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ABSTRACT We present a new approach for early analysis of logic gates that is based on formal methods.
As device technology research takes years and is very expensive, it is desirable to evaluate a technology’s
potential as early as possible, which is hard to do with current techniques. The actual impact of new
devices on circuit design and their performance in complex circuits, are difficult to predict using simulation-
based techniques. We propose a new approach that supplements simulation-based analysis and enables the
development of standard cells alongside ongoing fundamental device research. Thereby, it potentially shortens
the development cycle and time to market of a new technology. We develop a new discrete charge-transport
model for electrical networks and a new flexible model of polarity-reconfigurable transistors as our formal
basis. These models make circuit designs accessible to an analysis using probabilistic model checking and
power our experiments. Besides worst-case analysis, we leverage measures hardly accessible to simulation
such as average delay and average energy consumption per switching operation. We complement this with an
automated design-space exploration that yields all reasonable implementations of a switching function built
with reconfigurable transistors. After demonstrating the accuracy of our approach by comparison with finite
element method analysis results, we undergo a comprehensive design-space exploration and analysis of the
3-minority function. The quantitative results are ranked with respect to various performance metrics, and we
analyze the most promising circuit implementations in detail to derive a design guide that yields the best
implementation for given statistics of the input patterns.

INDEX TERMS Circuit analysis, formal verification, nanoelectronics, probabilistic model checking,
probability, quantitative analysis, reconfigurable logic, semiconductor device modeling

I. INTRODUCTION

DEVICE technologies with enhanced functionality or ad-
vantageous physical properties over established CMOS

devices are in research with the goal to supplement or
even replace current technologies. Such research includes
reconfigurable transistors [1]–[5], graphene nano ribbon-
based devices [6], [7] or mixed-dimensional heterostructure-
based devices [8]. Alongside, alternative computation archi-
tectures move into focus, like asynchronous and approximate
computing [9]. Meanwhile, conventional CMOS devices are
no longer getting significantly smaller. The main concern
in computational CMOS circuit designs has become their
local power dissipation, requiring intricate dynamic voltage

and frequency scaling schemes. While emerging technology
devices promise to tackle these challenges, most of them are
still in early development stages and it is not clear which of
them are indeed viable candidates for integrated circuits.

Standard MOS devices have behaved largely the same for
all technology generations, and the first decades in digital
design were dominated by hand-designed circuits and standard
cells. This design approach has been viable as no radical
changes to the upper abstraction layers of logic gates, digital
circuits and systems were to be expected. Thus, characterizing
new devices beginning from technology readiness levels 4–
5 did not result in a loss of time-to-market. With emerging
devices, though, each transistor has enhanced functionality
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FIGURE 1. Current circuit development flow comprised of three consecutive
steps, transistor device research (T), standard-cell design (D1) and circuit
design (D2). Progressing from fundamental research (TRL 1), over technology
development (TRL 4–5) to running production (TRL 9), our new approach
features parallel device research and standard-cell design using probabilistic
model checking (PMC), shortening overall development time.

that directly influences circuit design and characteristics.
These influences should be investigated as early as possible
as the insights might feedback on the development of the
emerging device itself. For instance, if investigation shows
that certain gate sizes or channel currents are in a bad relation
to each other, device development focus can change early to
address these identified issues. However, to evaluate a new
technology node with state-of-the art modeling and analysis
techniques, it has to reach technology readiness level (TRL) 4
or 5, known as technology development.

We propose an approach based on formal methods that
allows us to start circuit modeling and performance analysis
at TRL 1–2. Figure 1 shows the current development flow of
a transistor technology alongside the improved development
flow. Both start with fundamental device research at TRL 1–2
and mostly rely on the finite element method (FEM) [10],
[11] to simulate the device and obtain insights into its basic
properties. Currently, the design of standard cells (D1) starts
after reaching TRL 4–5, i. e., technology development. Our
device models are simple enough such that early evaluation
can start long before reaching TRL 4–5. As we demonstrate
in this work, the toolset relies on very little device data
that might come from FEM analysis or early measurements.
In contrast to simulation methods like SPICE [12], we do
not rely on detailed compact or table models which are
hardly available at earlier TRLs. Our approach improves on
the current development flow by parallelizing the design of
standard cells (D1) with the device research. By doing so, the
overall development cycle and hence the time to market is
potentially shortened.

This becomes possible, since we rely on a simple discrete
charge-transport model for the physical network and a new
flexible model of transistors. The abstract network and transis-
tor models facilitate the application of probabilistic model
checking, which provides radically improved capabilities
that are infeasible in simulative approaches. For instance,
extremal values, like the maximum power dissipation, can
be computed directly. Expected values of metrics under
stochastic input patterns that model application statistics, e. g.,

the average delay or the average energy consumption per
switching operation, are computable as well. Additionally,
our approach is particularly suitable to systematically exploit
functional enhancements of new transistor devices. Here, we
focus on reconfigurable transistors as an example technology,
although the proposed quantitative characterization method
is applicable to other emerging device technologies as well.
The method’s capabilities enable an automatic design-space
exploration of the topology of a standard cell and quantifica-
tion over multiple measures such as delay, power dissipation
and energy consumption per operation.

Outline and Contribution
After discussing related methods from device research, circuit
design, and formal methods in Section II, we cover our
contributions in the following three sections: Section III
introduces the models for charge-transfer and reconfigurable
transistors. We demonstrate the accuracy of our approach
and relate it to FEM and SPICE. Section IV explains the
method and workflow in detail, how circuits under test
are combined with input patterns and a query to form an
experiment. Section V illustrates our method on a design
space exploration of the 3-MIN logic gate over power, energy
and delay measures. The developed tools, all models, and raw
experimental data are available here:
https://cfaed.tu-dresden.de/pd-downloads

II. RELATED WORK
We target the design of standard-cell libraries for emerging
devices with enhanced functionality. To showcase our method,
we have chosen the Germanium-based reconfigurable field
effect transistor (RFET) from [13] as an exemplary technology.
Transistor reconfiguration switches a transistor between P-
and N-type carrier transport dynamically [1]–[4], [13]. Addi-
tionally, multiple gates are used to intrinsically support the
AND-functionality, as demonstrated for a similar technology
based on Silicon [5], [14]. Reconfigurable devices are promis-
ing for applications in hardware security, where they can
be applied to camouflage the circuit functionality [15], [16].
Furthermore, recent studies have shown that reconfigurable
transistors, in particular devices with multiple independent
gates, improve signal integrity in dynamic logic gates [17],
[18]. They also have potential to foster non-traditional digital
design styles, such as asynchronous and reversible logic [19].
The chosen Germanium-nanowire based RFETs are an ex-
ample of lab technologies in early development phases for
which just enough data is published to analyze first circuit
models with our approach. Note, that in this early TRL
stage, questions regarding physical layout and area cannot be
answered seriously, yet. Though, estimations from [20]–[22]
indicate that, depending on the individual benchmark circuit,
reconfigurable transistor area requirements range from being
competitive (17 % overhead) to even surpassing (41 % benefit)
CMOS designs. For more insights into the physics and
constraints of the reconfigurable technology, the reader is
referred to the cited literature.
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We base our approach on a formally analyzable circuit
and transistor abstraction, which mainly describes the charge
transport. SPICE and FEM usually use differential equation
models but charge-transport models have been shown in
SPICE as well, see [23]. Our analysis approach contrasts to
simulation-based approaches in that we can directly compute
extremes and averages of various measures precisely, e. g.,
delay and energy.

Formal methods, such as theorem proving and model check-
ing, have been proven to be valuable tools for hardware verifi-
cation [24], computer-aided design in logic synthesis [25],
and software verification [26]. Both methods have been
successfully applied to verify the correctness of nontrivial
circuits. Theorem proving [27], [28] was applied for the
verification of complex circuits like floating-point units [29].
Model checking [30], [31], an algorithmic method to check
transitions systems against temporal-logic specifications, is
the dominant method in formal circuit verification of CMOS
circuits, e. g., with respect to sequential specifications and
functional correctness [32]. It is also used to analyze more
complex circuits, e. g., a PowerPC CPU [33]. To integrate
formal verification into the development flow, several ap-
proaches exist to automatically extract and verify formal
models of circuits from hardware description languages such
as VHDL [34] or Verilog [35]. The standard approach for
timing analysis usually relies on gate-level simulation and
static timing analysis [36]. Timed automata [37], [38] provide
a formal approach to timing analysis that proved to be effective
for complex circuits, e. g., a 4-Bit adder [39]. Timing analysis
typically requires the circuit delay of standard cells to be
known, e. g., from an Elmore delay model [40].

