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Abstract

Ensuring the functional correctness of hardware circuits is essential for estab-
lishing trust. Formal verification methods such as model checking and assertion-
based verification, while widely used, are inherently limited in expressivity and
scalability. These limitations prevent them from bridging the semantic gap be-
tween low-level hardware implementations and high-level specifications, posing
challenges for comprehensive verification on complex circuits.

This thesis addresses these challenges by developing a scalable proof infra-
structure tailored for hardware verification. Specifically, it enhances the existing
Kôika hardware description language by introducing an improved compiler fron-
tend that facilitates the processing of parametric actions. Furthermore, it proposes
a new proof infrastructure that formalizes Hoare logic within Kôika’s semantics,
enabling structured and modular reasoning about hardware behaviors.

These contributions advance the modular verification of hardware circuits,
overcoming the scalability limitations of conventional verification approaches.
Future research directions include extending this framework to incorporate
separation logic, thereby addressing the frame problem, and evaluating its applic-
ability to larger hardware descriptions, such as a RISC-V implementation.
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1 Introduction
Hardware circuits are at the heart of every digital system. Therefore, ensuring
their functional correctness is of utmost importance, as it establishes the founda-
tion of trust in these systems. Nowadays, this trust becomes ever more important
as digital systems are integrated into a growing spectrum of domains, including
security- and safety-critical applications, such as implantable medical devices or
automotive brake control systems. Under these demands for trust, manual code
inspection or testing alone are insufficient. Instead, correctness must be rigorously
established through mathematical reasoning and formal proof.

At the same time, however, circuits have grown significantly more complex
over the past decades [Tsc+02], making them more vulnerable to bugs and pre-
senting challenges to the scalability of traditional formal methods.

1.1 Limitations of Existing Approaches

Most existing verification tools were designed by minimizing manual effort to
enhance their accessibility for hardware developers while saving time and budget
during development. Nevertheless, such automation comes at the expense of ex-
pressiveness, rendering these systems unable to scale to the complexity of today’s
circuits.

A notable example concerning this limitation is model checking, a method
in which the verification is fully automated. However, this approach relies on
an exhaustive exploration of all model states, leading to exponential growth of
computational time and ultimately restricting verification to heavily abstracted
portions of the actual circuit. Even though most parts of this state space could be
proven irrelevant with only little manual effort.

Although these systems are designed to minimize interference with develop-
ers, recent studies reveal that formal verification constitutes more than half of the
total development time for a typical ASIC or FPGA system [Fos20]. Since devel-
opers must engage with these systems regardless, their design should facilitate
better interaction, ultimately leveraging developer expertise to manage complex
systems more effectively.

Another limitation is that the most used hardware description languages
operate at the register-transfer level, defining circuits at a very low level of
abstraction. Consequently, their associated verification systems also function at
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Chapter 1 Introduction

this low level, whereas specifications typically express expectations in a highly
abstract manner. For example, the IEEE standard for floating-point arithmetic [19]
requires that the rounding operation produces the “number closest to […] the in-
finitely precise result.” However, hardware implementations primarily deal with
primitive components such as wires and logical connectives, without any notion
of numerical value at all. As a result, formal reasoning is typically constrained to
low-level circuit behavior.

To bridge this gap and enable the verification of complex circuits against
high-level specifications, a customizable proof framework is essential — one that
can introduce new abstractions and facilitate reasoning about them. Typically,
such approaches also elevate the level of abstraction in the hardware description
language. However, it is crucial to ensure that the language maintains sufficient
control over the generated circuit and that the validity of proofs is preserved
throughout the compilation process.

1.2 Objectives

In this thesis, I propose a framework for modular reasoning over complex hard-
ware within the Rocq proof assistant [BC13]. Rocq serves as a robust foundation as
it provides higher-order logic, which enables formal reasoning about complicated
properties. Additionally, Rocq provides programmable proof automation which
can be combined with manual inductive reasoning for guidance.

The presented framework is based on Kôika [Bou+20], a language for the
design and verification of hardware circuits. This language itself is integrated in
Rocq to facilitate reasoning about hardware descriptions. Kôika offers imperative
commands which are accompanied by formal semantics to support mathematical
reasoning regarding their evaluation.

The goal of this work is to enhance the existing Kôika infrastructure, enabling
the description of parametric circuits and providing a robust proof framework for
reasoning about them. Specifically, this work introduces (a) a new frontend capa-
ble of parsing and type-checking parametric designs and (b) a proof infrastructure
that allows for reasoning about these parametric designs while supporting the
modular composition of proofs to address the complexity of larger circuits.

2



1.3  Outline

1.3 Outline

This thesis begins with a comprehensive background on formal methods and
hardware descriptions in Chapter 2. It then progresses to Chapter 3 and Chapter 4,
which provide insights into the implementation of the proposed reasoning frame-
work while also highlighting various challenges encountered during the process.
In detail, Chapter 3 discusses the new frontend (a), while Chapter 4 focuses on
a Hoare logic for modular reasoning (b). Following this, Chapter 5 evaluates the
practical applicability of the framework through a series of case studies. Lastly,
Chapter 6 summarizes this study’s findings and suggests potential directions for
future research.
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2 Literature Review
Before delving into the implementation details of the proposed validation frame-
work, it is essential to establish the necessary theoretical foundations. The objec-
tive of this chapter is to provide an overview of common approaches to hardware
verification and to analyze their limitations. However, a basic understanding of
hardware design is required to fully grasp the rationale behind these validation
methodologies and their integration into the development process. Therefore, this
chapter begins with an introduction to hardware descriptions before exploring
various verification approaches in detail.

2.1 Hardware Description Languages

Hardware systems are typically designed and specified in hardware description
languages (HDLs). These languages facilitate different tasks including simulation,
synthesis, and analysis at various levels of abstraction. For that, the system is
conventionally modeled as a finite state machine (FSM). These FSMs consist of
states which represent hardware registers and transitions which are defined by
the computational logic of the circuit.

Certain aspects, such as placement, referring to the physical positioning of
components, and routing, which involves the precise design of interconnecting
wires, are abstracted in most HDLs. Instead, the exact circuit layout is generated
programmatically during a process known as synthesis. Furthermore, most HDLs
primarily focus on digital logic representations. Since the circuits examined in
this thesis are exclusively digital, the discussion does not extend to the specifics
of analog hardware descriptions.

Depending on their philosophy and level of abstraction, there exist different
types of hardware languages. The following is going to elaborate on their differ-
ences and their applicability for formal hardware verification.

2.1.1 Register-Transfer Languages

Among the earliest languages are register transfer languages (RTLs), which remain
the most dominant type to this day. Two popular examples include Verilog [96]
and VHDL [88], which both got published in the mid 1980s and still play an
important role in today’s hardware development. One of their primary advan-
tages, but also a notable disadvantage, is their provision of low-level constructs
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Chapter 2 Literature Review

for specifying behavior, timing, and connectivity. While this grants the designer
significant control, it comes at the cost of highly verbose code.

However, as these languages are not designed with formal verification in
mind, they only offer prose-based semantics. Although it is theoretically feasible
to derive formal behavioral definitions from these specifications, this process is
highly complex and prone to errors due to ambiguities [Mer+10]. Furthermore,
their low level of abstraction significantly complicates the verification of high-
level properties, making formal analysis particularly challenging.

2.1.2 Software-Inspired Approaches

To enable faster design explorations and to make hardware development more
accessible, various approaches have attempted to adapt software languages for
hardware design, including SystemC [06] and SpecC [Gaj+00]. In these languages,
designs are typically expressed as sequential C or C++ programs and then synthe-
sized into parallel circuits through extensive compiler analysis. Some approaches
further augment these languages with explicit parallel constructs or impose
restrictions to improve hardware synthesis.

