
CLEO-CoDe: Exploiting Constrained Decoding for Cross-Layer
Energy Optimization in Heterogeneous Embedded Systems

Siva Satyendra Sahoo, Akash Kumar
Chair of Processor Design, Center for Advancing Electronics Dresden (CfAED)

Technische Universität Dresden
Dresden, Germany

{siva_satyendra.sahoo,akash.kumar}@tu-dresden.de

Abstract—System-level design for low-power and energy efficiency in
embedded systems using Heterogeneous Multi-Processor System-on-Chip
(HMPSoC) is a challenging task due to the large design space. The
related Design Space Exploration (DSE) suffers from scaling due to various
degrees of freedom across multiple layers of the compute stack. Traditional
multi-objective meta-heuristic approaches work well for unconstrained
system-level design, but do not scale well with the additional system and
user constraints. Using a SATisfiablity problem (SAT) solver as a decoder
for the meta-heuristics has been explored in related research as a better
solution for a discrete constrained multi-objective optimization problem.
This approach restricts the problem to the feasible space, hence improving
the quality of the results. In this paper, we explore the ways in which
constrained decoding such as the SAT decoding approach can be leveraged
for cross-layer design space exploration. Low-power methodologies such
as Dynamic Voltage and Frequncy Scaling (DVFS) and application-specific
implementations are integrated, thus scaling the design space. Additionally,
we demonstrate how user constraints on the system synthesis problem can
be learned by our proposed approach to prune the meta-heuristic design
space and improve the quality of the solutions. As the constraints on the
problem increase and the design space scales, the constrained decoding
approach outperforms a typical meta-heuristic approach.

Index Terms—Cross-layer System Design, Energy-efficient design,
System-level Design, Embedded Systems

I. INTRODUCTION

Heterogenous multi-processor architectures are an increasingly
common trend in high-end embedded and cloud System-on-Chip
(SoC). These architectures are ideally exploited for parallel execution
of applications.To ensure Quality of Service (QoS) requirements,
the resources of an HMPSoC are shared amongst the applications.
The heterogeneity of the cores leads to a diverse set of execution
scenarios with varying features such as execution time, energy, thermal
profile and reliability. Cross-layer design choices such as DVFS and
Activation factor also contribute to the diversity of the execution
scenario.

The choices involved in the execution of a set of applications on
a HMPSoC represent a design space. The exploration of this design
space is known as the classic system synthesis problem. The system
synthesis problem involves mapping a set of applications with task
level granularity (functional objects) on a HMPSoC comprising of
Processing Elements (PEs) and a Network-on-Chip (NoC) (structural
objects) [1]. Various design-time and run-time approaches have been
explored for the system synthesis problem. Hybrid Mapping, where
design-time DSE is used to search for a set of optimized solutions
which are then leveraged by the run-time arbiter to lead to a concrete
task mapping, has gained significant traction as a design flow for
HMPSoCs. [2] [3].

The design time DSE performed during hybrid mapping is a discrete
multi-objective optimization problem where the solutions represent a
set of trade-offs in the design space [4]. The design space is extremely
large and grows exponentially with increase in the number of pro-
cessors, total tasks in an application and cross-layer design choices.

Meta-heuristic based optimization is a common and powerful tool for
multi-objective optimization and have been used extensively for task
mapping [4]. A realistic meta-heuristic search considers a constrained
multi-objective optimization problem, where the constraints are either
a result of the on-chip network limitations or user requirements, such
as maximum allowed total energy or execution time. In the case of
constrained DSE a decoupled decoder based approach such as SAT
Decoding [5] are known to give better results than traditional meta-
heuristic approaches. This is because a decoupled decoding process is
able to restrict the solutions within the feasible space, resulting in a
more efficient exploration. As the proportion of the infeasible region
increases, normal DSE focuses on removing the infeasible solutions
rather than improving solutions in the feasible space. The normal DSE
approaches lack a method to restrict the search to the feasible space.
Our solution explores the improvements of a constrained Psuedo
Boolean (PB) decoder-based or Binary Integer Linear Programming
(ILP) DSE over a traditional penalty-based DSE for the classic system
synthesis problem.