The formal approach we propose here, enables us to
determine the circuit delay and other metrics at the transistor
level using probabilistic model checking (PMC) [41], [42],
an extension to model checking that incorporates stochastic
transitions into a model which occur naturally, e. g., from
input pattern statistics or production variations. Then, the
analysis provides the extremal values, e. g., maximal circuit
delay, as well as expectation of metrics under an input
pattern. Although this work is the first application of PMC for
quantitative analysis of performance characteristics of post-
CMOS integrated circuits at the transistor level, the method
has been successfully used in circuit analysis. In [43], the
authors use PMC to verify several complex RTL designs
against their timing specification, e. g., a H.264 decoder
module. In the field of reliability analysis, PMC has been
successfully applied to reason about NAND multiplexing [44].
For safety critical applications of SRAM-based FPGAs in the
aerospace industry, PMC has been applied in [45] to analyze
dependability in the presence of transient errors, e. g., cosmic
radiation. In the scope of emerging materials, initial work
on the development of fault models for testing [46] and the
analysis of reliability tradeoffs [47] highlights the potential of
formal methods. Also, BDD-based methods for the synthesis
of XOR-circuits based on reconfigurable SiNW-transistors
have been proposed in [48].
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FIGURE 2. Conversion of a circuit diagram into the bipartite graph of our
proposed charge transport network model. Devices are separated into ideal
transistors (�) without capacitance and all capacitative behavior is collected
into virtual capacitances (©) at the network connections.

III. PHYSICAL NETWORK AND TRANSISTOR MODEL
A. NETWORK MODEL
Our network model uses charge transport equations and
describes a physical model that consists of charge storages
and charge transmitters. Each electronic circuit is modeled as
a bipartite network of these two fundamental elements, i. e.,
every node of the first type is connected to nodes of the second
type only and vice versa. An example is shown in Figure 2.
A well-known 2-NAND circuit is transcribed from its circuit
diagram into its bipartite graph by adding virtual capacitances
at the terminals, i. e., the drain and source contacts, and the
gate of a transistor.

1) Charge storage nodes
These nodes represent the only points in the network that have
a defined voltage potential. They are modeled such that all
incoming and outgoing currents add up to zero. Each charge-
storage node is tied to a certain capacitance which is charged
and discharged with the current required to make the sum of
all momentary currents at that node zero (Kirchhoff’s current
law). Hence, they can be regarded as ideal capacitances.
Figure 2 shows them as circular nodes. We distinguish three
types of charge storage nodes to allow flexible experimental
setups. Passive nodes react to the attached contacts according
to Kirchhoff’s law (Out), constant nodes have a fixed voltage
level to model power sources (+DD, +SS), and active nodes
provide stimuli to the network by sweeping the voltage
potential across the full range with a defined slope (A, B).

2) Charge transmitters
These nodes have complementary properties to charge stor-
ages. They are the only points in the network that have a
defined current. By design, charge transmitters have at least
two predefined terminals, each of which is connected to
a charge storage node of the network. According to their
specific model parameters and functional dependencies, the
momentary current at the node is a result of its momentary
resistance and the voltage differences between the attached
charge storages. They can be seen as ideal resistors and are
depicted as square nodes in Figure 2.
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3) Operational behavior
The electrical network’s evolution over time arises entirely
from the interaction of the charge storage and charge trans-
mitter nodes. Neither capacitance nor resistance need to be
constant properties of a device, which is crucial to model
dynamic devices like transistors. The network model takes the
momentary currents into account, as well as the momentary
capacitances. Care must be taken when modeling new node
subtypes, e. g., memristors, where both properties dependent
on voltage differences to avoid discontinuities and jumps that
do not occur in reality. The charge transport equations imply
a sequence of (dis)charging processes according to the stimuli
and the network topology, and starts with an initial assignment
of concrete voltage potentials at the charge nodes.

To facilitate exhaustive analyses of the electrical networks,
the model needs to have finitely many states. For this purpose,
we treat voltage levels at charge storages and time as discrete
values. Hence, the network’s global state is fully determined
by the voltage levels at the charge storages. This requires
choosing minimal distinguishable voltage difference +scale
and a minimum time interval )scale, which are used when
evaluating the network. Within )scale, we assume currents
and voltage levels to be constant. Based on these values, we
compute updated voltages in the charge storages that become
visible to the attached charge transmitters in the next time
step.

Neither the network model nor the device model make
any assumptions about geometric properties of the circuit
under test. However, the network model is generic enough
to capture geometric influences, e. g., on signal propagation
delays, using resistive elements (charge transmitters) and
capacitive elements (charge storages). As we target early
technology evaluation in this work, we focus on structural
evaluation of circuit variants without taking these influences
into account. At this TRL, questions of physical standard-cell
layouts do not play a major role and any assumptions on the
layouts, area requirements and implied capacitances would
be highly speculative. But as soon as sophisticated PDKs are
available, a detailed area analysis can be carried out based on
the results of our method.

B. TRANSISTOR MODEL
The network model provides the necessary degrees of freedom
to create almost arbitrary discrete time transistor models.
These models characterize a transistor by functions in voltage,
current, and capacitance at its contacts as well as finitely many
internal states.

In this work, we focus on Schottky barrier-based reconfig-
urable transistor (SB RFET) technology [1], [13], [49]. This
technology has interesting properties:

1) Transistors can be dynamically reconfigured between
PMOS and NMOS characteristics. The polarity is con-
trolled by a polarity control gate (PCG) which facilitates
circuits to share transistors between P- and N-branches.

2) Transistors feature multiple independent gates per device
(MIGFET), i. e., two SB gates and up to three inner gates.

Vr = 0V

Vl = 1.2V
Vlg

Vrg

GeNW RFET
symbol

�� — linear scale
(On-behavior)

�� — logarithmic scale
(Off-behavior)

FIGURE 3. Heatmaps display the field of channel currents �� , for the four
operation states of the depicted GeNW RFET setup based on the device
in [13]. Dashed lines in the �� heat maps correspond to single curves in
common �–� diagrams for CMOS. +lg = 1.2 V configures NMOS and +rg
controls the channel (vertical). +rg = 0 V configures PMOS and +lg controls
the channel (horizontal). The ambipolar state is assumed towards the upper
left. Refer to [4] for a more detailed description.

Together they realize a wired-AND functionality.

Transistor reconfiguration is a standing term in the lit-
erature for the kind of device we use and model in this
work. It must not be confused with functional reconfiguration
known from programmable logic structures like FPGAs and
PLAs, which have also been implemented using silicon
nanowires [50]. For Boolean functions, both concepts have
in common that a reconfigurable circuit is switched from
performing a function U to performing another function V, but
they differ how reconfiguration is implemented. Functional
reconfiguration combines independent functional components
into a larger circuit that can select between the functionality of
its subcomponents using additional reconfiguration circuitry.
In contrast, transistor reconfiguration is able to efficiently rep-
resent self-dual Boolean functions [51]. A self-dual function,
such as the 3-XOR and the 3-MIN gate, yields the inverse
output for an inverted set of inputs. The same transistors
compute either of the two inverse sub-ordinate functions of a
(partially) self-dual Boolean function, see also [52]. The only
reconfiguration circuitry are additional inverters, as signals
that reconfigure the circuit are required in direct and inverted
form for proper polarity configuration.

The technology is in an early state of development, yet
preliminary performance data and projections to competitive
node sizes down to 24 nm gate lengths are available [4], [13].
Nevertheless, our method is also capable of modeling other
emerging nanoelectronic devices with special properties like
steep subthreshold slope tunnel FET’s [53] or anti-ambipolar
devices from stacked layers of graphene and MoS2 [8].