While these techniques can successfully generate hardware from software-
based descriptions, the fundamental semantic gap between the specification
language and the resulting circuit often leads to unpredictable outcomes in terms
of size and performance. Moreover, developers only gain limited control over
these critical design metrics, making it challenging to optimize hardware imple-
mentations effectively.

One advantage of these languages is their level of abstraction, which facili-
tates reasoning about micro-architectural properties. However, similar to Verilog
and VHDL, these software languages lack formal semantics, hindering formal
verification [Var07]. Moreover, a more critical limitation is that their compilers
are not formally verified to preserve the semantics of the high-level language,
thereby compromising the reliability of proofs conducted at this level of abstrac-
tion. Furthermore, due to the unpredictable impact of their high-level constructs
on the generated circuit, it is virtually impossible to offer guarantees regarding
circuit area or performance. Nevertheless, different works have proposed model-
checking based formal verification for the SystemC language [CNR13, GLD10,
HPG15].
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2.2  Formal Verification

2.1.3 Guarded Atomic Action

An alternative approach aimed at increasing the abstraction level of RTL is known
as guarded atomic actions (GAAs). This methodology separates a hardware design
into structural and behavioral components. The structural components correspond
to variables representing hardware registers, while the behavioral components
are defined by rules. Each rule comprises an action, which specifies a state transi-
tion, and a guard condition. The guard ensures that the associated action can only
be executed when the specified condition is satisfied.

The key idea behind this concept is, that whenever an action is executed, its
transition is guaranteed to appear atomic. In other words, even if multiple actions
are scheduled simultaneously, the system ensures that the overall state transition
is equivalent to some sequential interleaving of those actions. This guarantee al-
lows developers to construct hardware systems using a set of independent actions
while ensuring the absence of unintended data races. As a result, it facilitates a
more modular design, while preventing bugs from shared state. This concept is
often referred to as one-rule-at-a-time (ORAAT) semantics.

The concept of atomic actions has its origins in early formalizations of con-
current processes. One of the foundational works in this area is C. A. R. Hoare’s
Communicating Sequential Processes [Hoa78], which introduces a language
for parallel composition of sequential programs based on Dijkstra’s Guarded
Commands [Dij75]. Over time, several atomic action-based languages have been
proposed taking these ideas from software design to hardware specifications,
including Staunstrup’s Synchronized Transitions [SG88], Dill’s Murphi [Dil96],
and Augustsson’s Bluespec SystemVerilog [Nik04].

In the context of formal verification, GAA systems offer the advantage of a
higher level of abstraction, similar to the previously discussed software-inspired
languages. However, unlike these approaches, GAAs provide greater control
over the generated hardware. Nevertheless, since these languages also rely on a
compilation process, it is crucial to ensure that this process is formally verified to
preserve the high-level semantics and thereby also the validity of proofs.

2.2 Formal Verification

Formal verification summarizes a range of mathematical techniques employed to
rigorously establish the correctness of a system. However, for such verification to
be meaningful, the notion of system correctness must be precisely defined. Such
functional requirements are typically outlined in a specification, which is often
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expressed in natural language supplemented with pseudocode examples. Unfor-
tunately however, a prose-based specification is insufficient for formal proofs, as
it lacks the precision and rigor necessary for mathematical reasoning [Arm+19].
To ensure compatibility with formal methods, these specifications need to be
formulated within the same logical framework as the proof itself or be at least
convertible into it.

In contrast to conventional testing approaches, which assess a system based
on a limited set of carefully selected scenarios, formal verification ensures correct-
ness across all possible states using mathematical reasoning. As a result, formal
verification provides stronger correctness guarantees, making it essential for
safety-critical domains. However, since formal methods often require significant
manual effort, they are best utilized in combination with conventional testing
methods to achieve an efficient validation process.

Since most formal methods rely on a foundational logic for property speci-
fications, the following provides a concise summary of propositional logic, first-
order logic, and temporal logic.

2.3 Foundational logics

Propositional Logic. A proposition is a statement which is either true or false, while
propositional logic establishes a mathematical framework for reasoning about
such statements. In this system, statements are typically represented by single
letters, referred to as variables. These variables, when combined with logical con-
nectives, can be structured into more complex propositional formulas. Definition 1
shows a formal specification of these formulas for a frequently used subset of
connectives.

X ∈ 𝒳 set of variables
A ≔ ⊤ truth

| X variable
| A ∧ A conjunction
| ¬A negation

⊥ ≔ ¬⊤ falsity
A1 ∨ A2 ≔ ¬(¬A1 ∧ ¬A2) disjunction
A1 → A2 ≔ (¬A1 ∨ A2) implication

Definition 1: Syntax of propositional logic formulas

First-Order Logic. This logic system can be regarded as an extension of proposi-
tional logic. As illustrated in Definition 2, it introduces predicates over objects,
along with universal and existential quantification. In a first-order formula, the

8



2.3  Foundational logics

truth value of a predicate may depend on the specific objects to which it is applied.
These objects, in turn, are not required to be logical entities. For instance, consider
the predicate of equality. It is intuitively evident that the statement 2 = 2 holds
true, whereas 1 = 3 is false. Similarly, it follows that objects such as 2 or 3 do
not inherently possess a truth value and, thus, can only be used together with a
predicate.

A ≔ ⊤ truth
| X variable
| A ∧ A conjunction
| ¬A negation
| P(t, …, t) predicate
| ∀x.A universal quantification
| ∃x.A existential quantification

Definition 2: Syntax additions of first-order logic

Linear Temporal Logic. Linear temporal logic (LTL) [Pnu77] can similarly be under-
stood as an extension of propositional logic, albeit with a distinct purpose. As the
name implies, LTL introduces operators that enable the formulation of properties
over time. In this context, time is abstracted into discrete steps, and formulas
are evaluated over infinite sequences of these steps. Definition 3 presents typical
temporal operators in LTL, including the until operator 𝖴, which asserts that a
property holds until another property becomes true, and the next operator ○,
which indicates that a property holds in the immediately following time step.
These fundamental operators can also be used to express that a property always
or eventually holds.

A ≔ ⊤ truth
| X variable
| A ∧ A conjunction
| ¬A negation
| ○A next
| A 𝖴 A until

◊A ≔ ⊤ 𝖴 A eventually
□A ≔ ¬◊¬A always

Definition 3: Syntax of linear temporal logic

2.3.1 Logic Notations

To facilitate a clearer understanding of the remainder of this work, it is important
to briefly introduce the concept of inference rules. For that, Rule 1 illustrates the
general structure of such a rule, which consists of multiple premises written above
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a horizontal line and a single conclusion below. Each rule asserts that whenever
all premises are satisfied, the specified conclusion logically follows.

premise1 … premisen

conclusion
(1)

These rules are commonly used to inductively define relations or functions by
specifying a rule for each possible input case, thereby establishing how inputs
correspond to their respective outputs.

In the following sections, three different formal techniques, assertion-based
verification, model checking and theorem proving, are examined in greater detail and
their applicability for this study is evaluated.

2.3.2 Assertion-Based Verification

In an assertion-based verification approach, the hardware description of a circuit
is enriched with assertions directly in the model [FKL03]. These assertions specify
design expectations in form of properties over circuit components. For instance,
an assertion may enforce that a register’s value remains within a certain range.
Depending on the toolchain used, assertion evaluation can occur dynamically
during simulation, statically during synthesis, or even at runtime during the
execution of the synthesized hardware [Das+06].

Example languages include Intel’s Forspec [Arm+02] and SystemVerilog’s
assertions [05]. In SystemVerilog, these assertions are generally classified into
immediate and concurrent assertions, depending on how they are integrated into
the design. Immediate assertions are evaluated only at the moment they are
encountered, whereas concurrent assertions operate independently of procedural
execution. Consequently, concurrent assertions enable reasoning about temporal
properties that extend across multiple clock cycles. These properties closely
resemble those that can be expressed using LTL.

