G has injective mapping to exactly
one valid scramble-key-combination.

Proof. Let Hs be a selected HP in G. Now, Hs cor-
responds to a particular ordering of vertices in G,
say {v1(Hs), v2(Hs) . . . vN (Hs)}. Since each vertex in
G has injective mapping to a unique SFF in the cir-
cuit, Hs corresponds to a unique ordering of SFFs, say
{SFF1(Hs), SFF2(Hs) . . . SFFN (Hs)}.

Let SFFi(Hs) be the ith scan flip-flop and let ki(Hs) be
scramble-key-bit corresponding to the scramble-MUX at the
input of scan flip-flop SFFi(Hs):

• Basis step: SFF1(Hs) is the first scan flip-flop in
the scan-chain, which means SI drives SFF1(Hs). To
achieve this, there must be a unique assignment to
k1(Hs). Hence, key-bit uniqueness is true for i=1.

• Induction step: Assume scramble-key-bit uniqueness is
true for i=l. SFFl+1(Hs) is the (l + 1)th scan flip-flop,
which means output of SFFl(Hs) should drive input of
SFFl+1(Hs). In order to achieve this, there is a unique
assignment to kl+1(Hs). Thus, key-bit uniqueness is true
for i=l+1.

Hence, by finite induction we infer all scrambling-key-bits
are unique for HP Hs. This indicates each HP in G corre-
sponds to exactly one scramble-key, and since the converse is
also true, the mapping is injective, thus the proof. QED

A. Attacking scan-scrambling using SAT formulation

The formulation comprises multiple constraints:
1) Hamiltonian Path (HP) Constraints: So far, we have

seen how to break scrambling using HP search, next we shall
see how to break using SAT-based attack.

Formulation: Given a scramble digraph G, we construct a
Boolean CNF B(G) such that such that B(G) is satisfiable iff
G has a HP. B(G) has n2 Boolean variables {xij}, 1 ≤ i, j ≤
n. A satisfying truth assignment to B(G) does provide us with
a HP for G. Here, xij means the ith position in the HP is
occupied by node-j. An HP can be expressed as a permutation
π of {1, 2, . . . n}, where:

• π(i) = j ⇒ ith position is occupied by node-j.
• (π(i), π(i+ 1)) ∈ G for i = 1, 2, . . . (n− 1)

Considering the example motivated thus far, n = 4, hence
B(G) has 42 = 16 variables {xij}, 1 ≤ i, j ≤ 4. The

Hamiltonicity Clausebase is produced using HP constraints,
which are multiple-fold:

1) Each node j must appear in the path, 1 ≤ j ≤ n = 4

• x1j ∨ x2j ∨ x3j ∨ x4j

Thus, total # constraints in this category is n.
2) No node j appears twice in the path, 1 ≤ j ≤ n = 4

• ¬x1j ∨ ¬x2j , ¬x1j ∨ ¬x3j , ¬x1j ∨ ¬x4j

• ¬x2j ∨ ¬x3j , ¬x2j ∨ ¬x4j , ¬x3j ∨ ¬x4j

Thus, total # constraints in this category is
(
n
2

)
× n.

3) Every position i on the path must be occupied, 1 ≤ i ≤
n = 4

• xi1 ∨ xi2 ∨ xi3 ∨ xi4

Thus, total # constraints in this category is n.
4) No two nodes j and k occupy the same position i in the

path, 1 ≤ i, j, k ≤ n = 4, j ̸= k

• ¬xi1 ∨ ¬xi2, ¬xi1 ∨ ¬xi3, ¬xi1 ∨ ¬xi4

• ¬xi2 ∨ ¬xi3, ¬xi2 ∨ ¬xi4, ¬xi3 ∨ ¬xi4

Thus, total # constraints in this category is
(
n
2

)
× n.