The contributions of our work are as follows,

1) We performed DSE using a constrained decoding based approach to
solve the design-time system synthesis problem. Our DSE approach
is able to scale appropriately to provide quality solutions.

2) We proposed novel feasible-space learning method for efficiently
encoded problem definition by exploiting the inherent monotonoc-
ities of the problem. The learning in this methodology were based
on realistic constraints on the system synthesis such as user-defined
constraints on total energy consumption and total execution time.

The rest of the paper is organized as follows. In Section II, we
provide the relevant background and brief overview of previous works
using a SAT/Binary ILP based decoder. The system model used for
evaluation of the proposed methods is presented in Section III. We
also introduce the system synthesis methodology in this section. The
proposed DSE including the formulation of the decoder is elucidated in
Section IV. In Section V, we discuss the results from the experimental
evaluation of the proposed methods and conclude the article in
Section VI with a discussion on the scope for related future research.

II. BACKGROUND AND RELATED WORKS

A. Cross-layer Low-power Design

Cross-Layer, low-power methodologies such as DVFS have also
been explored in literature. [6] surveys the existing techniques for
task scheduling and task mapping in DVFS and Dynamic Power
Management (DPM) single and multi-processor systems. Energy effi-
cient designs while considering cross-layer design are also prevalent.
[7] and [8] provide varied solutions to the task mapping problem
including mixed-integer linear programming and heuristics based
approaches. [9] and [10] show the benefits of using Genetic Algorithms
for the DSE. Meta-heuristics based DSE methods are able to find a
large set of operating points representing a wide range of possible978-1-6654-2614-5/21/$31.00 ©2021 IEEE

solutions [4].

B. Constrained Decoder - Meta-Heuristic approach to System Synthe-
sis

The work on a decoder based approach for solving constrained
optimization problems using multi-objective heuristics was first put
forth in [11]. [11] highlights the need for an homomorphous mapping
between the complete design space and the feasible space in [11].
In the case of constrained multi-objective optimization, using meta-
heuristics, the feasible space is generally only a fraction of the com-
plete design space. In certain cases when finding even a single feasible
solution of the multi-objective problem is NP Hard, the traditional
strategies for restricting the solution to the feasible space, such as
repair strategies or penalty based strategies, perform poorly. This poor
performance is a result of the shift of focus from optimization to
finding feasible solutions. This can be attributed to the sparseness of
feasible solutions in the design space combined with the lack of active
avoidance of the infeasible region.

A novel approach of using a SAT problem to restrict the search
space to the feasible region has been put forth in [5]. The approach
involves representing the encoded genotype as a decision strategy
for a SAT problem. The SAT problem represents the constraints
to find a single feasible solution which can be translated into a
feasible phenotype using a SAT solver based on the particular decision
strategy. This decoding is done using the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm which is capable of finding a feasible
solution based on a decision strategy and can guarantee complete
coverage of the feasible space. Each decision strategy corresponds
to a point in the feasible design space. The genetic operators act
on the decision strategy to generate new solutions. This approach
has been demonstrated to perform well on hard-constrained discreet
optimization problems, as shown in [5].

The SAT decoding approach put forth in [5] has been leveraged for
system-level DSE. The work in [12] focuses on symmetry eliminating
DSE for HMPSoC. A unique intermediate operating point, a constraint
graph representation, is used to eliminate architecture symmetries.
The tasks are considered to be preemptive and scheduled in system
slots. The paper also introduces a learning mechanism based on
a feasibility check of communication and binding constraints. The
symmetry elimination leads to a costly feasibility check. The focus of
this work is majorly centred around ensuring feasible message passing
on the NoC.

The approach in [5] has encoding that is highly inefficient. Further-
more they used genetic operators similar to the ones stated in [13].
The inefficiencies in the encoding strategy are addressed in [14]. They
put forth an efficient encoding strategy for the classic system synthesis
problem. The genetic operators are clearly defined to maintain order
and maintain the efficiency of encoding. The improvement over
previous approaches is clearly highlighted.

Neither of these approaches focus on any cross-layer parameters,
nor do they utilize the ability of the SAT decoding to eliminate
infeasible portions of the search space during the DSE. [12] uses
SMT like learning but the approach was focused on communication
feasibility.