1) GeNW MIGFET
The devices presented in [13] are representatives of a reconfig-
urable MIGFET technology at a gate length of 24 nm. Figure 3
illustrates the principal functionality using a two gate RFET.
We name the contacts after their positions (;, lg, rg, r) as their
functional rôles (src, drn, PCG and ctrl) change according to
the attached voltages. The transistor’s channel contacts are
connected to 1.2 V and 0 V as depicted on the left. The SB
gate voltages +lg and +rg are adjustable and mapped to the
x-axis and y-axis of the heat maps. Given the fixed channel
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TABLE 1. GeNW MIGFET model parameters [13]. Gate length: 24 nm,
Channel length: (48 + 40(n − 2)) nm for n ≥ 2 gates

�D0 PMOS �D0 NMOS +th �ctrl

SB gates (“PCG”, “lg”, “rg”) 400 nA 120 nA 0.4 V 40 aF
Inner gates (“m8”) 12 nA 31 nA 0.2 V 40 aF

�� PMOS �� NMOS +DD �chan

Open channel 12 050 nA 14 060 nA 1.2 V 40 aF
Closed channel 50 pA 50 pA 1.2 V 40 aF

contact potentials, which gate assumes the role of the PCG
depends on the voltage regime between these gates and the
channel contacts. If +lg = 1.2 V then lg is the PCG, i. e., the
transistor is in NMOS configuration and rg steers it open or
closed (Figure 3, vertical dashed lines). If +rg = 0 V then rg is
the PCG with lg opening and closing the transistor in PMOS
mode (Figure 3, horizontal dashed lines). As these devices are
completely symmetric, they exhibit the dual behavior if the
channel contact voltages are swapped.

The heat maps visualize the currents �� for all combina-
tions of +lg and +rg. The linear scale heat map (left) highlights
the on-behavior whereas the logarithmic heat map (right)
zooms into the off-behavior. As long as either gate assumes
the role of the PCG, the transistor is in a controlled on-
state (NMOS or PMOS) or off. The device shows high
currents in both controlled on-states as well as in a third,
misconfigured ambipolar state (linear map, top left corner).
This ambipolar behavior is different from standard MOSFET
devices and must be taken into account when building pass-
gate logic. As it only occurs when both SB gates are connected
to the opposite voltage of their adjacent contact, it can be
suppressed by connecting both SB gates to the same signal.
If the reconfigurable device features (multiple) inner gates,
the maximum current is always limited by the transmissibility
of the controlling SB gate. The heat maps are the results
of instantiating our transistor model with the basic device
parameters extracted from FEM data and shown in Table 1.
The depicted currents agree with the published data [13].

2) Dynamic transistor behavior
Figure 4 schematically depicts (1) a reconfigurable transistor
(RFET) with two gates and (2) a multiple independent gate
transistor (MIGFET) with : inner gates. The functional roles
of the terminals, i. e., source, drain, control, and polarity-
control, are determined by the actual voltages at the terminals.
Subsequently, we denote the channel contacts ; and A, and
the gates from left to right lg, <1, . . . , <: , and rg. Figure 4
shows two example RFET configurations where (3) puts
the RFET in a static PMOS configuration, and (4) makes
it dynamically reconfigurable, as the PCG and the source
terminals are attached to an input signal � and its inverse �,
respectively.

We realize our generic reconfigurable MIGFET model by
adapting the standard set of equations describing the transient
behavior of MOSFET’s as they are straightforward to integrate

r

l
lg
rg

l

r
rg

lg
m1

mk Out

1.2V
B

0V
Out

B
A

A"src"
"ctrl"
"PCG"
"drn"

(1) RFET: two
SB gates.

(2) MIGFET: two SB
and : inner gates.

(3) RFET confi-
gured to PMOS.

(4) RFET reconfi-
gurable in �.

FIGURE 4. Schematics of SB reconfigurable transistors, as in [13]. (1)
depicts a two-gate reconfigurable transistor (RFET) and (2) a multiple
independent gate transistor (MIGFET). Two possible configurations are shown
on the right. Connecting PCG to 0 V and src to 1.2 V yields a fixed PMOS
configuration (3). Connecting PCG to signal � and src to its inverse A (4)
reconfigures the RFET between PMOS and NMOS via �.

in our discrete time and voltage modeling approach. For
simplicity, we do not distinguish between PMOS and NMOS
here, as the equations are similar for both polarities. We
implemented the set of MOSFET equations as follows:

�� =


��0 + V2 (+GS −+th)2 Saturation

��0 + V
(
(+GS −+th)+DS − +DS

2

2

)
Linear

��0 4
+GS−+th

SS·+) Subthreshold

These equations differ slightly from the literature. Here,
the linear and the saturation mode are fitted to meet in
(+th, ��0), where ��0 denotes the drain current when the
gate voltage reaches the threshold voltage +GS = +th. This
avoids discontinuities, which otherwise occur close to the
threshold voltage with �� = 0 A, i. e., neither mode gives
meaningful results for the threshold voltage. The transistor-
specific conductance parameter V can be used to parametrize
the equations according to the characteristics of an actual
device. Although it is an approximation, Section III-D shows
that the model fits well with data from FEM and SPICE
simulations and creates precise predictions while having the
benefit of avoiding discontinuities around +th.

3) Channel polarity control
As shown in Figure 4, we focus on the example of emerging
Schottky barrier-based polarity-controllable transistors, which
feature a second or more gates at a single transistor. As
polarity-controllable transistors do not necessarily possess
a fixed polarity-control gate, we describe the transistor’s
operation mode purely in terms of the voltages at the left
channel contact ; and left Schottky gate lg, and their right-hand
side counterparts A and rg, cf. Figure 4. Then, the operation
modes are:
PMOS: Open channel for ℎ+ charge carriers

if +; > +rg and +; > +A or
if +A > +lg and +; < +A ,

NMOS: Open channel for 4− charge carriers
if +; < +rg and +; < +A or
if +A < +lg and +; > +A ,

ambipolar: Open channel for both charge carriers
if +; > +lg and +rg > +A and +; > +A or
if +; < +lg and +rg < +A and +; < +A .

VOLUME 4, 2016 5
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4) Ambipolar behavior
One important conclusion from the set of equations is, that
both gates may open the channel for the opposite type of
charge carriers at the same time, e. g., in the voltage regime
+; = +rg = +DD and +A = +lg = 0 V. Neither gate properly
configures the channel to a particular charge carrier type
and the device is in an ambipolar state. As this state is not
of immediate interest for CMOS circuits, and as it is not
yet sufficiently quantified in the literature, we implement
ambipolar behavior as �� following the NMOS and PMOS ��
curves from saturation down to ��0 and back up to saturation
again.

This can be seen in the heat maps in Figure 4 when tracing
the current along the top edge and the left edge, respectively.
Our current calculation of �� in the ambipolar case must be
seen as an upper bound. Once experimental data becomes
available, we will specify the ambipolar behavior in our
equations more precisely.

5) Drain current computation
In a unipolar NMOS/PMOS voltage regime, the SB gate oppo-
site the polarity-control gate, and all inner gates <1, . . . , <:
in between, act as control gates that steer the channel open or
close. Using the MOSFET Equations and the reconfigurable
transistor’s operations modes, we introduce the following
equations to calculate ��:

�� = max (�;→A , �;←A , �ambi)

�;→A =

{
min

(
��,lg, ��,<1 , . . . , ��,<:

)
rg is %��

0 A otherwise

�;←A =

{
min

(
�D,m1 , . . . , �D,mk , ��,rg

)
lg is %��

0 A otherwise

�ambi =

{
min

(
��,lg, ��,rg

)
neither lg nor rg are %��

0 A otherwise

For each direction (�;→A or �;←A ), the minimum drain
current �� over all control gates is computed according to
the standard transistor equations.

As a special case, �ambi is calculated as the minimum
directional drain current in the ambipolar voltage regime. This
overestimates the ambipolar current but provides an upper
bound that matches the still incomplete experimental data for
this mode best.