5) Non-adjacent nodes i and j cannot be adjacent in the
path, 1 ≤ i, j ≤ n = 4

• ¬x1i ∨ ¬x2j , ¬x2i ∨ ¬x3j , ¬x3i ∨ ¬x4j

Let’s denote the set of clauses in this category as CHP .
2) Constraints connecting SI/SO bits to the SFF out-

puts/inputs respectively: Considering the example motivated
thus far, since n = 4, let I1, I2, I3, I4 be the input bits
applied serially through SI and a, b, c, d are the outputs of SFFs
1, 2, 3, 4 respectively as shown in Figure 1. The constraint
connecting SI bits to SFF output a can be formulated as
follows:

• a = x11.I1 + x12.I2 + x13.I3 + x14.I4
The remaining SFF outputs b, c, d can also be likewise ex-
pressed as a constraint connecting SI bits. Similar relationship
exists between the e, f, g, h (the inputs of flip-flops as shown
in Figure 1) and O1, O2, O3, O4 i.e. the output bits serially
scanned out through SO.

Let’s denote the set of clauses in these categories as CI and
CO respectively. Each constraint corresponds to one SFF and
there are n SFFs. Further, each constraint is a function of n 2-
input and gates and (n−1) 2-input or gates. Since a 2-input
and gate as well as a 2-input or gate translates to 3 clauses
each in the CNF, there are altogether 3× (n+(n− 1)) = 3×
(2n−1) clauses, or in other words, |CI | = |CO| = 3×(2n−1).

3) Combinational Circuit Constraints: Fig. 1 shows 4 2-
input nand gates G1, G2, G3, G4 in the combinational portion
of the scan-scrambled circuit. After converting them to clauses,
let the obtained set of clauses in this category as CCombo.

4) Running SAT-based attack on Scan-Scrambling: Using
the reverse-engineered netlist, the adversary computes the
clausebases corresponding to HP constraints CHP , connec-
tion constraints CI , CO, and combinational circuit constraints
CCombo. The adversary subsequently merges these clausebases
to produce the original scramble CNF B(G) needed to attack
scan-scrambling:

B(G) = CHP ∪ CI ∪ CO ∪ CCombo (1)
The adversary uses this scramble CNF B(G), and runs the
SAT-based attack to solve for X⃗ . Considering the example

2

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3199153

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on August 23,2022 at 15:25:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. One of the inputs of each scramble-MUX is known. The second input is unknown and has to be decided in such a way, so as to maximize the number
of HPs in the resultant scramble-graph. The correct EC is {(k0, , k1, k2, k3, k4, k5)} = 001001.

motivated thus far, the SAT-based attack returns x11 = x23 =
x32 = x44 = 1 and xij = 0 otherwise. This corresponds
to π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4, or in other
words the HP (1 → 3 → 2 → 4). The adversary then uses
X⃗ to decrypt the scrambling-key by looking at the reverse-
engineered netlist. Although we have motivated using a sample
circuit, the concept is generic and hence can be extended to any
arbitrary scan-scrambled circuit. The next section discusses
our proposed defense against SAT-based attack on scrambling.

B. Defending SAT-based attack on Scan-Scrambling

It is well-known that SAT-based attack is a brute-force
search on the ECs [14]. The goal of our defense is to increase
the number of scramble ECs, to make the attack computa-
tionally infeasible. Based on Theorem II.1, this translates to
increasing the number of HPs in G. Thus, the objective is to
connect the second input to the scramble-MUXes to produce
a scramble-digraph G with maximum number of HPs.

1) Search Space Exploration: We assume only security
scan-chain is scrambled, whose length is n. We assume a
scramble-MUX at the input of each SFF as well as the scan-
out port, thus there is a total of (n+ 1) scramble-MUXes, as
shown in Figure 3. Since one of the inputs to each scramble-
MUX is fixed corresponding to the correct scramble, and the
second input available for exploration, the designer needs to
evaluate the search space and decide the best choice. Avoiding
self-loops and repetition, the second input of each scramble-
MUX can be connected in (n − 1) ways. Thus, size of the
scrambling search space is (n− 1)(n+1).

If we define δi = |c1i − c2i | as the disturbance produced
on vertex-i, where c1i and c2i be the indices of the vertices
whose outputs are connected to the first and second inputs
the corresponding scramble-MUX, and the disturbance vector
∆ = {δ1, δ2, . . . , δn}, then:

|∆| =
√∑

i

δ2i (2)

We have performed a brute-force search and checked the
distribution of |∆| for η = 3, 4, 5, 6 when running a brute-
force search. The lowest value of |∆| was observed as 6, 10,
11 and 12 for η = 3, 4, 5, 6 respectively. We have verified this
corresponds to the adjacent-scrambling (AS) case across all
values of η. Similar pattern was observed for higher values
of η, thus demonstrating the power of adjacent-scrambling.
Since it is not possible to perform brute-force search for
higher values of η, we exploit this observation to defend SAT-
based attack using adjacent-scrambling. Algorithm 1 shows
the proposed AS algorithm, where C is the circuit and η is
the user-defined cost/area constraint (0 < α = η

n ≤ 1). The
SFFs are allowed to be permuted only once, and it is also not
allowed to permute their fanout SFFs as well, once permuted.