However, these properties remain fairly low-level, focusing on the states of
individual wires. Due to the absence of powerful abstraction mechanisms, they
are insufficient for expressing more complex properties related to the microarchi-
tecture or the ISA specification.

2.3.3 Model Checking

Model Checking is a fully automated technique that verifies system properties
by systematic, but exhaustive exploration of its state space. It was introduced in
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the early 1980s by Clarke and Emerson [CE81], and independently by Queille and
Sifakis [QS82].

The process involves expressing the specification in terms of temporal logic
properties, e.g., LTL properties. These properties allow for the verification of
liveness properties which ensure that the system makes progress, as well as safety
properties which ensure the absence of undesired behavior. For the actual verifi-
cation process, the model checker constructs a finite-state graph representing all
possible system states. The precise verification technique varies depending on the
type of logic used to express the properties. In the case of LTL model checking,
for example, the proposition is transformed into a state graph, and a path analysis
is performed on the product system formed by combining the model with the
proposition [BK08].

The biggest problem of model checking is the state space explosion. This
refers to the exponential growth of the state space with regard to the system’s size.
In particular, every additional input bit or register bit in the system doubles the
size of its corresponding model. Thus, in practice, systems need to be drastically
reduced and abstracted in order to keep the computational effort feasible.

2.3.4 Theorem Proving

The approach of interactive theorem proving (ITP) is based on so called proof assis-
tants. These proof assistants can be understood as computer programs which
validate the correctness of a mathematical proof. This is done by defining all
constructs in terms of a very small but powerful core calculus, typically based on
type theory. By doing so, manually written proofs can be automatically verified
by checking the correctness of their construction in this calculus.

This approach is a very general one as it is not restricted to the verification of
hardware or software systems. Quite the opposite, it can be used to formulate and
reason over arbitrary mathematical constructs. As a consequence, this approach
is very expressive and could be used to model all kinds of systems and properties.
However, for the same reason there is no single language of choice for modeling
a system and therefore also no built-in proof automation for properties over
hardware descriptions.

One prominent proof assistant utilized throughout this work is Rocq [CH85,
CH88]. Initially developed in the 1980s, Rocq has since been the focus of extensive
research and continuous development. It is based on the calculus of inductive
constructions, which offers high expressivity for formulating mathematical asser-
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tions and constructing formal proofs. Furthermore, it includes a meta-language
that facilitate customizable proof automation.

Early research already recognized higher-order logic as a suitable foundation
for the formalization and verification of hardware designs due to its expressive-
ness and rigorous semantics [Gor85]. As a result, various studies have proposed
HDLs based on type theory [CJ04, HDL90]. However, since these languages still
describe circuits at the RTL level, their usability remains limited, and verifying
their alignment with high-level specifications is challenging.

2.4 Kôika

In 2020 Bourgeat et al. introduced the Kôika language, combining the formal ben-
efits of a language based on type theory with the abstraction gained from GAAs
[Bou+20]. It is designed to offer rigorous formal semantics for reasoning about
hardware descriptions. In addition, Kôika features a certified compiler which
ensures functional correctness is maintained during the translation to Verilog.
The compiler correctness is crucial as it guarantees that the validity of formal
proofs about the high-level design is preserved throughout the compilation. An
overview of this compilation process can be seen in Figure 1.

2.4.1 Compilation Process

compile

cuttlec

properties Kôika
sematics

sematic
preservation

Verilog
semantics

Kôika
description Kôika VerilogRocq

OCaml Kôika
description

Verilog
description

extraction

Verilog

Figure 1: Kôika compilation overview

In a standard Kôika workflow, properties are formulated and formally verified
against a circuit’s implementation within Rocq. Subsequently, in order to generate
a hardware circuit, both the Kôika description and the compiler itself must be
extracted into OCaml. This extraction process is essential, as Rocq lacks a system
interface for interacting with communication channels or performing file system
operations. OCaml, on the other hand, is a functional programming language
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rather than a theorem prover like Rocq and therefore provides these standard
facilities. However, since OCaml’s type system is less expressive than that of
Rocq, proofs are discarded during extraction. This does not pose an issue, as
these proofs are solely relevant for verification and do not influence the program’s
execution. Finally, the Verilog description is generated by executing the extracted
compiler, referred to as cuttlec, on the hardware description.

2.4.2 Kôika’s Semantics

The semantics of the Kôika language are significantly influenced by prior
research on GAAs, particularly Bluespec SystemVerilog. However, unlike these
approaches, Kôika does not automatically infer the schedule of actions. Instead,
it requires the developer to explicitly define their execution order. This design
choice provides greater control and confidence in the resulting circuit behavior.
However, it also enables the construction of schedules which contain actions with
conflicting register accesses.

Consequently, to ensure consistency, Kôika needs to dynamically maintain a
read/write log for each combination of registers and actions. These logs record all
register interactions and are utilized to detect conflicts after an action’s execution.
In the event of a conflict, the later action in the schedule is aborted, meaning its
log is discarded and never applied to the register state. Such a conflict arises, for
instance, when two rules attempt to write to the same register in the same cycle,
as Kôika only permits a single write per register per cycle.

2.4.3 Kôika’s Verification

Kôika’s compiler is implemented within the Rocq proof assistant, alongside the
Kôika language itself, which is designed as an embedded language. As a result,
the extensive Rocq ecosystem can be utilized to formalize and verify both the
compiler and the hardware designed using Kôika. This ecosystem makes Kôika
particularly well-suited for formal verification, as it enables the formulation and
proof of complex high-level properties. Furthermore, the Kôika parser is also
constructed using Rocq’s extensible notation system, proving a user-friendly and
intuitive input syntax without requiring external parsing tools.

As mentioned in Section 2.1.1, there exist no official formal semantics for
Verilog. Thus, to prove the correctness of their compiler Bourgeat et al. first had to
define own semantics for the Verilog subset which their compiler generates. These
semantics, as well as the high-level semantics of Kôika, are based on various high-
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level constructs formalized in Rocq, including an environment for register state, a
bit vector implementation, and a local context for the state of program variables.

2.5 Summary

In conclusion, this chapter identified two primary criteria for assessing the suit-
ability of an HDL for formal verification. First and foremost, the language must
have formally defined execution semantics, as formal reasoning is impossible
without them. Moreover, retroactively defining these semantics is often exces-
sively complex and prone to ambiguity. Secondly, the language should provide
robust abstraction mechanisms to manage complex designs and facilitate the
specification of properties close to the specification level.

Most of the languages discussed, which are commonly used in practical
applications, lack either one or both of these requirements, presenting challenges
for their integration with formal methods.

With regard to formal verification, the presented approaches demonstrated
the trade-off between automation and expressiveness. The more complicated their
properties may be the less automation can be expected.

Ultimately, this work aims to contribute towards a larger vision of enabling
the verification of hardware implementations against their specifications. Conse-
quently, the highest possible expressiveness needs to be achieved. For that, the
formal approach of theorem proving is chosen together with the Kôika language.
This language however, still lacks in two regards, which are addressed in this
thesis.

1. Kôika descriptions cannot be parameterized, limiting their abstraction.
2. Proofs cannot be modularized, hindering the verification of complex proper-

ties.

In the following, Chapter 3 is going to address the first issue, while Chapter 4 is
concerned with the solution of the second problem.
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3 Typed Parsing for Parametric Designs
One of the main motivations for choosing theorem proving as an approach for
hardware verification is the expressiveness it provides. The Kôika language,
however, is still lacking in this regard. One of the main issues with Kôika is that it
cannot type check parametric hardware descriptions. These are descriptions that
refer to unspecified design variables, which are crucial for the abstraction of the
implementation as well as for the generalization of proofs. In fact, Kôika proofs
can only reason over typed actions, as the evaluation semantics are defined exclu-
sively for them. Consequently, typing of parametric descriptions is essential for
reasoning about abstract designs. Examples of such designs include n-bit adder
circuits, FIFOs of arbitrary data size, or even an entire router network with an
unknown 2D structure.

