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Abstract—Recent attempts on circuits based on emerging
reconfigurable nanotechnologies have primarily focused on us-
ing the traditional CMOS design flow involving similar-styled
standard-cells. In the present work, we show that logic gates
which implement self-dual functions can be efficiently imple-
mented using reconfigurable nanotechnologies. We propose an
algorithm which analyses the truth-tables of cuts in a mapped
circuit to list all such potential reconfigurable logic gates for
a particular circuit. Technology mapping with these new logic
gates (or standard-cells) leads to a better mapping in terms
of area and delay. Experiments employing our methodology
over EPFL benchmarks, show average improvements of around
13%, 16% and 11.5% in terms of area, number of edges and
delay respectively as compared to the conventional CMOS-centric
standard-cell based mapping.

I. INTRODUCTION

An interesting class of devices which show ambipolar
behavior has been demonstrated based on various materials
like silicon [5, 6], germanium [15], carbon [2] etc. Transistors
made with such materials demonstrate tunable polarity which
implies exhibiting both p and n-type behavior from a single
device. Such behavior when abstracted in the form of logic
gate, results in showcasing reconfigurable functionality on the
application of different potential biases [20]. Various circuit-
level implementations based on reconfigurable FETs (RFETSs)
have been shown to offer better area and delay results as com-
pared to the conventional CMOS-based implementations [14,
16].

An integral component in development of emerging tech-
nologies, is to develop efficient design automation steps which
can compliment these feature-rich devices. Earlier works
like [11, 20] demonstrated efficient reconfigurable logic-gates
using RFETs but were hand-designed and were derived from
CMOS-like standard-cells. In the present work, we explore the
reason why only certain logic gates can be implemented as re-
configurable logic gates and how such efficient reconfigurable
logic gates can be designed. We show that logic gates based
on self-dual functions are more favorable choice for standard-
cell implementation based on RFETs. The major contributions
are summarized below:

o« We present a methodology to identify reconfigurable
logic gates which can be efficiently implemented using
reconfigurable nanotechnology and can lead to optimized
circuit implementation in terms of metrics like area,
power and delay.

e« We propose an algorithm which can distill probable
standard-cells from a circuit’s logic network based on
truth tables of individual cuts of a mapped circuit. These
probable standard-cells are a direct outcome of the re-
quirements of the logic implementation of individual
circuits and hence can lead to better mapping in terms
of area, delay and edge connections.

Using our algorithm over EPFL benchmark suite [10],
we first generate a list of standard-cells. Upon adding these
standard-cells to the technology independent generic library,
mapping on the same EPFL benchmarks leads to improved

area (13%), delay (11.5%) and edge connections (16%).
Further, we compare our approach with the state-of-the art
work on technology mapping for these reconfigurable nan-
otechnologies [17] and get improvements in both area and
edge connections without any compromise on the delay. The
whole flow is available online under open source license to
enable further research [21]. The remainder of this paper
is organized as follows. Section II gives the background of
RFET devices and previous works. Section III describes about
how interchangeable reconfigurability occurs in RFETs-based
circuits. Section IV details about the approach to extract
standard-cells. Experiments and discussions are explained in
section V. Concluding remarks are given in section VI

II. BACKGROUND AND MOTIVATION
A. Reconfigurable Nanotechnologies

Various nanodevices based on different materials and ge-
ometries have been proposed which exhibit tunable polarities.
These devices exhibit electrical symmetry in both p- and n-
type functionality. This electrical symmetry translates into
functional symmetry which allows logic gates to be recon-
figurable. RFETs come with two types of gate terminals—
Program Gates (PG), which controls the direction of the flow
of charge carriers, and the Control Gate (CG) which controls
the flow of the charge carriers. For the RFET to be in the
on-state, both the PG and CG should have same inputs [5].

B. Multiple Gate Terminals on the Same Channel

A prominent feature which has been demonstrated both
experimentally [9] and theoretically [13] is that RFETs can
have two or multiple independent gate terminals on a single
channel. These multiple independent gate terminals (both
pogram and multiple control gates) behave as wired-AND and
only allow current when all the gates are in on-state [18]. This
feature allows building larger logic gates with lesser number
of transistors as compared to their CMOS implementation.
Hence, gates like XOR3, MIN which were generally avoided
in CMOS, due to their slower performance can be efficiently
realized with RFETs [20].