Algorithm 1: Iterative Swapping-based Scrambling
Input: C, η

1 Create a scramble-digraph G = (V,E) with SFFs as
vertices, and directed edges corresponding to signal
flow in C;

2 C
′
= C, ns → 0;

3 G
′
= G;

4 while ns ≤ η do
5 Mark {vns , vns+1, vns+2} as visited ;
6 Scramble SFFs {vns , vns+1} and add directed

edges to G
′

corresponding to the additional signal
flow in C

′
;

7 ns → ns + 3;

Result: C
′

Since it is a single loop iterating over the SFFs until the cost
constraint η is met, the algorithm time-complexity is O(η).

III. EXPERIMENTAL EVALUATION

In this section, we (a) compare the security and overheads of
SeqL+ with prior obfuscation schemes and (b) demonstrate the
resilience of adjacent scrambling against SAT-based attack.
Table I compares SeqL+ with EFF [2], dynamically obfus-
cated scan (DOS) [8], SeqL [11], robust design-for-security
(RDFS) [9] and key-trapped design-for-security (kt-DFS) [10]
in terms of resilience to various attacks and the area overheads.
For large circuits, since < 1% of the flip-flops are scrambled,
they will be chosen on the non-critical timing paths, so no
timing overhead. Similarly, since the multiplexer appears only
during scan mode of operation, there is no power overhead. It
can be seen that SeqL+ is most secure, and the overheads are
better than EFF, DOS, SeqL, RDFS, and kt-DFS with increase
in circuit size.

A. Resilience of adjacent scrambling to SAT-Attack

Theorem III.1. The number of scramble ECs produced using
the adjacent scrambling algorithm is 2⌊

η+1
3 ⌋.

Proof. Algorithm 1 swaps/scrambles two adjacent vertices per
iteration in the graph G consisting of (n + 1) vertices in
G. For every scramble-pair (u, v), 3 vertices get eliminated
in each iteration. and creates 2 valid paths (u → v and
v → u in Algorithm 1). Thus, Algorithm 1 iterates ⌊η+1

3 ⌋
times, defined by a cost constraint η = α.n. Since each
iteration decides 3 successive positions in the permutation,
and the positions-under-scrutiny are mutually exclusive across
iterations, the number of HPs multiply geometrically. Thus,
the number of HPs produced after iteration-(i) is 2i. Since
prior to termination, Algorithm 1 iterates ⌊η+1

3 ⌋ times, HPs

3

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3199153

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on August 23,2022 at 15:25:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF SECURITY AND OVERHEADS. WE ASSUME IN SEQL, ALL FLIP-FLOPS WITHOUT FEEDBACK ARE LOCKED. IN SEQL+, WE SCRAMBLE

100 FLIP-FLOPS FOR REMOVAL SECURITY.

Bench. # ScanSAT-res. [3] # Removal-res. # SaLa-res. [12] # NNgSAT-res. [13] # Overhead
EFF DOS SeqL+ SeqL SeqL+ RDFS SeqL+ kt-DFS SeqL+ EFF DOS SeqL RDFS kt-DFS α SeqL+
[2] [8] [11] [9] [10] [2] [8] [11] [9] [10]

b04 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 8% 27.6% 2.6% 1.3× 40.4% 1 27.3%
b12 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 10% 28.2% 0.7% 1.4× 41.3% 0.8 14%
b18 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 3.8% 0.26% 0.07% 1.2% 0.43% 0.03 0.03%
b19 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 3.7% 0.13% 0.03% 0.63% 0.19% 0.015 0.01%
b20 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 3.3% 1.5% 0.3% 7.2% 2.2% 0.2 0.3%
b21 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 3.2% 1.5% 0.3% 7.1% 2.14% 0.2 0.3%
b22 ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ 3.3% 1% 0.2% 4.9% 1.5% 0.14 0.14%

TABLE II
CNF AND SAT-BASED ATTACK STATISTICS FOR SeqL+ OBFUSCATED
CIRCUITS WITH #SFFs > 50 BUT Rwof < 50. ALGORITHM 1 WAS

USED FOR SCRAMBLING THE SCAN-CHAINS.