III. SYSTEM MODEL

This section contains the details of the basic terms and models used
in our DSE. The system model and synthesis is common to the one
used in the state-of-the-art research on task mapping in low-power
heterogeneous systems. [15] [16]

𝑃𝐸0 𝑃𝐸1

𝑃𝐸2 𝑃𝐸3

Control
Processor HMPSoC

(a) Architecture

𝑆𝑐𝑎𝑙𝑖𝑛𝑔

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛
𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

𝑆𝑜𝑏𝑒𝑙
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑋

𝑆𝑜𝑏𝑒𝑙
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑌

𝐶𝑜𝑚𝑏𝑖𝑛𝑒 &
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇0

𝑇1

𝑇2 𝑇3

𝑇4

(b) Application

Fig. 1: System Model

A. Architecture Model

For the purpose our problem formulation we consider a HMPSoC
connected in a 2D mesh NoC topology. The NoC comprises of
an network interface for each Processing Element (PE) and the
interconnecting links. X-Y routing is assumed for message passing
[17]. The hop distance between the PE is determined by the routing
mechanism. The hop distance is defined as the sum of the absolute
values of the coordinates of the two PEs on the NoC. The hop distance
(hops) determines the latency between two PEs. Fig. 1(a) shows an
abstracted 2x2 NoC architecture model.

The messaging latency is modeled similar to that proposed in [18].
The bandwidth of the each message is fixed and the net bandwidth
of each link in the NOC is considered to be large enough to avoid
bandwidth conflicts between temporally overlapping messages on the
link. We will also consider all links in the NoC to be similar. The
latency will be a function of the size of the message (Msgsize), the
bandwidth allocated to the message (Bm), the hop distance between
the PEs and network specific variables such as the link width and the
router delay at each node [15]. The calculation for the latency during
routing is shown in Eq. (1).

Latency = (hops) ∗ (Msgsize)/(Bm ∗ Link_width)

+(hops− 1) ∗ (router_delay) (1)

The energy of routing will be calculated according to [18]. We can
extrapolate the energy expenditure of the system based on the number
of bits in each message and the hop distance from [18] considering
circuit switched routing. We consider a wire length of 2mm between
every core [15].The resulting energy consumption for communication
in terms of the message size and the number of hops is as shown in
Eq. (2). The constant values in the equation are derived using VHDL
models of the NoC.

Energymessage = (Msgsize) ∗ (100 ∗ (hops)− 63)pJ (2)

B. Application Model

The application model comprises of an application scenario which
is essentially a set of independent application task graphs. A single
application task graph is represented by a Directed Acyclic Graph
(DAG) where the nodes represent the tasks and the edges represent the
messaging data and the precedence constraints of the tasks. Fig. 1(b)
shows the task graph for Sobel Edge Detection. The tasks correspond
to execution of various stages of the application such as Scaling,
Gaussian Smoothing, Gradient Computation and Thresholding. We
assume the tasks are scheduled in a non-preemptive manner. The
algorithm and the encoding used for the implementation of each task
can result in varying power dissipation and execution time for the task.
For instance, Gaussian Smoothing of an image can be implemented

DPLL Pseudo
Boolean Solver

Genotype

Decision Strategy

Variable Phase Priority

Var1 1 1.0

Var2 0 0.75
Add ConstraintsConstraint

Problem

Feasible
Mapping

Phenotype

Variable
Assignment

Var1 = 1

Var2 = 0
Feasible ?

NO

YES

DECODER

Fig. 2: Decoder

with varying window sizes for the convolution operation and each
such design decision may result in varying performance for the task.
We abstract the execution time and the power dissipation of each
implementation of a task by the number of execution cycles and the
activation factor resulting due to executing the implementation on a
PE.