C. Previous Works

Most of the previous work for enabling design flow for
emerging reconfigurable nanotechnologies has been primarily
focused at the logic synthesis level [12, 19]. However, the
generic library used in their experiments still had the CMOS-
styled logic gates. Apart from the above works, several works
on designing RFET-centric circuit implementations have been
shown in [8, 14, 20]. In order to support reconfigurable logic
gates based on silicon nanowire based RFETS, the authors
in [17] proposed higher order functions in order to use logic
gates proposed in [13] to bring out gains in area during
technology mapping stage. To the best of our knowledge,
this was the only work focusing on technology mapping for
RFETs. However, the standard-cell used were derived from
CMOS-styled logic gates. In the present work, we target to
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Fig. 1: (a) Fixed Pull-up and pull-down network in case of Compli-
mentary MOS logic gates. (b) Interchangeable Pull-up and pull-down
network in case of RFET-based logic gates. The reconf_input decides
the logic functionality

find the methodology in order to design logic gates which can
demonstrate reconfigurability.

III. ENCAPSULATING PULL-UP AND PULL-DOWN
RECONFIGURABILITY

In the present section, we will explore the reason behind
why only certain logic gates exhibit reconfigurability and not
others.

A. Interchangeable Pull-Up and Pull-Down Networks

In conventional CMOS based logic gates, there is a distinct
demarcation between the PMOS and NMOS types. CMOS-
based logic gates have a Pull-Up network (pun) made of
PMOS transistors which drives the output of the logic gate to
logic 1. The inverse is the Pull-Down network (pdn) consisting
of NMOS transistors which drives the output to logic 0. This is
shown in Fig. 1a. Since PMOS devices are slower as compared
to NMOS due to lesser mobility of holes as compared to the
electrons, hence, designing logic gates based on CMOS often
requires careful design of channel widths to achieve similar
drive strength of the pull-up and pull-down networks.

In contrast, RFETs do not have such imbalance between
the p and n-type behavior as they are functionally symmet-
ric [5]. Hence, by changing the potential at program gate (and
correspondingly at control gate so that the device is in the on-
state), both p- and n-type behavior is realized from a single
RFET. When this change of potential at the program gate is
done to logic gate, the pull-up and pull-down network can be
interchanged and hence more than one logical functionality
can be realized. In the Fig. 1b, the potential change at
recon f_input switches the pull-up and pull-down network. In
case of logic gates proposed in [20], the reconfigurable logic
gates demonstrated the interchangeable pull-up and pull-down
network based on a single reconfigurable input.

B. Reconfigurable Truth-Table

The truth-table of a logic gate represents the electrical
characteristics in terms of logic 1 and logic 0. The concept of
self-duality is integral in understanding reconfigurable truth-
table as it correctly represents interchangeable pull-up and
pull-down network in a logic gate.

Self-Dual Function A logic function f(z1,%2,...,2,) is
said to be self-dual if f(x1,x2,...,x,) = f(@1, Ta, ..., 2y,) [7].
By complementing the function, an equivalent self-dual formu-
lation is f(z1, 2, ...,z,) = f(21, 22, ..., 2, ). For a particular
instance of 1, Zs...Zn, f(21,Z2,...,x,) and f(z7, T2, ..., Tp)
are defined as a pair of dual terms. A flip on a literal is defined
as replacing a variable by its comlement.
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Fig. 2: Truth-Table for Minority logic gate. The truth-table is split
over the value of C which is the reconfigurable input.

Fig. 2 shows an example of a self-dual function, Minority.
Here, when the truth-table is divided over the value of C (or
any other arbitrary literal per se), the two parts of the output
are self-dual.

Theorem 1. All self-dual functions can be implemented as a
static reconfigurable logic gate using any single reconfigura-
tion input.

Proof. For the proof, we consider two domains — a Boolean
domain which deals with Boolean functions and the electrical
domain where a static complementary logic network imple-
ments a Boolean function. As stated earlier, reconfiguration
is performed by changing the potential at the program gate
of respective transistors. This means, reconfiguring a logic
network changes each involved PMOS transistor (pull-up
network) to NMOS transistor (pull-down network) and vice
versa. Every self-dual function can be implemented as a static
logic network of pull-up and pull-down networks.