Bench. SFFs Rwof Ite. Dec. # Lit. # Clauses #Iters. Est. Tot. Dec.
(τ0) (# eq. cls.) time (τ)

|CHP | |CI ∪ CO| |CCombo| 2⌊
n+1
3

⌋ τ0 ∗ 2⌊
n+1
3

⌋

b04 66 8 51 s 104.0 105.7 102.9 103.3 106.62 6.7 years
b12 121 6 173 s 104.5 106.5 103.2 103.5 1012.04 106.8 years
b13 53 10 43 s 103.8 105.5 102.8 103.0 105.42 131 days
b18 3, 320 23 53 hrs. 106.3 109.3 104.1 105.5 10100.2 1097.9 years
b19 6, 642 30 91 hrs. 106.4 109.3 104.1 105.8 10100.2 1098.2 years
b20 490 22 7 min. 105.7 108.4 103.8 104.8 1049.1 1044.2 years
b21 490 22 6 min. 105.7 108.4 103.8 104.8 1049.1 1044.1 years
b22 735 22 11 min. 106.1 108.9 104.0 105.0 1073.8 1069.1 years

in the scramble graph produced through adjacent scrambling
is 2#iterations = 2⌊

η+1
3 ⌋, thus the proof. QED

B. Complexity Analysis
Based on Theorem III.1, the number of iterations the while

loop in SAT-based attack [14] executes is equal to the number
of scramble ECs= 2⌊

η+1
3 ⌋, thus ensuring O(2⌊

η+1
3 ⌋) SAT-

decryption time-complexity. In industry practice, for large
processors, typically maximum scan-chain-length (n) is typi-
cally around 500− 1000, thus the SAT-attack complexity can
be made arbitrarily large as shown in Table II, making it
practically impossible to decrypt the scrambling-key. Hence
adjacent scrambling is computationally-secure against SAT-
based attack.

Since by definition, adjacent scrambling algorithm swaps
adjacent nodes, there are altogether (n−1)+(η−1) = n+η−2
adjacent node-pairs in the scramble-graph. All the remaining
node-pairs in the complete digraph are non-adjacent, which
equals 2 ×

(
n
2

)
− (n + η − 2) = n2 − 2n − η + 2. For each

non-adjacent node-pair, there are (n − 1) possible ways to
be placed adjacent to the path, so altogether the number of
non-adjacent node constraints are:

(n2−2n−η+2)×(n−1) = n3−2n2−η.n+2n−n2+2n+η−2

= n3 − 3n2 + 4n− η.n+ η − 2 (3)

Substituting this in the results from section II-A1, we get

|CHP | = 2n×

(
1+

(
n

2

))
+(n3−3n2+4n−η.n−η−2)

= 2n+ n2 × (n− 1) + (n3 − 3n2 + 4n− η.n+ η − 2)

= 2n3 − n2(4 + α) + n(6 + α)− 2, 0 < α =
η

n
≤ 1 (4)

0.2 0.4 0.6 0.8 1
0

1,000

2,000

(1 year)
α = 0.88

α

τ
(in

da
ys

)

Fig. 4. Estimated decryption time (τ = τ0 ∗ 2⌊
α.n+1

3
⌋) for b04 (the

smallest circuit under consideration for scrambling), as a function of area-
cost constraint α = η

n
(0 < α ≤ 1). Please note the Y-axis range.

This suggests the worst-case HP constraint complexity is
O(n3) (because α ≤ 1). We have seen earlier that the
connection constraint complexity is O(n) and combinational
circuit constraint complexity is O(g) = O(n), because the
ratio of flip-flops to gates lies in a restricted range. Thus, the
worst-case total CNF reduction complexity is O(n3)+O(n)+
O(n) = O(n3).