C. System Synthesis

As the system is considered to be a Soft-Real Time System, with
no task deadlines or preemptions. The DVFS levels are discrete set
of frequency-voltage pairs. The voltage is considered proportional to
the frequency squared. A list of possible frequency-voltage pairs are
associated with each type of PE. A task executing on a particular PE
can choose between the available DVFS levels. The switching time
between DVFS levels is ignored and considered to be zero. A feasible
task mapping can be defined as a concrete strategy for binding and
scheduling the applications onto a HMPSoC. In case of a power aware
system, consideration of other cross-layer parameters is also a part
of the task mapping process. Furthermore in our DSE we consider
additional constraints on the total energy and execution time which
lead to a smaller feasible design space. Each solution of our meta-
heuristic search represents a particular mapping of the application
scenario. The solution, called an operating point can be evaluated to
ascertain feasibility. The feasibility check in the case of constrained
optimization would be on the evaluated values of objectives. The
feasible mappings would encode binding and scheduling while being
aware of cross-layer parameters corresponding to each scheduled task.

IV. PROPOSED METHODOLOGY

A. Methodology

In case of a complex feasible space we can leverage the efficiency
of modern PB/SAT solvers as a decoder and ensure that each solution
obtained by the meta-heuristic lies within the feasible space. This
would mean, that instead of eliminating infeasible solutions from the
design space after evaluating them, we can manipulate the design space
itself to eliminate infeasible solutions during the decoding process.
Alternately in cases where the problem constraints cannot be learned
apriori, the infeasible space needs to be learnt during the meta-heuristic
by the introduction of additional constraints to the PB/SAT problem
definition.We use the later, as user-defined constraints on the objectives
cannot be be learned before evaluations to determine feasibility. Our
approach focuses on using the decoder methodology introduced in
[5], with efficient encoding similar to [14] for a robust DSE. We
define the system synthesis problem as a PB constraint problem, where
each feasible solution of the constraint problem, corresponding to an
assignment of the involved variables, represents a task mapping. In
the subsequent sections, the components of the meta-heuristic are
explained in detail.

1) Decoding

The decoding process includes formulating the constraint problem
for system synthesis and using a decision strategy to select a particular
solution. Fig. 2 shows the components of the decoding methodology.
A genotype, i.e. a decision strategy, is a list of phase and priority

value associated with each variable in the PB problem. The DecStrat
(Decision Strategy) for each variable can be described as shown
in Eq. (3). Phase refers to a binary variable and Priority ∈ [0, 1].
The Phase represents the expected value of the variable in the final
assignment of the variables. The Priority decides priority of initial
assignments of the variables.

∀V ∈ V ars :DecStrat(V) = (Phase, Priority) (3)

The system synthesis problem can be described by a set of con-
straints. For task binding we can use a set of binary variables of the
type map(task, PE) where the value 1 would correspond to binding
and 0 would correspond to not bound. For each task t in the application
scenario, there will be a list of processing elements it can be mapped
to called the PE_listt. Then, the constraint for task binding can be
represented as shown in Eq. (4). This constraint ensures that a task is
mapped to one and only one PE.

∀task ∈ Scenario
∑

PE∈PE_listt

map(task, PE) = 1 (4)

A discrete set of DVFS model are associated with each PE. Let
modemax be the maximum number of modes of all the PEs in the
HMPSoC. For each PE the number of DVFS modes can be represented
by a integer num_modes(PE). The chosen DVFS mode is encoded
as an integer value starting from 1 to num_modes(PE). A binary
variable DV FSMode(task,mode) corresponds to the mode of DVFS
of the task. mode corresponds to each task and is independently
chosen regardless of the PE assignment. mode can vary from 1 to
modemax. The constraint represented by Eq. (5) makes sure a task
picks one and only DVFS mode to execute on. While Eq. (5) ensures a
unique mode is assigned to a task but does not take in considerations
of the PE it is mapped to. This can be included in our constraint
problem by ensuring that the DVFS mode assigned can actually be
reached on the mapped PE. This involves making the assignment of
the DVFS mode aware of the mapping of each task. For ensuring that
the mode assigned is a valid mode, the constraints shown in Eq. (6)
are included in the problem formulation.