In order to overcome this limitation, different approaches have been evalu-
ated. The following is first going to explain the details of Kôika’s original
parsing implementation to give an impression where this limitation originated.
This knowledge is then used to develop different approaches for its solution. In
detail, two solutions are proposed, the first one, presented in Section 3.3, modifies
the existing type checker, while the second, explained in Section 3.4, builds a
completely new language frontend.

3.1 Previous Type Checking Implementation

To understand the type-checking algorithm of Kôika, it is necessary to take a step
back and get an overview of the whole frontend as visualized in Figure 2. This
frontend consist of two main components, the parser and the type checker. Actually,
there also exists a third component called the lexer, which operates even before the
parser, turning the input string into a sequence of tokens. This conversion, how-
ever, is rather irrelevant as it is almost completely abstracted away by the utilized
parser library. Thus, it is only mentioned here for completeness. The tokens are
then processed by the parser, which builds a tree structure called abstract syntax
tree (AST) depending on the precedence levels of the language constructs. Up until
this point, no semantic analysis has happened, only the syntax of the input has
been validated. Following the parsing, the type checker then traverses the AST to
validate the language’s semantics. Typically, the type checker is concerned with
verifying that arguments produce the correct type of value for the place where
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they are used, but also properties like variable scoping are validated during the
AST traversal.

parsing typingKôika
description

untyped
AST

typed
AST

Figure 2: Kôika frontend overview

As Kôika is an embedded language in Rocq, it uses Rocq’s extensible notation
system to create a custom parser. This parser produces untyped ASTs, an example
of which can be seen in Listing 1. Additionally, the example demonstrates that the
AST does not contain any information about the type of a or b at this point. In fact,
even if both would have conflicting types like bits_t 4 and bits_t 7, the parser
would still generate the same AST. To be precise, this information is actually part
of the AST, but it is only stored in the function node which is higher up in the
hierarchy than the shown excerpt.

parsingfun min (a: bits_t 4) (b: bits_t 4)
    : bits_t 4 =>

  if a < b then a else b

UIf (UBinop (UBits2 (UCompare cLt))
            (UVar "a")
            (UVar "b"))

    (UVar "a")
    (UVar "b")

Listing 1: A simple minimum function and its AST

To make sure that the implementation is actually typed correctly, the Kôika
compiler uses a type-checking function which recursively traverses the AST. This
function assigns a type to each node and simultaneously checks if all assigned
types line up. In case the function succeeds, it returns a very similar AST which is
now annotated with types, as can be seen in Listing 2. As shown, all variables are
assigned with their type, note that even the binary comparison is assigned the bit
width of its operands. However, in case this type checking fails it returns an error
and the whole compilation aborts.

If (Binop (Bits2 (Compare cLt 4))
          (Var (... ("a", bits_t 4) ... ))
          (Var (... ("b", bits_t 4) ... )))
   (Var (... ("a", bits_t 4) ... ))
   (Var (... ("b", bits_t 4) ... ))

Listing 2: Typed AST of the minimum function

3.2 Shortcomings in the Type Checker

The problem with this approach arises when type checking a parametric function
like the adapted version of min shown in Listing 3. Note how this description
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differs from Listing 1 by generalizing over the bit sizes of a and b using the
parameter sz. When processing this description, the type checking would neither
result in a success nor in a precise failure. It results in an unfinished state unable
to make progress reporting “Tactic failure: Unexpected type checker output”
with a blown up error message of thousands of lines.

fun min (a: bits_t sz) (b: bits_t sz) : bits_t sz =>
  if a < b then a else b

Listing 3: A generalized minimum function

Upon closer examination of the error message, it becomes evident that the type
checker failed to make progress when computing the term eq_dec sz sz. Instead, it
resorted to exhaustively unfolding and computing all possible terms, ultimately
resulting in an excessively large error message.

This issue arises from the type checker’s implementation as a function, which
relies on an equality decision procedure to programmatically determine whether
two given types are equal. This procedure, eq_dec, needs to be implemented
separately for every Kôika type. In case of the min function, for instance, the
type checker needs to compute the equality of two bit vector types bits_t n and
bits_t m. This decision is, in turn, reduced to checking the equality of the natural
numbers n and m. A condensed version of this decision procedure for natural
numbers, with certain details omitted, is presented in Listing 4.

Fixpoint eq_dec (n m : nat) : {n = m} + {n <> m} :=
    match n, m with
    | O   , O    => left eq_refl
    | S _ , O    => right ...
    | O   , S _  => right ...
    | S n', S m' => ... eq_dec n' m' ...
    end.

Listing 4: Decidable equality for natural numbers

To better understand its functionality, natural numbers should be considered
in terms of their internal representation, where each number is encoded as a
sequence of successors of zero. For example, the number 4 is represented as
the forth successor of zero: S (S (S (S O))). The decision procedure then takes
two arguments, n and m, and determines their equality based on their outermost
constructors. If both are O, their equality is trivially established by reflexivity. If
one is a successor while the other is O, they cannot be equal, and a proof of their
inequality is provided. In the final case, where both are successors, the procedure
is applied recursively to establish their equality based on the equality of their
predecessors.
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When applying the procedure to concrete values from the description in
Listing 1, the equality of the types bits_t 4 and bits_t 4 can be easily determined
by the eq_dec function. A corresponding call graph illustrating this invocation is
presented in Figure 3.

eq_dec (S (S (S (S O)))) (S (S (S (S O))))
eq_dec    (S (S (S O)))     (S (S (S O))) 
eq_dec       (S (S O))         (S (S O))  
eq_dec          (S O)             (S O)   
eq_dec             O                 O    
eq_refl                                   

Figure 3: Kôika frontend overview

However, when type checking the general description from Listing 3, the type
checker lacks knowledge of the concrete value of sz. Although both types refer to
the exact same variable and must therefore hold the same value, this information
is not accessible to the type-checking algorithm. Moreover, the algorithm cannot
pattern-match on sz, as it is unknown whether it is a successor or zero. Conse-
quently, the existing type-checking implementation fails to make progress at this
stage. It does not produce an AST, even though the types are correct. In fact, a
corresponding typed AST could be constructed manually by providing a special
proof of equality.

Thus, an alternative approach is necessary to circumvent this limitation, by
solving these type equalities in an environment where the equality of variable
references can be leveraged.

3.3 Ltac Approach

One of these environments is the context of Ltac scripts. Ltac is a meta-program-
ming language integrated in the Rocq proof assistant [Del00]. It is typically used
to automate the construction of proofs through the creation of specialized tactics.
These tactics are algorithms executed in an environment where they can manip-
ulate the proof goal and its hypothesis, or search for specific patterns and apply
theorems.

As a consequence, the situation in which two types refer to the same variable
can be identified through a specific pattern and addressed with a dedicated
proof. Specifically, this pattern takes the form eq_dec ?n ?n, where ?n represents
a placeholder for an arbitrary term. To ensure the pattern matches correctly,
the previous strategy — which greedily unfolded every term — had to be
replaced. Otherwise, the unfolding of the identifier eq_dec into its definition
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would have prevented the pattern from matching. Instead, the combined tactic
“with_strategy opaque [eq_dec] cbn” has been employed. In this tactic, cbn per-
forms a quite similar evaluation, while the former strategy modifier makes sure
that eq_dec is not unfolded by marking it opaque. Unfortunately however, this
tactic is less efficient than the original one, resulting in slower type checking. Thus,
it is integrated as a fallback and only activated in case the original tactic fails.