Finally, the maximum of the directional and ambipolar cur-
rents is the output drain current. For lack of experimental data
for �off over +DS, we assume �off = 0 A for all measurements,
neglecting �D for the closed channel from Table 1.

For this work, we assume the channel parasitics �chan and
gate capacitances �gate to be constant for all voltage regimes
and transients. This simplifies the model further and avoids
estimating a function over varying capacitance that can hardly
be backed up by actual experimentation. Evaluation will
show that the model still matches well in the intended usage
scenarios.

In summary, we provide a transistor model that is:

• Analytical and stateless,
• Fast to compute, avoiding differential equations,
• Simple enough, to not require much experimental data

or a high technology readiness level,
• Parametric, to allow adaptation of individual devices, or

to adapt to new technology nodes or projections,
• Accessible to an analysis using formal methods, and
• Precise enough to model digital circuits.

C. COMPARISON TO SIMULATION METHODS
Established simulation techniques, like SPICE and FEM,
rely on stateful models of single elements, e. g., transistors,
and characterize the state evolution over time by differential
equations, e. g., see [54]. All elements are connected within a
network, forming a single big set of equations that describes
the global state evolution of the network. A principle benefit
of how these approaches are usually implemented is, that
the model resolution is bounded only by the amount of
history (i. e., state) that can be handled practically. The biggest
drawback is that this model cannot be exhaustively explored
but must be evaluated piecewise. Also, variable model reso-
lution often causes convergence problems. This implies the
necessity to choose a reasonable starting parameters and to
estimate after how many simulation steps a reasonable result
is achieved. Usually, this forces the designer to iteratively
explore both, the input domain and the output range, to achieve
meaningful results.

The approach we propose here handles modeling in a very
different way. Each network node is a piecewise abstraction
of its transient characteristics which depends only on the
adjacent nodes and the node’s own internal state, e. g., the
voltage level at a charge storage. This simplifies the transfer
functions significantly as the direct influence of a single node
is localized to the immediately attached network nodes. The
networks global behavior arises from the local interactions of
the network nodes instead of a global transfer function. As a
consequence, convergence problems as for the aforementioned
simulation methods do not occur. However, because the
network model is discrete in voltage levels and time, we have
to choose suitable discretization parameters +scale and )scale
for a meaningful analysis, cf. Section III-A.

The immediate benefit of the proposed modeling approach
is, that all possible network states can be explored which
makes a network’s behavior accessible to a formal analysis.
Then, probabilistic model checking allows us to compute
measures hardly accessible in simulation methods, e. g.,
average delays in the presence of stochastically modeled
inputs, the energy of single switching operations, or op-
timization of multiple goal functions, see also [55], [56].
Generally, unlike simulation-based approaches, PMC yields
the measured value and the offending input pattern(s) directly
without requiring user knowledge about suitable simulation
lengths or suspicious input patterns.
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FIGURE 5. Fitting of time response of inverters built with the GeNW MIGFET,
controlled via SB gate. Input slope 10 ps × +DD

−1, output load � = 1
(�out = 80 aF), calculated delays ΔCPMC ≈ 10 ps, ΔCFEM ≈ 12 ps.

D. MODEL ACCURACY COMPARED TO SPICE AND FEM
To assess the accuracy of our modeling approach, we will
show that the charge transport model and the transistor model—
though abstract—are sufficiently detailed to yield predictions
that are close to the results obtained from simulations. First,
we instantiate an experiment with the parameters of the GeNW
RFET device presented in [13] and described in Section III-B.
We compare our PMC-based predictions of the circuit delay to
the results of an FEM simulation of the equivalent experiment.
Although our method targets at emerging technologies at low
TRL levels, it is important to show, that our approach also
delivers correct results for state-of-the-art CMOS processes.
Thus, we second instantiate the transistor model with the
process parameters of an established CMOS process from [57].
In this experiment, we compare the circuit delays for a
concrete circuit calculated with PMC to a SPICE simulation
using the same technology node.

1) 24 nm GeNW MIGFET transistor
The basic parameters of the GeNW RFET transistor at 24 nm
gate and 48 nm channel lengths, were retrieved from FEM
simulations and are shown in Table 1. Mixed-mode circuit
simulations have been carried out as reference, as no suitable
table nor compact models exist, yet.

The reference circuit for this comparison is a buffer, for
which we computed the delay between the outputs of the first
and the second inverter and a load of �out = 80 aF. Figure 5
shows the input and output transients in a +– C plot as well as
a horizontal line at 0.6 V, the threshold used for the circuit
delay. Using the estimated gate capacitance extracted from
the FEM simulation of ≈ 40 aF, we already achieve a close
fit.

2) 32 nm CMOS transistor
We used the device from [57] and parametrized the transistor
model from Section III-B with �on and ��0 as well as +DD and
+th and adjusted V to match the published device transients.
However, the gate capacitances �gate and channel parasitics
�chan of the SPICE reference model are neither publicly
available nor directly measurable. Thus, we estimated their
values as follows: We simulated a reference circuit in SPICE
and adjusted �gate and �chan of our abstract transistor model
such that the circuit delays predicted by PMC agreed with

�on = 109 µA
��0 = 0.8 µA
+DD = 1.0 V
+th = 0.3 V

�gate ≈ 127 aF
�chan ≈ 127 aF

1 H = 2 ×�gate ≈ 254 aF

FIGURE 6. Comparison of 1/2 buffer delays depending on load factor �
between a SPICE simulation and the proposed PMC-based method for a
CMOS 32 nm process [57]. The PMC model was fitted to the SPICE-results for
the inverter and, then, validated with a comparison of two NAND circuits.

the SPICE simulation for various load factors. Figure 6 lists
the derived set of parameters we used to model the 32 nm
CMOS transistor. As reference circuit, we used a chain of
three inverters and determined the 1/2 buffer delay, i. e., the
average of the delays of the first and the second inverter.
This experiment setup compensates imbalances in PMOS and
NMOS drive characteristics and make the results comparable
to measurements using a single inverter delay. Figure 6 (red
curves) shows that we succeeded to parametrize our transistor
model to achieve a perfect fit of the PMC and SPICE-based
delays for the INV-chain reference circuit that stays congruent
with increasing output load.

To confirm that the transistor model is not only fitted to
the INV-chain but delivers predictions close to SPICE for
other circuits as well, we carried out a similar experiment with
a chain of three NAND gates, using the capacitance values
obtained from the INV simulations. The NAND gates were
set to be fixed to +DD on input � and sensitive input �. Again,
we computed the 1/2 buffer delay of the chain and compared
the results from PMC to SPICE in Figure 6 (blue curves).
The results support our claim that the PMC-based analysis of
the formal model predicts the behavior of a classical circuit
with sufficient accuracy: First, the slopes match precisely
(2.5 ps/H) and second, the curves are very close to each
other. We attribute the remaining difference to the fact that
the transistor and network model is comparatively abstract
and parameterized with rough estimates for the capacitances,
since the precise values in the SPICE simulation of that CMOS
technology are not directly accessible to us.

IV. WORKFLOW OF OUR PROPOSED METHOD
Figure 7 gives an overview of the workflow that a designer
would follow in order to analyze a circuit using our proposed
approach. It involves three conceptual steps, of which only the
first one on the left requires user input whereas all others are
fully automatic. These are, from left to right: the experiment
setup, the construction of a physical model and its mapping
to the model-checker’s input language, and the push-button
quantitative analysis using PMC. To facilitate this workflow,
we developed the tool prism-gen. It provides an extensible
circuit-description language that it translates according to
the charge-transfer model into the modeling language of the
probabilistic model checker Prism [58].
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FIGURE 7. Workflow of our proposed method. The designer provides three artifacts to prism-gen, the tool that formalizes the experiment; a transistor model, a
circuit under test and an input pattern. The fourth artifact, the query, is a formalization of the actual “measurement” to be performed (e. g., worst-case delay).
Quantitative analysis computes on a generated model delivering all possible results of the query. These can be numeric, rational functions or sampled traces.