∀task ∈ Scenario
mode=1∑

mode<=modemax

DV FSMode(task,mode) = 1 (5)

∀task ∈ Scenario
mode=1∑

mode<=modemax

mode ∗DV FSMode(task,mode)

−
∑

PE∈PE_listt

num_modes(PE) ∗map(task, PE) <= 0 (6)

In order to include the exploration across different implementations
of a task with varying activation factor values, we represent the each
of the implementation of the task by an integer. Let the total number
of implementations corresponding to a particular task be α. Each task
implementation is represented by a number from 1 to α. We define
a binary variable active(task, β) to represent the choosing of the β
implementation of the task. The constraint to ensure that that only
one implementation is chosen for each task is shown in Eq. (7).

∀task ∈ Scenario
β=1∑
β<=α

active(task, β) = 1 (7)

The constraint problem along with the decision strategy constitute
the input for the PB solver. The PB solver works on a popular
backtracking algorithm, DPLL. The basic skeletal structure of the
DPLL algorithm is shown in Algorithm 1. This algorithm ensures
that the variables with the higher priority in the decision strategy have
the greatest chance of maintaining their phase values.

Algorithm 1 Back-Tracking based DPLL Algorithm

1: for V in DecStrat do
2: V ← Phase(V)
3: is_Feasible = checkFeasibility(V, constraints)
4: if is_Feasible == True then
5: Continue
6: else
7: Backtrack
8: Phase(V)← ¬Phase(V)
9: end if

10: end for
11: return Assigned Values

Feasible Space

Design Space

Penalty

(a) Penalty Function

Feasible Space

Design Space

Eliminated
Space

(b) Proposed Approach

Fig. 3: Differences in learning methodologies

2) Evaluation

The assignment of variables by the PB solver are processed during
the evaluation. The evaluation includes converting the raw assignments
to a viable task mapping using priority based scheduling. The priority
of the processes is ascertained by precedence constraints. The obtained
mapping is evaluated for its energy and execution time. Evaluation for
other objectives can also be performed. This evaluation determines
the feasibility of the solution. If the mapping is feasible, we store
the mapping information. In case of infeasibility, as shown in Fig. 2,
we add constraints to the design space, eliminating a portion of the
infeasible space from the solution space.

3) Learning the feasible space

The infeasible space is learnt by the meta-heuristic during run-time.
This learning has significant impact on the design space. This learning
ability of our approach contributes to the improvement over popular
techniques such as a penalty-function based approach. The constraint
problem learns the infeasible space during run-time by the addition of
constraints. These constraints not only remove the infeasible solution
from the design space, but also leverage monotonocities to increase
the amount of infeasible points excluded from the problem definition.
In case a solution is evaluated with energy or execution-time values
higher than the feasible values, we remove the solution from the
design space. In case of infeasibility of a particular mapping, we
eliminate the collective set of the activated assignments (Variables
whose value is assigned as 1), activeV ars, from the feasible space.
Let num_activeV ars be the number of activated variables, then
the constraint added will be similar to that shown in Eq. (8). The
monotonocites of the problem can also be exploited in a similar
manner.

∑
V∈activeV ars

V < num_activeV ars (8)

Fig. 3 highlights the fundamental difference between a penalty
based approach and our learning methodology in the case where the
feasible space is a subset of the design space. When a penalty-based
meta-heuristic finds a point outside the feasible region, the penalty
on the objectives affect the quality of the solutions adversely.The

penalised individual changes position in the objective space as shown
in Fig. 3(a). The design space remains intact for all further individuals.
On the other hand, a constrained decoder eliminates a portion of
the infeasible space from the design space. Over multiple iterations,
this restricts the solutions to only the feasible region. Fig. 3(b)
demonstrates visually how the infeasible space is removed from the
design space. Additionally, penalty-based approaches can still be used
along with the constrained decoder approach.