In a dual term, each variable can reconfigure a maxterm into
its dual minterm. Since every signal of the static logic network
represents a variable of the reconfigured function, any of the
signals can be used to reconfigure the circuit. However, for
the networks of transistors to work, all the remaining signals
need to be flipped so that the pull-up and pull-down networks
get interchanged in a symmetrical way which is possible only
with RFETs. While transistors cannot grow arbitrarily large,
say, they can accommodate up to k signals, they have to be
split into series of multiple transistors. Each is reconfigured
by the same signal and connects to k — 1 remaining signals.

O

IV. FINDING EFFICIENT STANDARD-CELLS

In the present section, we propose an approach to ex-
tract possible standard-cells from a given circuit. We use
the underlying pattern in the truth-table to find self-dual
function as discussed in the previous section. Our approach
is to traverse through a circuit and observe the number of
specific cuts in a logic network which has the potential to
be mapped to a reconfigurable logic gate which implements a
self-dual function. We focus on cuts as cut-enumeration is an
integral step in technology mapping [3] for both LUT-based
or standard-cell-based mapping.

These reconfigurable logic gates which are extracted only
make logical sense with 3 or more inputs. Two input recon-
figurable logic function is a trivial function. as it represents
a reconfigurable function of a single input. The CMOS-
based implementation for such distilled reconfigurable logic
gates are not efficient in terms of number of transistors and
performance [20]. Hence, having these logic gates available
in the RFET-based generic library, can potentially improve
the technology mapping of circuits.
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Fig. 3: Ratio of cuts with reconfigurable truth-table to total number
of cuts for k-input cut based mapping where k£ = 3,4,5,6 respectively.

V. EXPERIMENTS AND DISCUSSION

The whole experiment setup is divided into two major
parts. In the first part (V-A), we populate a histogram of
the reconfigurable logic gates present in the circuit. For this
analysis, we use the EPFL benchmark suite [10]. We use ABC
tool [4] to enumerate the varying k-input cuts for individual
benchmarks. We carry out analysis for four runs with values
of k as 3,4,5,6 respectively. In the second part, we use the
reconfigurable logic gates found in the first part as standard-
cells to constitute a generic library. We carry out a standard-
cell based mapping to analyze the effect of these newly added
standard-cells on the overall area, delay and edge connections
of individual benchmarks.

A. Distilling Standard-Cells

Fig. 3 shows the ratio of cuts which exhibit reconfigurable
truth-table to the total number of cuts in a logic network. The
various colored bars show the results for cut-based mapping
for different values of k. A crucial point to note here is that the
number of such cuts with reconfigurable truth-tables entirely
depends upon the underlying functionality of the circuit under
test. We hereby explain the various empirical findings.

The first observation is that most of the benchmarks have a
high percentage of such cuts with reconfigurable truth-table.
Benchmarks like adder, square, multiplier show a higher
percentage (20 — 50%) of such cuts. A second observation
is that in case of smaller values of k, the ratio is larger
as compared to when k is more. For example in case of
benchmarks like adder and multiplier, this ratio somewhat
decreases with increasing values of k. This is due to the
fact, that with smaller value of k, the circuit will have more
number of cuts. However, this is not a uniform observation.
For instance, in case of square benchmarks, the trend is
opposite. This is possible because in this case, smaller non-
reconfigurable cuts got subsumed in larger cuts which show
reconfigurability.

B. Distribution of Reconfigurable Logic gates

We apply our approach for & = 5 which represents a
function of up to 5 variables. While works like [8, 11, 13] have
showcased 4 to 5 input logic gates, none of the previous works
showcased a 6-input logic gate. Arguments can be made that
RFETs support multiple independent gates for a single RFET,
but for the present scope, ease of understanding and to be
coherent with previous works, we have not considered 6-input
standard-cells. While our approach returns 28 such reconfig-
urable logic gates along with their number of occurrence, not
all of them are unique in the context of standard-cell based

mapping. Modern technology mappers use NPN-equivalence
for mapping to logic gates [1]. For example, logic gate denoted
by truth-tables 00010111 (Minority) and 11101000 (Majority)
are equivalent as one can be implemented by the other just by
adding an inverter.