A. EXPERIMENT SETUP

To evaluate a specific circuit, the designer provides four
artifacts as shown in Figure 7. The first three, a transistor
model (or multiple) from which the circuit shall be im-
plemented, the specification of the circuit under test itself,
and the specification of an input pattern, define how the
experiment is set up. The artifacts interface via the transistor
terminals and the inputs and outputs of the circuit under
test. This design facilitates reusing existing components to
derive new experiments. For example, all experiments in this
paper require only two different input pattern specifications.
It is possible to parametrize any of the components, e. g.,
transistor’s beta ratios, gate capacitances, output loads or
correlations between two inputs. This allows the designer
to adapt them to the specific conditions of the experiment by
reusing the composable units. The fourth artifact, a query (or
multiple), defines a goal function that shall be computed for a
given model. It is specified in the input language of the model
checker but refers to variables from the model by a common
naming convention.

1) Transistor model

Transistor models are built using the MOSFET equations
as described in Section III-B and usually stored in a library.
When a transistor device is instantiated in a circuit, each
instance can be customized via parameters such as the
capacitance at its terminals. Device libraries are written in
prism-gen language, too. This allows a designer to create a
new library for an emerging device on his own, as long as the
electrical behavior can be expressed as a (piecewise) function
of an electrical current over voltages at the contacts and an
optional internal state of the device, cf. Section III-A.

2) Circuit under test
The circuit under test is specified in prism-gen’s netlist-like
input language. The network is automatically transformed
to a bipartite circuit graph as shown in Figure 7. The two
basic elements of a circuit graph, charge transport and charge
storage nodes, are drawn as squares and circles. Transistors
are instantiated as charge transport nodes since they are
dynamic resistors. Their terminal capacitances are added to the
corresponding charge storage nodes. The prism-gen language
allows abstracting circuit topologies into a library of circuit
blueprints. When instantiated to compose a more complex
circuit, each sub-circuit can be parametrized with the transistor
technology, e. g., the transistors of a generic inverter can be
replaced by scaled variants in a concrete circuit.

3) Input pattern
An input pattern defines the sequence of stimuli over time of
the experiment. It is special in that it may appear only once in
a circuit. Since it is likely to reference most of the underlying
circuit components, the input pattern is normally defined in
the top-level component. Nevertheless, input patterns can be
equally kept in a separate module and instantiated at the top
level to provide reusable input patterns that can be shared
between various experiments. For instance, each scenario in
our experiments in Section V-C uses a single input pattern
description.

An input pattern defines how and when the charge storage
nodes of the experiment’s inputs should change. Since time
is modeled as discrete steps, finite automata can be used to
specify the input pattern. Alternatively, the designer can use
a step counter to model the chronology of input changes
straightforwardly.

Depending on the goals of the quantitative analysis, an input
pattern belongs to one of three basic types or any combination
of them. First, a pattern may consist of a fixed sequence of
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change events at predefined points in time, optionally put
into a loop. This resembles a very specific situation, e. g., the
transient behavior in a +– C plot as depicted in Figures 5 and 7.
The change events can be triggered after a predefined number
of steps, as in simulation or also, if a condition on the model
state is met, like reaching a voltage threshold at the output or
the convergence of currents.

Second, a pattern does not have to specify how and when
the inputs change but can provide a set of possible choices
instead. This allows every possible input sequence to occur
and hence, the analysis will cover all of them, e. g., worst-
case delay analysis exploits this type of pattern. A complete
coverage like this is usually hard to accomplish using testing
and its (necessarily incomplete) set of stimuli.

Third, a pattern can integrate statistical knowledge on
the likelihood of specific input changes by means of a
probabilistic choice. This implies a probability measure on
the possible sequences. Consequently, we can treat metrics,
e. g., the delay, as random variables and reason about their
expectations, long-run averages and other statistical measures.

4) Query
A query formalizes the goal-function to be computed in an
experiment, i. e., a performance or quality measure such as
circuit delay or functional correctness. Therefore, it provides
a generic characterization of the set of traces that have to be
taken into account. During the analysis, PMC can reason about
the (possibly infinite) set of all traces meeting the criteria
without generating them explicitly. This is in stark contrast to
simulation-based approaches and measurements, which have
to enumerate the relevant traces explicitly.

The formalization requires the designer to specify relevant
model states and to impose constraints on the temporal
sequence of those states in a measurement. Logic propositions
over the model variables, such as effective voltage levels or
currents, suffice as filters. To specify temporal sequences, we
rely on temporal logics (LTL, CTL [59]–[61]) which offer
suitable temporal operators like “next state” and “eventually
some state”. We restrain ourselves to the input-output delay
in this work, but temporal logics enable us to reason about
many more complex events. For instance, we have already
characterized the occurrence of hazards and output oscillation.

As an example, the input-output delay can be defined as the
delay between those states where the rising input transient �
crosses 1/2+DD and those states where, say, a declining output
Out crosses 1/2+DD as an effect. The +– C plot in Figure 7
(right) depicts an example trace meeting this criterion. More
formally, we are interested in the paths that

1) start in a state where +� < 1/2+DD and +Out > 1/2+DD,
2) next transition to a state where +� ≥ 1/2+DD and
3) eventually end once in a state where +Out ≤ 1/2+DD.

The delay is the number of model steps of a path matching
this specification and the worst-case delay is the maximum
over all those paths. If the input pattern is probabilistic, we
can treat the delay as random variable and may ask for the

expectation or the probability that it stays below a certain
threshold. Apart from this example, the measure can be any
(positive) cost function over states and transitions in the model,
e. g., to reason about power and energy.

Moreover, the temporal constraints in a query can also be
used to pick very specific input sequences while keeping the
actual input pattern of the model generic and underspecified.
Our queries used in Section V express a general measurement,
independently of a specific circuit or of transistor device
parameters, i. e., the delay of all 3-input circuits.

B. MODEL CONSTRUCTION
prism-gen translates the aforementioned artifacts transistor,
circuit and input specification into a description of a discrete
time Markov chain or a Markov decision process. These
formal model types cover the whole range of input patterns
and are well supported by model checking tools. prism-gen
derives the bipartite graph from the circuit specification, which
yields the topology, the input drive strength and the output
load(s). The transistor nodes are parametrized according to
the transistor specification, which provides the necessary
equations as well as the terminal capacitances. The input
specification is translated into an automaton which controls
the voltage potential of the input charge storage nodes. This
internal representation of the experiment is then mapped
to the Prism modeling language, yielding the experiment
formalization. Please note, that the use of Markovian models
enables us to verify the functional correctness of circuit
designs without additional costs, as well. Although, that’s
not in focus here, as the circuits in the experiment section are
correct by construction.

C. QUANTITATIVE ANALYSIS
The final step is performed by a probabilistic model checker.
It takes the experiment formalization and the query formal-
ization as inputs and computes the requested performance or
quality measure automatically without further user interaction.
We use a Prism version tailored to our needs, here, but
alternative tools with different feature sets are available, such
as Storm [62] or The Modest Toolset [63].

First, the model checker expands the experiment formal-
ization into a single Markovian model that encompasses
all states that the model may ever assume as well as all
input sequences permitted by the input pattern. Its general
structure is depicted in Figure 7 (Markovian model in box
Quantitative Analysis). Each circle represents a state where
the input module is about to trigger a new stimulus. Hence,
the general structure is similar to the input automaton’s graph
in box Model construction, which is, in fact, a minor of the
Markov model’s graph structure.

The curly arrows, however, resemble the physical processes
transducing the model between these states. They consist of
finite sequences of intermediate states produced by the step-
wise voltage-level updates to the charge storages in accordance
to the charge transport model and transistor equations. The
magnification shows the transition of the output +Out from
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the voltage level representing logic ‘1’ towards logic ‘0’ in
response to the input � transitioning in the opposite direction
while keeping input � at logic ‘1’. The state labels show the
inputs and the corresponding output: ��|Out! ��|Out =
10|1! 11|0.

The magnification corresponds to the result trace shown
right next to it. If the input module features probabilistic
choices, the sequences would be labeled with the respective
probabilities. Since the model is comprehensive, we possess
perfect knowledge about the model variables in all states
and about the transitions between the states including their
associated probabilities, if any. In particular, we know whether
voltages will stabilize or whether they will change again under
the current input conditions. This feature enables us to directly
refer to those higher-level conditions in our queries instead of
approximating or guessing.