Following this approach, it is possible to build a term representing the type-
checked version of the min function. This term, however, is not the typed AST
itself. Instead, it consists of an application of the type-checking function to the
untyped AST together with a proof that this application results in a success. In
fact, the same kind of term is generated when successfully type checking a non-
parametric description with the original implementation.

Unfortunately, this term proves impractical for use in formal reasoning. A
primary challenge stems from the necessity to reason about the structure of the
hardware description, which requires computing the typed AST. However, eval-
uating this term to derive the typed AST is inherently leading to an excessively
verbose representation. Function calls are fully inlined, and struct and enum
definitions are entirely expanded within each typing expression. For complex
circuits, this results in huge terms, significantly impeding the performance of
the interactive proof infrastructure. Moreover, this inlining hinders the modular
composition of formal proofs by destroying the structure of the AST. Lastly,
the evaluation itself might lead to excessive computational overhead, due to the
exhaustive nature of these tactics.

3.4 Typed Parsing

Since merely adapting the previous type-checking implementation proved insuf-
ficient, a fundamentally new approach was required. Ideally, this new approach
should simultaneously address both challenges: typing of parametric descrip-
tions and obtaining the typed AST.

Fortunately, such an approach was already outlined by the original authors
of Kôika in an experience report [BP21]. However, their implementation had not
been publicly available until recently. Consequently, this work independently
adopted and developed the same methodology, going further with the implemen-
tation and addressing additional challenges that were not explored in the original
proposal.
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To overcome the problem of computing the typed AST from the untyped
one, this approach skips the intermediate step of the untyped AST altogether and
instead directly produces a typed AST while parsing. However, for this to work,
the type system of Kôika needs to be expressed in terms of Rocq’s type system,
such that every correctly Rocq-typed AST represents a correctly Kôika-typed
hardware description. Languages embedded this way are known as intrinsically
typed [Bac+17, Ben+12].

In this manner, the second issue related to parametric designs is also resolved,
as Rocq’s type checker is indeed sufficiently powerful to directly unify identical
variable references without computing their values. However, to leverage these
capabilities, it is necessary to invoke Rocq’s type checker directly on the typed
AST. Since type checking occurs immediately after parsing, a new parser was
required, which directly emits typed syntax elements.

For a better understanding of the difficulties of building a new parser, the
next section is first going to give an overview of the Kôika syntax and the parsing
framework before going into the implementation details.

3.4.1 Kôika’s Syntax

From a high-level perspective each Kôika program consists of a set of actions
along with a schedule that defines their execution order. However, the compo-
sition of these components into a Kôika program is entirely handled within
Rocq, making it irrelevant for Kôika’s parser. This parser is solely responsible for
processing individual actions in isolation. The constructs available for defining
such actions are formally specified in Definition 4.

Each of these constructs corresponds to a rule in the parser and is represented
as a node in the final AST. As Kôika is implemented within Rocq, it leverages
Rocq’s extensible parser to define these rules.

3.4.2 Rocq’s Extensible Parser

Rocq allows extending its own parser through a series of commands. These exten-
sions, referred to as notations, are expanded into their definitions while parsing.
Thus, as they are expanded before type checking, they are similar to macros in
other languages. However, this notation system is sufficiently powerful to support
the definition of a whole embedded language within it.

As an example, the original parsing rule of the sequence construct is
presented in Listing 5. In this rule, the left-hand side defines a pattern to be
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𝖠𝖼𝗍𝗂𝗈𝗇𝗌 a ≔ x variable
| c constant
| a ; a sequence
| let x := a in a binding
| x := a assigment
| if a then a

else a
branching

| readp(r) reading
| writep(r, a) writing
| ∘1 a unary op.
| a ∘2 a binary op.
| a [ a ] bit select
| f(a, …, a) int. fun.
| extcall f(a) ext. fun.
| struct sig {

 (n := a)*
}

struct init.

| fail abort
𝖯𝗈𝗋𝗍𝗌 p ≔ 0 | 1

𝖴𝗇𝖺𝗋𝗒 𝖮𝗉. ∘1 ≔ !
𝖡𝗂𝗇𝖺𝗋𝗒 𝖮𝗉. ∘2 ≔ || | && | ^ | != | ==

| < | <= | > | >=
| <s | <s= | >s | >s=
| ++ | << | >> | >>>
| + | - | *

𝖢𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝗌 c ≔ 0b(0|1)+ | 0o(0-7)+

| 0d(0-9)+

| 0x(0-9|a-f)+

Definition 4: Formal syntax of Kôika

matched, while the right-hand side specifies the corresponding term to which it is
expanded. Within the pattern, a and b are recursively parsed as actions, whereas
the semicolon is treated as concrete syntax due to its placement within single
quotes.

Notation "a ';' b" := (USeq a b)

Listing 5: Untyped sequence parsing rule

3.4.3 New Parser Implementation

Given the existence of both typed and untyped AST nodes, an initial strategy for
implementing typed parsing could involve substituting all untyped constructs
with their typed counterparts within the parsing rules. After this transformation,
the new notations closely resemble their original counterparts, as illustrated by
the typed parsing rule for the sequence construct in Listing 6. In this rule the only
difference is the substitution of USeq with Seq.

Notation "a ';' b" := (Seq a b)

Listing 6: Typed sequence parsing rule

This approach proves effective for most small and simple actions. However,
when these notations are nested to build more complex descriptions, Rocq’s type
checker occasionally fails to verify the correctness of their types. A minimal failing

21



Chapter 3 Typed Parsing for Parametric Designs

example is presented below in Listing 7, where a value is first read from the
register reg and then a single bit of this value is selected.

read0(reg)[0b1]

Listing 7: Action with typing problems

For this action Rocq’s type checker produces a warning indicating that it was
unable to confirm whether a single bit suffices for the selection. For instance, if
the register had a size of 4 bits, selecting a specific bit would already require a
2-bit index. The underlying issue here, is that Rocq is unable to infer the size of
the register, on which the index size depends. To understand why this problem
occurs and how it needs to be solved, a deeper analysis of Rocq’s and Kôika’s type
checking is necessary.

3.4.4 Typing Issues

In Rocq, type checking a term involves recursively determining the types of all
its arguments before unifying the resulting type of the term with its expectation.
This expectation might be an explicit type annotation, or a parameter type if the
term itself is used as an argument within another expression. As a consequence,
type checking operates bottom-up, i.e., types of inner expressions are determined
first, before the overall type of the term is unified.

Since Kôika ASTs are constructed using Rocq terms, their type checking
follows the same order. However, Kôika employs complex types to enforce the
correctness of its ASTs. For instance, each AST node carries a list in its type,
which specifies the set of local variables in scope, together with their type. This
set, referred to as variable signature, must be referenced by variable identifiers to
ensure their validity within the current scope.

Listing 8 illustrates this standard type-checking process on the example of a
Bind construct, representing the AST node of “let x := a1 in a2”. In this example,
the signature is simplified to include only variable names. For this term the
first argument a1 is typed first. However, as indicated by the meta-variable ?sig,
the signature remains unknown at this stage. The same applies to the second
argument a2, where only the newly bound variable "x" is known and appended
to ?sig. Consequently, the validity and type of references to "d" or "b" cannot be
established while typing these actions. The meta-variable ?sig is only resolved
once the entire term has been processed and its type is unified with the expected
type action ["d";"b"].
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Bind "x" 

action ?sig
⏞a1 

action ("x"::?sig)
⏞a2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

action ["d";"b"]

Listing 8: Expected types of a Bind term

Generalizing this example, the issue with the variable signature is that it needs to
be constructed top-down, which contrasts with the standard parsing order. This
discrepancy stems from the fact that the signature is derived from the structure
of the AST. Typically, the root construct of the AST is initialized with an empty
signature. This signature must then be propagated downward to ensure that
binding constructs transmit their bound identifiers into nested actions.