The previous experiment gives us a list of reconfigurable
standard-cells based on the functional profiling of a benchmark
suite. We then use these new standard-cells and report the
impact they have on circuit’s parameter like area, delay and
the number of edges (refers to the total number of connections
within a circuit).

1) Realizing Parameters For The Generic Library: While
populating the generic library, for area, we consider the
number of transistors. Our comparison is only across RFET-
based generic libraries. For all the standard-cells, we consider
only RFET-based implementations. We use the number of
transistors from the calculations done in [20] where all types
of RFETSs contribute a unit transistor to the area. For a boolean
expression in a Sum-Of-Product (SOP) form, a minterm
consists of literals which are AND-ed together. RFETs can
support multiple independent gates on a single channel due
to their wired-AND property [18]. Hence, a single RFET can
have up to 4 control gate inputs with 1 program gate input.
Therefore, a minterm can be mapped to a single RFET. For
the present work, we consider only up to 5-input standard-
cells as explained before. Hence, parameters of up to 5-input
reconfigurable logic gates can be easily calculated. Further,
for logic gates, which are binate (for example XOR3) in
their literals, we consider inverters for every binate literal
while calculating the total number of transistors in a standard-
cell. For delay calculation, we use the number of logic-levels
between the primary input to primary output. This represents
the depth of a logic network.

2) Experimental Setup: For technology mapping, we use
ABC [4] with three different generic libraries. The baseline
generic libray (library-A) is the CMOS-based MCNC generic
library proposed with ABC. However, all the logic gates are
implemented in RFETs. The second generic library (library-
B) is the one mentioned in [17] which is a superset of the
library-A containing some hand-crafted reconfigurable logic
gates. The third generic library is the superset of library-B
with the newly found standard-cells. We use both delay and
area-optimized mapping for our experiments.

C. Discussion

Fig. 4 shows absolute improvement over the baseline for
area, delay and edge comparison using our setup with EPFL
benchmark suite.

1) Area, Levels and Edges: Fig. 4a and 4b show the
area improvement over the baseline for both area and delay-
optimized mapping respectively. An important correlation can
be made with Fig. 3. The benchmarks which show a higher
percentage of reconfigurable cuts also show a higher im-
provement in area as compared to the baseline. Particularly,
with large benchmarks like multiplier and square, this high
percentage is a good indication that in the presence of such
reconfigurable logic gates in the generic library, we got an
improved mapping. Further, mapping with library-C shows
improvement over library-B. This is due to the new standard-
cells which we got during standard-cell extraction. For the hyp
benchmark, which is the largest gate, the area improvement
comes out to be of the order of 70k. Hence, in the graph, it
is seen going beyond the y — range.

Fig. 4c and 4d show the improvement in the number
of logic-levels over the baseline for both area and delay-
optimized mapping respectively. The same correlations can
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Fig. 4: (a) Area improvement in area-optimized mapping (b) Area improvement in delay-optimized mapping (c¢) Improvement in number
of levels from primary-inputs to primary-outputs in area-optimized mapping (d) Improvement in number of levels from primary-inputs to
primary-outputs in area-optimized mapping (e) Edge improvement in area-optimized mapping (f) Edge improvement in delay-optimized

mapping.

be seen with the number of levels as was seen with area.
The only exception which can be seen here is for the adder
benchmark in area-optimized mapping. Since mapping is an
intractable problem, ABC chose a more optimal area mapping
but compromised on delay as compared to the baseline. Fig. 4e
and 4f show the improvement in the number of edges over the
baseline for both area and delay-optimized mapping. Edge is
an important consideration, because it refers to the number of
connections in the circuit. With this result, it can be observed,
that with appropriate RFET-based standard-cells, the total
number of edges can be reduced. Reduced number of edges
directly reflect on the routing cost of the circuit later in the
physical synthesis process. Ignoring the results where there are
no effect, the average improvement comes out to be 13% in
area, 11.5% in delay (or logic-levels) and 16% in the number
of edges.

VI. CONCLUSION

In the present work, we demonstrated an efficient method-
ology to distill standard-cells which can exploit the reconfig-
urable nature of emerging nanotechnologies. Through exper-
iments over EPFL benchmark suites, our proposed algorithm
generates a list of reconfigurable logic gates. Using these
newly extracted reconfigurable logic gates as standard-cells,
improvements in area, logic-levels and edge is achieved for
both EPFL benchmarks suites.
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