After the Markovian model is built, multiple measurement
tasks provided as query formalizations can be computed
in a batch. This happens fully automatically by identifying
the states that a query refers to and applying a set of well-
known graph algorithms and solution methods for linear
equations and linear programs (cf. [42]). We use this to directly
calculate extremal and average delays over all states where
an input change is triggered without resorting to sampling,
e. g., ΔCmax = 42 in Figure 7 (result column in the right). It
is also possible to treat probabilities as parameters instead
of assigning specific values. Then, the results are computed
as rational functions in these parameters like the ΔC (?�) in
Figure 7.

V. EXPERIMENTS
In the previous sections, we established how our proposed
modeling and analysis method works and that it indeed yields
realistic results for known samples. We now demonstrate its
application in a design space exploration (DSE) of standard-
cell implementations and a more detailed analysis of the
most promising implementation candidates. As an example
we use the 3-input minority (3-MIN) function. 3-MIN has
NAND and NOR as subordinate functions and hence is
functional complete, i. e., it suffices to realize every Boolean
function. Therefore, it can be regarded as the bread-and-butter
device for reconfigurable circuits. The DSE consists of a
worst-case analysis of circuit delay and power dissipation
and an average-case analysis with respect to delay, and
energy-per switching operation. For the worst-case analysis,
the input signals switch nondeterministically, whereas we
assume a probability distribution on the switching events
for the average-case analysis. Furthermore, we distinguish
two application scenarios. In the first scenario (3-MIN), no
information is known about the input patterns and the output
is computed over all input combinations. In the worst case
we consider all input combinations, and in the average case
we assume that each input is equally likely to switch. The
second scenario (NAND-NOR) targets an application that
select between 3-MIN’s subordinate functions NAND and
NOR via control input � and treats the inputs � and � as data

inputs. Therefore, we zoom in to the computation of these
functions and consider only input combinations of the data
inputs while the control input is fixed to either 0 V or 1.2 V
for the worst case. For the average-case we assume a lower
probability that the control input switches.

A. EXPERIMENT SETUP
As shown in Figure 7, we supplied four artifacts as inputs
to the DSE. The first artifact, the device, is the MIGFET
from [13] as modeled in Sect. III-B1. The second artifact,
the circuit under test, is a 3-MIN circuit. The third artifact,
the input pattern, depends on the experiment, we conducted,
but is independent of the circuit under test. For the worst-
case experiments, they are completely non-deterministic
with the constraint, that an input switch is only allowed
after the circuit has come to rest, such that each new input
pattern is independent of the previous one except for the
current output value. Likewise, the experiments examining the
average performance assign each input a switching probability
to change its current value. Without loss of generality, we
connect the control input to the PCGs of the circuit variants
that are reconfigured by a single input signal.

Electrically, we provide all three input signals directly and
in negated form. All signals are generated by non-scaled
inverters that are fully modeled with the MIGFET device
according to Table 1. We use transistors with three gates and
connect the input to the inner gates and the SB-gates to +SS
for the PMOS branch, respectively +DD for the NMOS branch.
While the negated signals are driven by the direct signals,
these are, in turn, driven by artificial inputs with a linear slope
of 0.83 ps V−1. Each circuit under test drives a load of one
standard inverter, i. e., a fanout of � = 1 which is�out = 80 aF.
These standard inverters, which also drive the inputs, are fully
modeled and built from unscaled transistors with three gates.
According to Table 1, they have a channel length of 88 nm.

Usually, delay is measured starting from a 1/2+DD input
change, but this would skew results towards either the fastest
or the slowest input transition in cases where multiple inputs
change simultaneously depending on whether the delay mea-
surements starts with the first input change or the last. In the
following experiments, delay is measured from the moment
the artificial inputs start to change to a new pattern until the
output reaches 1/2+DD. Using the moment the inputs start
to change is overly pessimistic but removes the dependency
on input signal speed and makes results comparable across
topologies. Due to complete knowledge about the modeled
circuit, delays are calculated until the final output crossing. So,
they include all spurious output transitions that might occur
due to hazards.

Computation of metrics
A consequence of using PMC is that the results in the
following experiments are guaranteed to be correct with
respect to the model and are not obtained from potentially
noisy measurements. In our discrete charge-transfer model,
we know voltage and current at each charge transmitter in
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FIGURE 8. Competitive 3-MIN variants as evaluated in this section. Reconfigurable inputs attached to transistor’s drain contact and source SB gate as pairwise
inverted signals. Variants suffixed with s use SB gates (with curls) for both, reconfigurable inputs and normal inputs. Variants suffixed with i restrict normal inputs to
inner gates.

each time step. According to Kirchhoff’s circuit laws, we
can compute the current power dissipation over all transistors
connected to a charge storage as the sum over the individual
electrical powers.

Equally, we can compute average energy per operation and
average delay. On the long-run, i. e., after an initial phase,
the expected performance is determined by the statistics of
how the inputs switch. These measures are generally hard
to capture using simulation, but PMC provides methods to
compute expectations, long-run averages and related measures
efficiently.

B. AUTOMATIC EXPLORATION OF CIRCUIT VARIANTS

The DSE starts with an automatic exploration of all reasonable
topologies for the 3-MIN circuit. We consider circuit variants
that are a single logic stage and whose inputs may appear in
direct and negated form. As noted in Section III-B, multiple
gates on a transistor act as a wired AND function. So, for the
exploration algorithm, each transistor can be regarded as a
minterm of a Boolean function. We modified the well-known
Quine-McCluskey algorithm [64] to generate all minimal
representations of the input Boolean function and to filter
them by certain criteria in order to remove duplication caused
by symmetries.

In the context of reconfigurable devices, up to three
branches constitute an implementation: the static N- and P-
branches as well as a reconfigurable R-branch. Each transistor
in the R-branch is driven by an input signal at the source
contact and covers only minterms that would otherwise
appear in both, the N- and P-branch. We call circuits without
R-branch static, circuits consisting only of an R-branch
reconfigurable, and circuits that feature both, an R-branch
and N- and P-branches partially reconfigurable or semi-static.
We configure all transistors such that the polarity control
gate is always complementary to the source signal, e. g.,
if the transistor is driven by +DD then %�� = 0 V or if
signal � drives the transistor then %�� = �. Static N-/P-
branches connect inputs only to inner gates, to exploit their
performance advantage over SB gates. Circuit reconfiguration
is driven either by one or more reconfiguration inputs starting

with input �. Our algorithm generates all these variants with
minimized R-, N- and P-branches and discards variants that
only rename inputs.

3-MIN circuit – 8 topologies with 2 types each

For 3-MIN, our exploration yields eight distinct topologies,
of which only a few have been previously known from manu-
ally crafted designs. We further discriminated all (partially)
reconfigurable implementations into two types suffixed either
s or i, e. g., (2s) and (2i), respectively. They either make use of
the source-side SB gate to connect inputs (s type) or restrict
all inputs except reconfiguration to the inner gates (i type).
The reason for this distinction is, that we observed, that on the
one hand, using SB gates may be considerably slower. But on
the other hand, restricting inputs to the inner gates and, thus,
forcing that the source SB gate must also be driven by the
reconfiguration input, increases the load on that input. Results
will show that either effect may weigh negative or positive
against the other in various scenarios (see Figures 10 and 11).