The last-but-one column in Table II shows the practical
impossibility to launch the SAT-based attack on the scrambled
instances, hence we report the decryption time per iteration
in the fourth column of this table. For b19 processor, when
scrambled with η = n results in only 0.1% overhead, but we
notice 91 hrs. decryption time per iteration and a total of
10100.2 iterations needed to decrypt the scrambling key. This
causes the estimated decryption time to be 1098.2 years, thus
demonstrating the power of the proposed technique. Further,
Figure 4 shows exponential increase in the estimated decryp-
tion time as a function of α. The last column in Table II shows
the overheads of scrambling. The overhead decreases with an
increase in circuit complexity, demonstrating the scalability
of the proposed technique. Please note that here, α = 1 is
used i.e. all the SFFs were used for scrambling, yet the area
overhead is acceptable for large designs. Thus, the overheads
will be further less for smaller values of α.

IV. DISCUSSION

This section identifies several aspects that are orthogonal to
our proposed research.

A. Modified SAT attack using a random/wrong scan key

Although the objective of the attacker is to find the correct
functional key and not the scan key, it is important to obtain
the correct scan key to be able to proceed with the attack.

4

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3199153

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on August 23,2022 at 15:25:26 UTC from IEEE Xplore. Restrictions apply.

One might consider generating a random/wrong scan key and
proceeding with the SAT attack [3].

It is possible to generate a random/wrong scan key and use
it in the CNF, but it is not possible to use this wrong scan key
in the activated chip. This is because activated by definition
implies the correct key (functional + scan) is already applied
to the chip through a tamper-proof memory. Since it is not
possible to use the wrong key in the activated chip, using
this modified version of SAT attack will be unable to find the
correct functional key.

B. Related work on combinational locking techniques

Stripped-Functionality Logic-Locking (SFLL) [15] was only
scheme that was broadly resilient to attacks, yet it recently
failed against functional analysis of logic-locking (FALL) [16]
and SMT [17] attacks. SFLL provides provable security guar-
antees and is the first version of a class of techniques known as
provably-secure logic locking (PSLL). Overall, it has been a
cat and mouse game with combinational defenses and attacks,
more recently this trend was also observed in PSLL.

SFLL−HDh [15] has the property that all the protected
cubes are of identical Hamming distance to the secret key.
Attacks including FALL [16], SFLL-hd-Unlock [18], and GN-
NUnlock [19] exploit this feature and/or the structural traces
left by the locking algorithm in the functionality-stripped
circuit (FSC) portion of the design. On the other hand, in
SeqL+ distinguishing the correct scan-chain using structural
analysis is computationally intractable for the adversary, hence
it is not possible to perform functional analysis by applying
inputs and observing outputs. because it is not possible to
apply inputs and observe outputs through scan-chains, which
are scrambled.

Attacks like FALL [16], SFLL-hd-Unlock [18], and GN-
NUnlock [19] could not break SFLL−flexcxk, due to
the ability of the user to specify arbitrary input cubes,
which are independent, and harder to identify. However,
SFLL−flexcxk also leaves structural traces in the FSC,
similar to SFLL−HDh, and has recently been broken by
Valkyrie [20] using advanced critical signal identification
through structural analysis, generating fault-pruning input pat-
terns (FPIPs) using automatic test pattern generation (ATPG),
and simulation based comparison with oracle responses to
prune incorrect solutions.

The vulnerability of pre-SFLL approaches has already been
discussed in the SFLL paper. All of the post-SFLL defenses
which are part of the cat-and-mouse game in PSLL were
broken by Valkyrie [20]. SeqL+ is however resilient to
Valkyrie because it deploys scan cell scrambling and does
not modify the combinational logic to improve corruptibility.
As a result, critical signal analysis is not useful to identify the
correct sequence of flip-flops in the scrambled scan-chain.

Furthermore, the average area overhead for the largest five
benchmarks in SFLL−flexcxk is ≈ 6% [15], while it is
only ≈ 0.2% in case of SeqL+ on average for the largest
five benchmarks. Finally, it should be noted that ours is
not the first paper on scan-obfuscation, we have identified
the shortcomings in prior approaches and addressed them as
shown earlier in Table I.