4) Metaheuristics-based Optimization

The previous sections provide plug-and-play components to meta-
heuristic methods such as Genetic Algorithms (GA). The decoding
methodology and the learning methodology can be integrated in classic
genetic algorithm approaches. The Decision Strategy acts as an indi-
vidual. Special genetic operators change the decision strategy while
maintaining the efficiency of the encoding. The Genetic operators
ensure fair and complete coverage of the design space. The efficacy of
the meta-heuristic is heavily dependent on the ability of genetic oper-
ators to avoid converging to a locally optimal solution and to ensure
continuing improvement of the Pareto-front. The variables in decision
strategy are grouped together both during the initial assignment of the
variables and the while being operated on by the genetic operators.
The map(task, PE) variables are grouped together for each task
in the Scenario. Similarly the DV FSMode(task,mode) and the
active(task, β) are grouped together for each task in the Scenario.
Hence there are three groups associated with each task. The following
conditions apply to each group:

• Only the phase of one variable in each group can be 1, each other
variable has a phase equal to 0

• The relative priorities in a group are maintained throughout the
meta-heuristic

The mutate operation is multi point and operates on a group as
a whole. The operation mutates the variables maintaining the above
conditions. The operation is similar to the one explained in [13]. The
crossover operation is done simply by exchanging the decision strategy
of a complete group between the two individuals. NSGA-2 [19] is
used as the selection algorithm to increase the number of points in the
pareto front.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

The DSE is implemented as an extension of the DEAP frame-
work [20]. The SAT4J [21] Solver, a SAT/PB solver implemented in
Java was used as the decoder. The system data pertaining to the cores
and the tasks run on the cores is obtained from Embedded Systems
Synthesis Benchmark Suite (E3S) [22].

1) Architecture

For each message in the task graph we allocate 100 Mhz of
Bandwidth. We consider a link width of 8 bits. The PE type considered
for this experimental setup are from the E3S benchmark. We consider
3 AMD cores with 133Mhz,400Mhz and 550Mhz base frequencies,
2 IBM cores with 266Mhz and 500 Mhz base frequencies and a
NEC VR core with a base frequency of 167 Mhz. Each PE in the
HMPSoC is of either of the six types. The bandwidth of each message
is limited to 100Mhz on each link in the PE. A constant delay is
added between each hops. The tests are run for 2x2,4x4 and 8x8
HMPSoC. The DVFS levels are introduced by scaling the frequency
of the core. The values of power usage and the execution time of the
tasks are scaled accordingly considering only dynamic power and a
cubic relation between the frequency and the power consumption of
the processor.

2) Application

The tests are run on the application scenarios from the E3S
benchmark. The tests are also run on randomly generated task graphs
using TGFF [23] to show scalability w.r.t. application size. The
benchmark contains 40 different types of basic tasks. To account
for the difference in power usage of different implementations, the
power and the execution time of the tasks are scaled accordingly
corresponding to its activation factor.

3) Metaheuristics

We use a multi-objective GA for our experiments. There are two
implementations of the GA, one based on a penalty-based infeasibility
check (Normal DSE) and another based on our proposed constraint
decoder method (PB strat DSE). Each application scenario is explored
with a population size of 100 individuals for a total of 250 generations.
The objectives of the DSE are total execution time and total energy
consumption. Each application has a unique energy and time profile.
To emulate realistic user-defined constraints on the maximum energy
and execution time, we use single objective optimizations to find the
lowest possible value of each objective. These obtained lowest values
are then scaled to define the feasible region of the design space. This
enables us to have a application specific limit on the user constraints.

4) Performance metrics

To measure the performance of the GA we compare the Pareto-
fronts of both, Normal and the PB strat based DSE. The Pareto-front
is saved during each generation. The final Pareto-fronts obtained by
both solutions are compared. The quality of the solutions obtained by
the DSE is measured by computing the hypervolume of the Pareto-
front. The quality of the divergence of the DSE to find a wide range of
operating points is compared by comparing the number of points in the
Pareto-front. The hypervolume noted in each of the tables is the ratio
of the hypervolume of the PB-strat DSE divided by the hypervolume
obtained by the Normal DSE. This relative hypervolume is a indicator
of the relative quality of the approaches. A hypervolume less than 1
means that the Normal approach performed better and vice-versa.

B. Results

1) Unconstrained Optimization

For unconstrained optimization, both the approaches should per-
form equally well. A comparison between the two approaches can
demonstrate the efficiency of encoding of the PB strat. As we can see
in TABLE I the similarities in the values obtained during DSE, for
a 4x4 HMPSoC without any constraints on the objectives, illustrates
the efficiency of encoding of the PB strat.