Five circuits variants stand out in the DSE for various
reasons explained below. They are shown in Figure 8 and
actually cover the four corners of topological possibilities to
implement the circuit with reconfigurable transistors. They
can be either (partially) reconfigurable or static; they can also
be reconfigurable in a single input or balanced over all inputs.
Variant (8i) on the right, is the static CMOS implementation
exploiting MIGFETs. To its left is a representative of a
partially reconfigurable, or semi-static, variant named (4i),
which reconfigures only those transistors for which the
reconfiguration input � actually occurs in the corresponding
minterm. The branches connected to inputs � and � are
implemented as static N-/P-branches. The second from the left
variant (2i) is the fully reconfigurable circuit from [20], which
is reconfigurable in input � only. Up to now, all circuits are
of the i type, optimizing the non-reconfiguration inputs � and
�. The innermost circuit variant (2s) is also known from [20]
and differs from (2i) only by using the source-side SB gate
to connect inputs, too. Leftmost of Figure 8 is variant (1s),
which reconfigures its transistors equally in all three inputs. It
is also the smallest possible implementation of 3-MIN. Due
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FIGURE 9. Comparison of fundamental 3-MIN designs with respect to maximum dynamic power dissipation over 1) worst-case delay with all three inputs freely
switching, 2) worst-case delay with input � fixed to either input value. Transistor model MIGFET (Sect. III-B). Input slope 1 ps full swing. Output load � = 1
(�out = 80 aF). Inverters after artificial inputs. If applicable, inputs are used for reconfiguration in the order �, �, then �.

to its simple structure, saving transistor gates outperforms (in
terms of delay) its i type counterpart.

Classic CMOS implementations and two-stage circuits are
unfavorable with the MIGFET device, as their performance
suffers from long serial paths. All in all, our algorithm
yields 15 circuits for the eight different topology variants
(numbered 1–8) and two types (suffixed s and i).

C. DSE – WORST-CASE DELAY AND POWER
Figure 9 depicts the tradeoff between worst-case delay and
worst-case power dissipation for all 15 circuit variants in two
scenarios. On the left, the results for the first scenario 3-MIN
are shown, where all three inputs may switch in arbitrary
combinations. On the right, we consider scenario two where
input � selects between the subordinate functions NAND and
NOR. In both experiments, the transition that exhibits the
worst-case delay need not be the same as the one that causes
the maximum power dissipation, so both values independently
represent the absolute worst case for each circuit under test.

1. Scenario 3-MIN: Worst case (A, B, C)
The left diagram in Figure 9 shows that, without knowledge
about the switching behavior of the inputs, the static variant
(8i) and the reconfigurable variant (2s) mark the extremal
points of the design space on either dimension. Both are con-
nected by a dashed tradeoff line, which marks the hypothetical
ability to linearly trade power dissipation against delay during
circuit design.

Opting for the most power-efficient variant (2s), we would
pay with a delay that is 1.5 times longer than that of (8i) with
36 ps. Nevertheless, we trade (8i)’s speed with 3.5 times more
power dissipation compared to (2s), which is ranging at 6 µW.
The variants (1i/s) (red) are valuable candidates to trade power
against delay, should the need arise. Under these conditions,
all other variants fall behind the performance of those four
variants.

2. Scenario NAND-NOR: Worst case (B, C)
The results change dramatically for a scenario where input �
is reconfiguring the circuit between NAND and NOR func-
tionality but is otherwise not engaged during normal operation.
The right diagram in Figure 9 shows that the variants (2i) and

(2s) are clearly the best implementation candidates. Neither
the static variant (8i), which has only slightly better delay
(< 1 ps) than the most power-efficient variant (2s), nor the
variants (1i/s) are competitive in this scenario.

The variants (2i/s) use half the number of transistors (and
gates) as variant (8i) and hence induces minimal load on
the inputs � and �. This is a considerable advantage of this
topology in a scenario where input � selects between NAND
and NOR. This reflects in a difference in power dissipation of
Δ% ≈ 13 µW between (8i) and (2s) which is a factor up to 3.5.

Comparing the delays between the left and right diagrams, it
turns out that variants (1i/s) and (8i) are symmetric topologies.
The worst-case values they exhibited on the left were achieved
by changing two inputs simultaneously. Which one does not
matter, since all are combinations equivalent. On one hand, by
fixing input �, symmetric circuits have nothing to gain. On the
other hand, as Section V-E will show, they are not susceptible
to changes of the switching probabilities of the input signals.

D. DSE – AVERAGE DELAY AND DYNAMIC ENERGY
Figure 10 displays two diagrams depicting the tradeoff be-
tween the average dynamic energy consumption per operation
and the average circuit delay for two scenarios. On the left,
scenario 1 is shown, where all inputs switch with probability
?� = ?� = ?� = 1/2, which means, every time the circuit
has stabilized, each input is equally likely to switch to its
opposite value or to stay as it is. On the right, scenario 2
is shown, i. e., only inputs � and � switch with probability
?� = ?� = 1/2 and input � is 10 000 times less likely to
switch with probability ?� = 10−4, which resembles the
second scenario of the worst-case experiments. Quantifying
the average energy per operation is particularly interesting, if
the circuit is designed for applications with a limited energy
budget. Average delay is most important for asynchronous
circuits that, despite being hard to design, are known to be
very energy efficient.

3. Scenario 3-MIN: Average (?� = ?� = ?� = 1/2)
Similarly to the first worst-case analysis, the DSE in the first
average-case scenario is bounded by the variants (8i) and
(2s), as the left diagram in Figure 10 shows. However, all
other variants are distributed along the tradeoff line now. This
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FIGURE 10. Comparison of fundamental 3-MIN designs with respect to average dynamic energy consumption per operation over 3) average delay with equal
switching probability for all three inputs and 4) average delay with switching probability for input � reduced to ?� = 10−4. Experiment parameters as in Figure 9.

means, if nothing is known about the input distribution and if
worst-case performance is not critical, the average dynamic
energy per operation can be directly traded against the average
delay. The delay distributes over a range of 33 ps to 44 ps,
with the second-best circuit (6i) being only 3 % slower and
the slowest circuit (2i) being 30 % slower than the fastest (8i).
The energy per operation distributes over 60 aJ to 150 aJ. The
second-best circuit (2i) uses 3 % more energy and the worst
(8i) 2.47 times more energy than the most efficient (2s). The
variants fall into four clusters that correlate with the number
of static N-/P-branches in their topology from 0 (all transistors
reconfigurable) to 3 (fully static).

4. Scenario NAND-NOR: Average (?� = 10−4, ?� = ?� = 1/2)
Reducing the switching probability of input � impacts the
results in the right diagram of Figure 10 in a similar way as
fixing input � in the second worst-case scenario emphasized
the structural benefits of variants (2i/s). However, all circuits
are closer together under these assumptions, with surprising
improvements of the average delay performance of variants
(4i/s) (yellow) from last places (Figure 9, right) to the front of
the field.

With respect to the average delay, the fully static variant
(8i) performs below the majority of the field. Comparing
the left and right diagrams, many variants shift down and
to the left with variants (8i), (6i/s) and (1i/s) being notable
exceptions. This means, they all improve in that scenario, even
though the designer can no longer trade energy against delay
linearly. Furthermore, variants (8i) and (1i/s) show almost the
same average delay in both scenarios due to their symmetric
topology.

Regarding the energy per operation, variants (2i/s) and (1i/s)
differ only about 1 aJ on average. Hence, (1i) and (1s) might be
eligible candidates for being even smaller circuits. Referring
back to the left diagram or the worst-case scenarios, though,
these are highly affected by changes in the input distribution.

5) Observations
The four experiments from this section show that the (par-
tially) reconfigurable implementations are competitive w. r. t.
worst-case delay if used to select between NAND and NOR.
The five topologies, for which the circuit diagrams are
depicted in Figure 8, particularly stand out:

(1s) Reconfigurable, balanced inputs. Slower, but shows as
balanced a performance as static variant (8i),

(2i) Reconfigurable via input �. Performs best in the NAND-
NOR scenario,

(2s) Same topology as (2i). Most power / energy efficient
circuit but sensitive to input distribution,

(4i) Semi-static, reconfigurable via input �. Might be interest-
ing, if both 3-MIN and NAND/NOR scenarios overlap,

(8i) Static, balanced inputs. Performs best in the 3-MIN
scenario.

A rule of thumb, that can be distilled from comparing
experiments 1 and 2, is: Inputs to sub-ordinate functions
should be connected to inner gates only (i types left of s
types in Figure 10, right), whereas inputs to the higher-order
function 3-MIN should also use the SB gates, too (s types left
of i types in Figure 10, left).