V. CONCLUSIONS AND FUTURE WORK

We have proposed SeqL+, a defense, that embeds exponen-
tially many number of Hamiltonian Paths into the scramble
digraph thereby thwarting SAT-based attacks. We have shown
both the theoretical and empirical improvements in the security
of SeqL+ compared to the state-of-the-art scan-obfuscation
schemes. Since we scramble only the security-chain, it is area-
efficient. The scalability demonstrates applicability to main-
stream industry practice. We have also demonstrated that the
method is computationally-secure and it is possible to trade-
off overheads with security. For small circuits, our overheads
are relatively more costly compared to EFF [2]. Since we do
not have proof of optimality for our proposed defense, the
overheads can be reduced further with future extensions.

VI. ACKNOWLEDGMENT

This project is funded in part by the NC State Faculty
Research and Professional Development Program.

REFERENCES

[1] D. Zhang et al, “Dynamically obfuscated scan for protecting IPs against
scan-based attacks throughout supply chain,” in IEEE VTS, 2017, pp.
1–6.

[2] R. Karmakar et al, “A Scan Obfuscation Guided Design-for-Security
Approach For Sequential Circuits,” IEEE TCAS II, pp. 1–1, 2019.

[3] L. Alrahis et al, “ScanSAT: Unlocking Static and Dynamic Scan
Obfuscation,” IEEE TETC, pp. 1–1, 2019.

[4] R. Karmakar et al, “Improving Security of Logic Encryption in Presence
of Design-for-Testability Infrastructure,” in IEEE ISCAS, 2019, pp. 1–5.

[5] A. Cui et al, “A Guaranteed Secure Scan Design Based on Test Data
Obfuscation by Cryptographic Hash,” IEEE TCAD, vol. 39, no. 12, pp.
4524–4536, 2020.

[6] R. Karmakar et al, “Efficient Key-Gate Placement and Dynamic Scan
Obfuscation Towards Robust Logic Encryption,” IEEE TETC, vol. 9,
no. 4, pp. 2109–2124, 2021.

[7] M. S. Rahman et al, “Security Assessment of Dynamically Obfuscated
Scan Chain Against Oracle-Guided Attacks,” ACM TODAES, vol. 26,
no. 4, 2021.

[8] X. Wang et al, “Secure Scan and Test Using Obfuscation Throughout
Supply Chain,” IEEE TCAD, vol. 37, no. 9, pp. 1867–1880, 2018.

[9] U. Guin et al, “Robust design-for-security architecture for enabling trust
in IC manufacturing and test,” IEEE TVLSI, vol. 26, no. 5, pp. 818–830,
2018.

[10] H. M. Kamali et al, “On designing secure and robust scan chain for
protecting obfuscated logic,” in IEEE GLSVLSI, 2020, p. 217–222.

[11] S. Potluri et al, “SeqL: Secure Scan-Locking for IP Protection,” in
ISQED, 2020, pp. 7–13.

[12] N. Limaye et al, “Is robust design-for-security robust enough? attack
on locked circuits with restricted scan chain access,” in IEEE ICCAD,
2019.

[13] K. Z. Azar et al, “NNgSAT: Neural Network guided SAT Attack on
Logic Locked Complex Structures,” in IEEE ICCAD, 2020, pp. 1–9.

[14] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in IEEE HOST, 2015, pp. 137–143.

[15] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in ACM CCS, 2017, pp. 1601–1618.

[16] D. Sirone et al, “Functional analysis attacks on logic locking,” in
IEEE/ACM DATE, 2019, pp. 936–939.

[17] K. Z. Azar et al, “SMT attack: Next generation attack on obfuscated
circuits with capabilities and performance beyond the SAT attacks,” in
CHES, 2019.

[18] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic
Locking With Hamming Distance-Based Restore Unit (SFLL-hd) –
Unlocked,” IEEE TIFS, vol. 14, no. 10, pp. 2778–2786, 2019.

[19] L. Alrahis et al, “GNNUnlock: Graph Neural Networks-based Oracle-
less Unlocking Scheme for Provably Secure Logic Locking,” in
IEEE/ACM DATE, 2021, pp. 780–785.

[20] N. Limaye et al, “Valkyrie: Vulnerability Assessment Tool and Attack
for Provably-Secure Logic Locking Techniques,” IEEE TIFS, vol. 17,
pp. 744–759, 2022.

5

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3199153

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on August 23,2022 at 15:25:26 UTC from IEEE Xplore. Restrictions apply.