TABLE I
UNCONSTRAINED DSE

Application Domain No. of Tasks Hypervolume(Relative) points in PF points in PF
(PB-strat)/Normal (For PB-strat) (For Normal)

auto-industry 24 1.014 29 51
consumer 12 1.103 107 96
telecom 30 1.133 136 49

networking 13 1.115 8 13
office-automation 5 1.021 61 89

2) Constrained Optimization

The user constraints lead to a focused DSE. The constraints on the
problem definition need to be complete before the PB strategy shows
improvement. The results obtained when only a single objective is
constrained can be observed in TABLE II and TABLE III. The results
do not show any clear improvement.

TABLE II
TIME CONSTRAINED DSE

Application Domain Hypervolume(Relative) points in PF points in PF
(PB-strat)/Normal (For PB-strat) (For Normal)

auto-industry 0.97 108 129
consumer 1.038 41 23
telecom 1.023 24 11

networking 1.020 43 27
office-automation 1.023 7 7

TABLE III
ENERGY CONSTRAINED DSE

Application Domain Hypervolume(Relative) points in PF points in PF
(PB-strat)/Normal (For PB-strat) (For Normal)

auto-industry 0.990 82 69
consumer 1.001 166 141
telecom 1.016 96 112

networking 0.975 3 3
office-automation 0.993 158 109

3) Cross-Layer Parameters

A fully constrained DSE provides us with a clearer understanding
of how the constrained decoding works. Adding Cross-layer design
choices, namely DVFS and activation factor lead to a larger design
space. A penalty-based GA in unable to explore the complete design
space. It is much more likely to get stuck in a local optima and in
constrained optimization, getting out of the local optima is harder due
to the size of the infeasible space. In fact, as any solution away from
the local optima that does not lie in the feasible space is less likely
to be in the Pareto-front, due to the penalty function.

TABLE IV
FULLY CONSTRAINED DSE ON 4X4 HMPSOC

Application Domain Hypervolume(Relative) points in PF points in PF
(PB-strat)/Normal (For PB-strat) (For Normal)

auto-industry ∞ 90 0
consumer 1.36 35 19
telecom ∞ 0 18

networking 1.402 24 27
office-automation ∞ 28 0

TABLE IV tabulates the results of a fully constrained GA. The
maximum number of implementations for a task is set to 10 and
the maximum number of dvfs modes is also set to 10. The PB strat
outperforms the normal approach by a significant margin. In the cases
where the Pareto-front is a non-empty set the number of points in the
Pareto-front is much larger in the case of the PB solver based strategy.
This can be attributed to a wider covering of the design space. Fig. 4
shows an example of how the Pareto-front of the PB strat covers a
wider range of operating points that the Normal approach.

4) Architecture Scaling

The constraint decoding approach scales well with increase in
the size of the problem definition. Increasing the resolution of the
cross-layer parameters and scaling the HMPSoC, both contribute to
the increase of the design space. The results for the run for larger
HMPSoC of size 8x8 for a maximum of 10 DVFS modes and 10
implementations can be observed in TABLE V

VI. CONCLUSION

This paper explores a constrained decoding methodology to perform
realistic Cross-layer DSE for heterogeneous embedded systems. A
set of non-dominated points are found within design space which
represent optimal mappings of an application scenario on a physical

Fig. 4: Pareto-Front for networking in TABLE IV

TABLE V
8X8 HMPSOC - CONSTRAINED POWER AWARE DSE

Application Domain Hypervolume(Relative) points in PF points in PF
(PB-strat)/Normal (For PB-strat) (For Normal)

auto-industry 1.851 88 21
consumer 1.228 61 46
telecom ∞ 22 0

networking 1.200 32 24
office-automation 1.486 25 14

HMPSoC. The DSE is performed with considerations of user con-
straints on the objectives. The constrained decoder-based approach is
better suited for heavily constrained system synthesis.

The approach explored is limited by the solving capabilities of mod-
ern PB solvers, particularly PB solvers using backtracking algorithms.
The PB solver puts a upper limit on the number of variables and
constraints allowed in the system. The time overhead of a PB solver
needs to be considered against its benefits. Novel ways to exploit the
problem definition for monotonousness can lead to better quality of
solutions. Increasing the amount of run-time feedback to the decoder
equates to faster learning of the feasible space. A learning based
approach to constrained decoding for system synthesis performs better
than or at least as good as state-of-the-art DSE. The approach also
scales well with increase in problem size.