Similar issues arise with the register typing function, which assigns a type
to each register, as well as with the typing function of external procedures. These
functions are likewise specified on the top-level type annotation of a description
and must be forwarded into nested actions to resolve the types of reads and writes,
as well as the types of external function calls.

To address these issues, it was necessary to modify the order of Rocq’s type
checking, such that these meta-structures were propagated prior to typing the
inner actions. Fortunately, Rocq provides bidirectionality hints which allow modi-
fying the unification order. Using these hints, Rocq can be instructed to unify
the resulting term type first, which effectively transfers the necessary structures
into the typing context. An example of such a hint is shown in Listing 9, where
the position of the ampersand & indicates when the unification of the term type
should occur.

Arguments Binop & ... {R Sigma} {sig} fn a1 a2

Listing 9: Bidirectionality hint for the BinOp construct

This hint already enables the type checking of the action from Listing 7, which
motivated this modification. In this action the bit selection is represented by a
BinOp in the AST, which now correctly forwards the register typing function due
to the bidirectionality hint. Thus, enabling the read construct to determine the
size of the register. However, for completeness, i.e., to ensure that the necessary
information is propagated to every node of the AST, each construct has to be
modified using such a hint.

3.4.5 Return Type Unification

Unfortunately, employing these bidirectionality hints introduces a different issue.
Ideally, certain parts of the term’s type should be unified early, as discussed in the
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previous section, while others should follow the default behavior and be unified
last, as for example the return type of an action. Rocq’s bidirectionality hints
however, do not provide such fine-grained control. Instead, the entire type has to
be unified at once.

A minified example where this behavior results in a problem is presented
through a simple bit vector concatenation in Listing 10. The issue arises due to
the early unification of the return type, caused by the bidirectionality hint. As this
unification occurs before the sizes of the bit vectors are determined, the return
type of the concatenation is initially inferred as bits_t (?n + ?m). However, the
type annotation expects the type bits_t 10, leading to a unification failure because
Rocq cannot directly align the addition expression with the concrete value 10.
This unification can only succeed after type checking the nested actions, which
ultimately resolves the type to bits_t (4 + 6). Only once these precise values are
determined, Rocq can evaluate the addition and verify that its result matches 10.

0b0000 ++ 0b000000 : bits_t 10

Listing 10: Return type unification problem

The solution proposed here is to postpone the unification of these types by intro-
ducing a wrapper function delay_tau_uni with an additional parameter, which
is resolved last and serves as a proof of the type equivalence. This wrapper
function is illustrated in Listing 11. It solves the issue by splitting the return type
into to separate types tau_in and tau_out. This prevents Rocq from attempting to
unify these types prematurely. Instead, unification only occurs when the proof H
is encountered. By this time however, the nested action a has already been fully
typed, allowing the proof to follow naturally by reflexivity.

Definition delay_tau_uni {tau_in tau_out R Sigma sig}
  (a : action' R Sigma sig tau_in) (H: tau_in = tau_out)
  : action' R Sigma sig tau_out :=
    match H with
    | eq_refl => a
    end.
Arguments delay_tau_uni & ... {R Sigma sig} a H.

Listing 11: Function to delay the unification of the return type

To solve the bit vector example, this function could be wrapped around the con-
catenation, causing the unification of tau_in with bits_t (?n + ?m) and of tau_out
with bits_t 10. Then, when reaching the proof H, ?n and ?m would be already
resolved and their equality could be established trivially.
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To systematically prevent these return type errors, the wrapper function
should be applied wherever a specific return type is expected to delay the
unification of the inferred type with this expectation. Such positions include
the condition of an If construct, where a single bit is expected, or the second
argument of a binary operation, which is frequently required to match the type
of the first argument.
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4 Hoare Logic for Modular Reasoning
To overcome the scalability problem of Kôika and enable proofs over more
complex circuits, it was necessary to make these proofs more modular by decom-
posing them into smaller subproofs. Each smaller proof would then focus solely
on reasoning about a specific part of a circuit.

For example, consider the proof goal that a program a1 ; a2, consisting of
two parts, satisfies a property P. As formalized in Rule 2, a modular proof would
establish this goal through two subproofs: one demonstrating that a1 satisfies
P1, and another one showing that a2 satisfies P2. To achieve this, an algorithmic
approach is required to transform the property P into the properties P1 and P2,
ensuring that their composition logically implies P.

a1 ⊢ P1 a2 ⊢ P2 assuming P1 ∧ P2 → P
a1 ; a2 ⊢ P

(2)

This leads to the concept of program logics, which are formal systems designed
for reasoning about the evaluation of language constructs. While the provided
example focuses solely on the sequence construct, the underlying concept can be
applied more generally, as demonstrated in the following sections. The remainder
of this chapter is first going to give an overview of Hoare logic, a prominent
example of a program logic in Section 4.1, before describing the details of this
logic’s implementation in Kôika.

4.1 Hoare Logic Background

In 1969, C. A. R. Hoare introduced a program logic for reasoning about functional
program correctness, which later became known as Hoare Logic [Hoa69]. At the
core of this logic system is the notion of a Hoare triple, which is used to formally
express semantic properties over the execution of a program. Each Hoare triple is
structured as follows:

{P} S {Q}

In this notation, P and Q are logical assertions about the machine’s state, while
S represents a program. In the original work of Hoare, these programs were
command sequences of a simple imperative language, but subsequent works
also developed rules for more complex constructs including recursive procedures
[Hoa71] and concurrency [Hoa72].
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The left assertion of the triple, denoted as P, is termed the precondition, as it
specifies an initial hypothesis which is assumed to hold. Likewise, Q is referred to
as the postcondition, representing the expected state after the execution of S. The
Hoare triple as a whole asserts that whenever P holds in a given program state,
then the execution of S will result in a state where Q is satisfied.

4.2 Hoare Triples for Kôika

Since Kôika already provides execution semantics, Hoare triples should be
defined based on these semantics to ensure consistency. This approach offers the
additional advantage that the Hoare rules introduced later can be formally proven
correct with respect to these semantics, rather than being postulated as axioms,
as originally done by Hoare.

In detail, Kôika’s operational semantics are expressed through a big-step
evaluation function, which directly computes the value of a given expression. This
evaluation function operates based on a register environment ℛ, a context Γ , and
two distinct logs — a scheduler log L and an action log l. The register environment
stores the register values at the beginning of the cycle, while the context maintains
the current values of local variables. The logs track prior reads and writes, with
a crucial distinction, the action log only captures register accesses of the current
action, while the scheduler log aggregates the accesses of all preceding actions in
the schedule. This distinction is necessary to discard the accesses of the current
action in case it is aborted. This evaluation function is formally expressed as
follows:

ℛ, L ⊢ (l, Γ , a) ↓ (l′, Γ ′, v)

In this notation, a denotes the action being evaluated and v its resulting value.
Notably, this function only produces updated versions of the context and the
action log, while the scheduler log and register environment remain uneffected
by the evaluation process.

In the context of Hoare triples, the assertions P and Q must be capable of
reasoning about the entire state of the circuit. As a result, they require access to
the register environment, the variable context, and both logs. Kôika’s Hoare triple
definition then follows from Hoare’s original one. It states that whenever P holds
in a given state and the big-step evaluation function ↓ is applied to an action a in
this state, then Q must hold in the resulting state. A formal version of this notation
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is shown in Definition 3. In this formula, the notation C ⊢ P should be interpreted
as: property P is satisfied in the context C.