The average delay experiments make an even stronger point
in favor of (partially) reconfigurable circuits. Experiments 3
and 4 gave a hint that energy and delay performance may
strongly depend on the input distribution. If the switching
probability of a single input (without loss of generality,
input �) is at least somewhat skewed towards zero, the
reconfigurable variants make a viable option for implementing
3-MIN.

E. IN-DEPTH COMPARISON OF FOUR 3-MIN-DESIGNS
We take a closer look on four of the five circuit, variant (2i) is
very similar to (2s) and is left out. If the logic gate is treated
as reconfigurable element between the subordinate functions
NAND and NOR, (2i) and (4i) outperform the fully static
implementation (8i). If the logic gate is not on the critical
path, (1s) can be a promising candidate to lower the overall
circuits complexity. Here, we focus on average-delay and
quantify the variants in order to answer which implementation
performs best for certain input switching probability ranges.

In contrast to previous experiments and other simulation
techniques, we now keep the switching probability ?� a
parameter [65], [66] and compute the results as rational
functions that define the average delay precisely in ?�
instead of sampling the delay for specific values. Those
rational functions can then be subject to further mathematical
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All inputs balanced Reconfiguration restricted to input �
8i 1s 2i 4i

ΔC8i (?�) = 9670?�2−9049?�−8408
320?�2−320?�−240 ΔC1s (?�) = 11854?�2−11645?�−10012

320?�2−320?�−240 ΔC2i (?�) = 19500?�2−26588?�−6977
320?�2−320?�−240 ΔC4i (?�) = 16588?�2−19664?�−7303

320?�2−320?�−240

FIGURE 11. Average delays and standard deviation of four 3-MIN variants based on the reconfigurable MIGFET from Sect. III-B1. The two columns on the left
show the “balanced” implementations (8i) and (1i) and the two columns on the right show variants (2i) and (4i) which restrict reconfiguration to input �. Additionally,
the plots show the worst-case delay as well as the average delays from all states where the logic gate is about to switch away from, e. g., Ex_111 is the average
delay if switching from � = � = � = +DD. Below each plot is the rational function describing the respective average delay. Input slope 1 ps, output load � = 1
(�out = 80 aF). Artificial inputs fed through inverters before use.

analysis and could be used in synthesis tools to select suitable
implementations according to the application scenario. For
simplicity, we consider only ?� a parameter here and keep
the probabilities of the other inputs fixed at 1/2.

1) Parametric average delays
The left side of Figure 11 shows the long-run average delay
and the standard deviation for the four selected circuit variants.
On the right side, we show the fastest implementations
according various intersection points. We refer the reader back
to Section V-A for an explanation of long-run average delay.
It turns out that the variants can be categorized in balanced
(1s, 8i) and restricted (2i, 4i) implementations.

The bold black curves give the average delay on the long
run and the thin black line at the bottom shows the standard
deviation f. The respective worst-case delays are depicted
as dotted thresholds on the top. They may not be reached by
their corresponding delay curves, as these are averages. The
other colored curves are the average delays for all possible
input combinations the gate is about to switch away from, e. g.,
Ex_111 is the average delay if switching from � = � = � =

+DD. The rational function of each long-run average delay is
given below the respective plot.

The average delay of the minimal reconfigurable implemen-
tation (1s) depends only slightly on ?�, which confirms our
previous experiments. Though clearly slower, its character-
istics are quite similar to the static implementation (8i) with
the same standard deviation of only about 5 ps. This indicates
that (1s) might indeed be a suitable choice on non-critical
paths. As expected, the reconfigurable variant (2i) shows a
significant dependence on ?� as its delay grows rapidly in
?�. For probabilities less than ?� ≈ 0.01, though, the delay
drops below the static variant (8i) in both, the average delay
as well as the standard deviation. Interestingly, the standard
deviation decreases if ?� approaches either 0 or 1 and reaches
its maximum around ?� = 0.3. This is explained by the
fact that input � drives more gates than the other inputs, see

Figure 8. Hence, close to 0, only the faster inputs are relevant
and towards 1, input � dominates the delays. Variant (4i) is
almost as fast as (2i) if ?� is small but features a shallower
slope towards ?� = 1. Though, its standard deviation is a bit
higher close 0 and increases steadily in ?�.

2) Observations
In the previous section, we improved over sampling and
guessing probable worst-case-delay scenarios by directly
computing worst-case and average-case delays for all circuit
variants and then picking the best circuit variant. In this
section on average performance on the long-run, we abstracted
from picking particular input switching probabilities for
input � and compare circuit variants for the best average
delay performance over all switching probabilities of input �.

Therefore, we compute the rational function in the probabil-
ity ?� that specifies the delay for each circuit variant directly.
This allows us to determine the precise ranges of the input
switching probabilities in which each of the modeled circuit
variants perform best. Figure 12 plots the long-run average
delays for each circuit variant from Figure 11 including their
respective compressed ∗s or expanded ∗i circuit variants.
Though clearly slower than the other variants, (1s) and (4s) are
interesting options as they allow a designer to trade complexity
and energy efficiency for speed effectively. For load factors
other than � = 1, the circuit application ranges will of course
differ from the table above. But as the delays turned out
to be linear in � indeed, we can make the load a second
parameter of the obtained rational functions straightforwardly
by calculating a circuit variants slope in �.

These results demonstrate that a detailed circuit analysis
uncovers the potential of reconfigurable transistors and allows
us to pick the optimal solution for the targeted application
scenario. Directly calculating the exact average delay rational
functions considerably extends the circuit designer’s possi-
bilities to judge the use of particular implementations while
eliminating the overhead of a repetitive analysis with samples
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8i2i 4i Fastest implementation depending on ?�
Variant 2i 4i 8i
?� ∈ [0, 0.0480) [0.048, 0.1123) [0.1123, 1]
∗s variants are faster than ∗i variants above certain threshold
ΔC2s < ΔC2i for ?� > 0.2206
ΔC4s < ΔC4i for ?� > 0.1601

Variant (4s) is faster than (1s) within two distinct intervals of ?�
ΔC4s < ΔC1s for ?� ∈ [0, 0.6836] [0.9023, 1]

FIGURE 12. Comparison of average delays between the variants (1i/s, 2i/s, 4i/s and 8i). Left side, graph of delay over input probability. Right side, fastest
implementations according to various intersection points, for which the first row is also shown in the plot.

from the parameter’s domain at this design stage.
To fully analyze the 3-MIN circuit, as shown throughout

this section, our tool generated 135 experiments from 4
different queries and 4 different experiment setups. They took
about 32 CPU h to compute in total. Each circuit consisted of
15–18 fully modeled transistors (with 2–4 gates each) for the
function itself and the inverters driving its inputs.

VI. CONCLUSION
In this paper, we proposed a practical method that enables us to
progressively develop standard cells, based on new transistor
devices starting as early as technology readiness level 1. By
this we were able to assess a new technology early and to
retrieve results earlier in the overall development cycle.

We contributed a modular modeling framework that sup-
ports the integration of new devices by providing either the
basic parameters of a reconfigurable multiple-gate transistor
(MIGFET) device or a custom analytical description. In
this work, we provided a new model for Germanium-based
reconfigurable nanowire transistors and demonstrated its
accuracy of our approach by a comparison with FEM results.
We used a discrete charge-transport model that is tailored to a
formal quantitative analysis by probabilistic model checking.
This enabled us to compute a range of performance and
quality measures, some of which are hard to obtain from
simulation-based approaches. These are, for instance, the
average circuit delay, which is most-relevant for asynchronous
circuits, the average energy per switching operation, and the
maximum power dissipation. We computed these results as
rational functions that can be evaluated later with probabilities
obtained from statistics over the actual input sequences and
thus avoiding the necessity of reevaluation.

In our accompanying experiments, we demonstrated that
our approach enabled us to do a comprehensive early tech-
nology evaluation regarding digital circuit designs. Long
before prototypical circuits become available at relevant
features sizes, we were able to quantify how the technology is
about to perform time- and energy-wise. This provides useful
insights into how to drive technology development to take full
advantage of the emerging technology’s capabilities.
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