Further work on constrained decoding could include a hybrid
approach comprising of a well defined constraint problem together
with a run-time learning strategy.

REFERENCES

[1] T. Blickle, et al. System-level synthesis using evolutionary algorithms.
Design Automation for Embedded Systems, 3(1):23–58, 1998.

[2] A. K. Singh, et al. Mapping on multi/many-core systems: survey of
current and emerging trends. In The 50th Annual Design Automation
Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013,
pages 1:1–1:10. ACM, 2013.

[3] A. K. Singh, et al. A survey and comparative study of hard and soft real-
time dynamic resource allocation strategies for multi-/many-core systems.
ACM Comput. Surv., 50(2), April 2017.

[4] A. D. Pimentel. Exploring exploration: A tutorial introduction to embed-
ded systems design space exploration. IEEE Design Test, 34(1):77–90,
2017.

[5] M. Lukasiewycz, et al. Sat-decoding in evolutionary algorithms for
discrete constrained optimization problems. In 2007 IEEE Congress on
Evolutionary Computation, pages 935–942, 2007.

[6] M. Bambagini, et al. Energy-aware scheduling for real-time systems.
ACM Transactions on Embedded Computing Systems, 15:1–34, 01 2016.

[7] K. Li. Energy and time constrained task scheduling on multiprocessor
computers with discrete speed levels. J. Parallel Distrib. Comput.,
95(C):15–28, September 2016.

[8] L. Mo, et al. Energy-quality-time optimized task mapping on dvfs-enabled
multicores. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2428–2439, 2018.

[9] N. Kumar et al. A ga based energy aware scheduler for dvfs enabled
multicore systems. Computing, 99(10):955–977, 2017.

[10] H. Ali, et al. Energy efficient heuristic algorithm for task mapping on
shared-memory heterogeneous mpsocs. In 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages
1099–1104, 2018.

[11] S. Koziel et al. A decoder-based evolutionary algorithm for constrained
parameter optimization problems. In Proceedings of the 5th International
Conference on Parallel Problem Solving from Nature, PPSN V, page
231–240, Berlin, Heidelberg, 1998. Springer-Verlag.

[12] T. Schwarzer, et al. Symmetry-eliminating design space exploration for
hybrid application mapping on many-core architectures. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
37(2):297–310, 2018.

[13] M. Lukasiewycz, et al. A feasibility-preserving local search operator
for constrained discrete optimization problems. In 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pages 1968–1975, 2008.

[14] V. Richthammer et al. Efficient search-space encoding for system-level
design space exploration of embedded systems. In 2019 IEEE 13th
International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSoC), pages 273–280, 2019.

[15] A. Weichslgartner, et al. Daarm: Design-time application analysis and run-
time mapping for predictable execution in many-core systems. In 2014
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 1–10, 2014.

[16] A. K. Singh, et al. Communication-aware heuristics for run-time task
mapping on noc-based mpsoc platforms. Journal of Systems Architecture,
56(7):242–255, 2010.

[17] S. D. Chawade, et al. Review of xy routing algorithm for network-
on-chip architecture. International Journal of Computer Applications,
43(21):975–8887, 2012.

[18] P. T. Wolkotte, et al. Energy model of networks-on-chip and a bus. In
2005 International Symposium on System-on-Chip, pages 82–85, 2005.

[19] K. Deb, et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii.
IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[20] F.-A. Fortin, et al. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, jul 2012.

[21] D. L. Berre, et al. Sat4j: A satisfiability library for java. 2005.
[22] R. Dick. Embedded systems synthesis benchmark suites (e3s).

http://ziyang.eecs.umich.edu/ dickrp/e3s/.
[23] R. P. Dick, et al. Tgff: task graphs for free. In Proceedings

of the Sixth International Workshop on Hardware/Software Codesign.
(CODES/CASHE’98), pages 97–101, 1998.