ℛ, L, l, Γ ⊢ P ℛ, L ⊢ (l, Γ , a) ↓ (l′, Γ ′, v){P} a {Q} ≔
ℛ, L, l′, Γ ′ ⊢ Q(v)

(3)

It should be noted that in this formulation the postcondition Q additionally
depends on the computed value v. This dependency arises because every Kôika
action is an expression that evaluates to a value, whereas the imperative language
originally used by Hoare consisted solely of statements, which do not produce
values. Consequently, from this point on, the postcondition of a Kôika Hoare
triple is assumed to be an assertion that depends on the evaluation result. The
notation Q(v) is used to specify a particular value, while {v. Q} binds the value
to a name v, i.e., {v. Q(v)} is equivalent to {Q}. The context variables ℛ, L, l, and
Γ  are similarly available within the environment enclosed by braces but named
implicitly. They may also be specified explicitly for an assertion by the ⊢ notation,
i.e., {P} is equivalent to {ℛ, L, l, Γ ⊢ P}.

Unfortunately, due to Kôika’s logs, this definition turned out to be rather
inconvenient to use. For example, to state that a register r holds a value vr, one
must consider prior writes to this register in the same rule (write(r, vr) ∈ l),
writes of prior rules (write(r, vr) ∈ L) and the register valuation from the start of
the cycle (Γ[r] = vr). Ideally, it would be preferable to first commit the logs to ℛ,
allowing reasoning to be conducted solely on this unified state.

However, to allow the combinations of the logs with the register environ-
ment, it is necessary to show that such a transformation would not impact the
evaluation semantics. In detail, it needs to be shown that the evaluation on an
environment where the logs have been committed into the register context results
in the same value and updates as the normal evaluation. This statement can be
seen formally in Rule 4. In this rule the notation ℛ ⊕ l represents the update of
environment ℛ with log l, while ⧺ denotes log concatenation and [] an empty log.

ℛ, L ⊢ (l, Γ , a) ↓ (l⧺l′, Γ ′, v) LogIrr
(ℛ ⊕ L ⊕ l), [] ⊢ ([], Γ , a) ↓ (l′, Γ ′, v)

(4)

Assuming that Rule 4 holds, one might question the necessity of maintaining both
logs instead of directly updating the register valuation. The rationale here is that
this rule assumes that the evaluation succeeds in the first place. However, the
determination of whether it succeeds cannot be made based solely on the register
evaluation. Therefore, the logs are indeed necessary for the evaluation, and the
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rule only asserts that the precise output, in case the evaluation succeeds, could
also be derived without logs. In the following, this rule is termed log irrelevance.

4.2.1 Achieving Log Irrelevance

The problem with this approach is that Rule 4 cannot be proven correct under
the original execution semantics of Kôika. In detail, there is one special case
which prevents this proof. To better understand this case, it is explained with an
example. Consider an action log containing a write to a register [wr(r, vl), …] and
a register valuation R such that R[r] = vr and vl ≠ vr. In this case, the evaluation
of an action read0(r) would result in the value from the beginning of the cycle vr.
However, in case the logs and the valuation would have been collapsed, the only
value kept associated to r would be the one of the last write vl and there would
be no way to recover the value vr. In other words, it turns out that the log is not
completely irrelevant for the result of the evaluation.

As a consequence, it became necessary to adapt the semantics of Kôika for
the satisfiability of this rule. Specifically, the evaluation was constrained such that
performing a readp after a writep would lead to an abort. With this modification,
the log serves exclusively to determine whether an abort occurs. Furthermore,
this adaptation is relatively minor, as reading from a register after writing to it
was already considered poor coding practice in Kôika.

With the log irrelevance theorem established, a modified version of the Hoare
triple definition can be constructed while preserving its original expressiveness.
A formal definition can be seen in Rule 5.

ℜ, Γ ⊢ P
ℛ, L ⊢ (l, Γ , a) ↓ (l⧺l′, Γ ′, v) LogIrr
ℜ, [] ⊢ ([], Γ , a) ↓ (l′, Γ ′, v){P} a {Q} ≔ with ℜ ≔ ℛ ⊕ L ⊕ l

and ℜ′≔ ℛ ⊕ L ⊕ l′ℜ′, Γ ′ ⊢ Q(v)
(5)

In this version the properties P and Q reason solely over the local variable valua-
tions Γ/Γ ′ and the combined register valuations ℜ/ℜ′, thereby simplifying both
assertions and proofs.

4.2.2 Stating Aborts

In classical Hoare logic, a Hoare triple always assumes that the command se-
quence terminates. Consequently, if a program fails to terminate, any conclusion
can be derived from it. This enables the formalization of non-termination using
an unsatisfiable postcondition. For example, the Hoare triple {P} S {⊥} expresses
that S does not terminate under the assumption P.
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However, in contrast to most imperative languages, Kôika guarantees that
descriptions always terminate. On the contrary, Kôika descriptions instead have
the notion of aborts. Consequently, as the definition of Kôika Hoare triples
assumes actions to succeed, the unsatisfiable postcondition can be used in Kôika
to state that an evaluation aborts.

4.3 Hoare Rules

As Hoare triples are only used to formally state expectations about a program,
additional infrastructure is necessary to actually reason over these statements and
to construct formal proofs. For that purpose, Hoare logic provides a set of axioms
and inferences rules. These rules are largely dependent on the language used,
with at least one rule required for each language construct to ensure comprehen-
sive reasoning. Specifically, each rule defines how a command’s execution alters
the program’s state and how this, in turn, affects the pre- and postcondition.

4.3.1 Rules for Language Constructs

One prominent example rule of Hoare logic, is the one for variable assignment
shown in Rule 6. This rule is actually rather an axiom as it does not contain any
premises. The notation P[E/x] denotes that every free occurrence of variable x in
P is replaced by the expression E.

Assign
{P[E/x]} x ≔ E {P} (6)

As an example, consider the postcondition {x = 5} and assume x has been
assigned the expression y + 4, then the required minimal precondition is
{y + 4 = 5}.

Another fundamental Hoare rule worth mentioning is the sequencing rule
as illustrated in Rule  7. This rule states that a sequence of commands can
be decomposed by providing an intermediate assertion Q. Specifically, Q must
follows from P through execution of the first sequence S1 and must, in turn imply
R upon execution of sequence S2. This rule now essentially corresponds to the
goal mentioned in the beginning of this chapter. It allows for the composition of
a proof over a sequence construct from two smaller proofs.

{P} S1 {Q} {Q} S2 {R} Seq
{P} S1; S2 {R}

(7)
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4.3.2 Language-independent Rules

Furthermore, Hoare logic additionally includes language-independent rules to
rewrite assertions as intermediate proof steps. These rules include one for
substituting the precondition and another for the postcondition. The former is
commonly referred to as precondition strengthening, as the most general precondi-
tion — i.e., ⊤ — is considered the weakest, since it is implied by the broadest set
of assertions. Likewise, the latter is referred to as postcondition weakening, since,
in contrast to the precondition, the postcondition is expected to be as specific as
possible.

P → P' {P'} S {Q} StrenPre
{P} S {Q}

{P} S {Q′} Q′ → Q WeakPost
{P} S {Q}

Both rules incorporate the transitivity of the implication from classical logic into
Hoare Logic. As a result, both rules serve a very similar purpose and are often
combined into a single rule of consequence as shown in Conseq.

P → P' {P′} S {Q′} Q′ → Q Conseq
{P} S {Q}

4.4 Hoare Rules for Kôika

To enable reasoning over Hoare triples in Kôika, it was necessary to implement a
Hoare rule for each language construct. For that, it should be noted that there are
multiple ways to define a Hoare rule for the same syntax element. At first, this may
seem rather obvious as the precondition strengthening and postcondition weak-
ening rules can be used to derive an infinite amount of less expressive Hoare rules.
Take as an extreme example Rule 8, demonstrating the least expressive Hoare
rule for an action consisting of a constant. However, even when considering only
rules with maximal expressivity different versions exist. As an example, Rule 9,
gives the most precise postcondition for an arbitrary precondition, while Rule 10,
gives the most general precondition for an arbitrary postcondition. However,
these rules serve a different purpose, one can be used for backwards reasoning
while the other is rather suited for forwards reasoning. Consequently, to design a
coherent system it is necessary to decide for one or the other approach and build
all rules according to the same scheme.

c is a constant
{⊥} c {⊤}

(8) c is a constant
{P} c {v.v = c ∧ P}

(9) c is a constant
{Q(c)} c {Q}

(10)

32



4.4  Hoare Rules for Kôika

4.4.1 Predicate Transformers

Such a coherent Hoare rule system can be regarded as a predicate transformer.
Originally introduced by E. Dijkstra [Dij75], a predicate transformer provides a
systematic approach to derive the weakest precondition necessary for a given
postcondition, or conversely, the strongest postcondition resulting from a given
precondition. In this sense, predicate transformers perform a symbolic execution,
translating the effects of statements into logical predicates. As a result, they
reduce the verification of a Hoare triple {P} S {Q} into the problem of proving
the implication P → wp(Q, S), where wp(Q, S) denotes the weakest precondition
of S to satisfy the postcondition Q. It is important to emphasize that while this
work technically implements Hoare triples rather than a dedicated predicate
transformer function, it adheres closely to their underlying principles.

Since both, weakest precondition and strongest postcondition, are equally
expressive, this work adopts the weakest precondition method, as backward
reasoning aligns more naturally with the reasoning style of theorem provers. In
detail, with this style, a proof always starts at a Hoare triple containing a desired
postcondition and then progresses through the repetitive application of Hoare
rules which match the current goal. These applications substitute the goal with
a new one for each premise. Consequently, all rules must have an arbitrary
postcondition in their conclusion and an arbitrary precondition in each premise.
Intuitively, this criterion enables the composition of these rules, as the arbitrary
pre- and postconditions can always be unified with their more specific counter-
part.

The following section is going to present the implemented Hoare rules and
explain their semantics.

4.4.2 Rules for Kôika

The rules Const, Var, and Read present the Hoare rules for the simplest Kôika
constructs. Since these rules are designed for backward reasoning, they should be
interpreted in that direction, beginning with the postcondition. In essence, these
three constructs only produce a value without altering their environment. As a
result, for an arbitrary assertion Q to hold in the postcondition, it must also hold in
the precondition. However, because the precondition does not have direct access
to the produced value, this value must be explicitly passed. For the Const rule
this value can be directly inferred from the action, while Var and Read needs to
retrieve it from the variable context and the register valuation respectively.
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c is a constant Const
{Q(c)} c {Q}

x ∈ Var Var
{Q(Γ[x])} x {Q}

r ∈ Reg Read
{Q(ℜ[r])} readp(r) {Q}

Another quite simple rule is the sequence rule, which closely resembles the
original Hoare rule, with the only difference being that the result v of evaluating
a1 is explicitly discarded. This value holds no significance, as the return type of
the first action in a sequence must be a bit vector of length zero. Consequently,
the only possible value for v is the empty bit vector ε.

{P} a1 {v. Q} {Q} a2 {R} Seq
{P} a1 ; a2 {R}

The If rule follows a similar concept to the Seq rule, with the difference that the
result v of action ac is not discarded but used to decide which postcondition
should hold. In fact both rules could be considered special cases of a more general
match rule which first evaluates a condition and then uses this value to decide
between an arbitrary amount of postconditions, each being a precondition of its
respective branch. For Kôika, however, such a general match rule is not necessary,
as Kôika’s match statement is only syntax sugar for nested if-then-else statements.

{P} ac {v. Qt if v = 0b1 otherwise Qf} {Qt} at {R} {Qf} af {R} If
{P} if ac then at else af {R}

More interestingly, the Assign rule gives an example involving context manipu-
lation. Reading this statment backwards again, it states that a postcondition of an
assigment likewise needs to hold on the previous context Γ  where the variable x
has been assigned the value v explicitly, denoted as Γ[x ↦ v]. Additionally, as the
assignment is a statement with no return value, the empty bit vector ε is passed to
Q directly. Just like Var and Read were similar also Write closely follows Assign.
Their only difference is that Write modifies the register valuation ℜ instead of the
variable context Γ .

{P} a {v. ℜ, Γ[x ↦ v] ⊢ Q(ε)} Assign
{P} x := a {Q}

{P} a {v. ℜ[r ↦ v], Γ ⊢ Q(ε)} Write
{P} writep(r, a) {Q}

The Bind rule also modifies the context, adding a variable assignment. However,
its effect is limited to the execution of an action a2. Afterwards, the variable x is
removed from the context again, all other variables are kept with their modifica-
tions from a2.

{P} a1 {v. ℜ1, Γ ⊕ [x ↦ v] ⊢ Q} {Q} a2 {ℜ2, Γ \ {x} ⊢ R} x ∈ Var Bind
{P} let x := a1 in a2){R}
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For the binary and unary expressions of Kôika, their operands are evaluated to
values and their effects are defined by denotational semantics represented by the
double brackets ⟦…⟧. Such denotational semantics establish the meaning of oper-
ations by translating them into pre-existing and well-defined concepts. While this
translation then depends on the exact operation used, the Hoare rule still holds for
every binary operation. Thus, the ∘ symbol is used to denote an arbitrary binary
or unary operation. Also note how BinOp uses a nested triple to extend the scope
of v1 to access both v1 and v2 in the nested postcondition.

{P} a1 {v1. Q ∧ {Q} a2 {v2. R(⟦v1 ∘2 v2⟧)} } BinOp
{P} a1 ∘2 a2 {R}

{P} a {v. Q(⟦ ∘1 v⟧)} UnOp
{P} ∘1 a {Q}

The same nesting technique is leveraged for the function call rule IntCall. In this
rule, all arguments a1 to an are first evaluated to their values v1 to vn, which are
then used to build the local context of f. The function f itself has no access to the
local context of its caller, only to the context built from the argument values. After
the function’s execution, the postcondition R must again hold on the context Γn
returned by the last argument’s evaluation, because the condition R conception-
ally belongs to the caller. Additionally, similar to the Seq rule, each argument has
a postcondition which matches the precondition of the next argument.

{P0} a1 {v1. P1 ∧ .. {Pn−1} an {vn. (ℜn, [v1, …, vn] ⊢ Pn) ∧ {Pn} f {ℜ, Γn ⊢ R}} .. } IntCall
{P0} f(a1, …, an) {R}

Lastly, the action fail, which explicitly causes a rule to abort, can satisfy any
postcondition as dicussed in Section 4.2.2. This behavior is directly reflected by
its associated Hoare rule.

Fail
{⊤} fail {Q}
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5 Evaluation
The evaluation is conducted in two parts. In the first part, the parsing capabilities
of the new frontend are assessed. Then, in the second part, the framework as a
whole is considered with focus shifted towards the Hoare proof infrastructure.

5.1 Typed Parsing

To examine the effectiveness of the new parser, it was tested as a drop-in replace-
ment for different existing Kôika descriptions. The following will go over some
instances from the official Kôika examples [PM22] as well as one from its standard
library.

5.1.1 Typing Kôika’s Examples

For most of the official examples, the parser worked without problems right from
the start, including collatz.v, conflicts.v, conflicts_modular.v, cosimulation.v,
gcd_machine.v, and external_rule.v. Notably, it was possible to abstract the
queue implementation of one of them. Previously, this implementation had to be
dependent on the exact size of the data stored. However, with the new parser
it was possible to abstract over this type and even facilitate generalized proofs.
Listing 12 shows the implementation where bits_t 32 has been replaced with an
abstract type tau. This enabled the verification of data-independent properties
over this queue implementation. These properties were defined and proven using
the Hoare infrastructure, and are therefore discussed in Section 5.2.2. It should
be noted, however, that this queue is still rather basic as it can only store a single
data item.

fun enqueue0 (val: tau) : unit_t =>
  guard(read0(empty));
  write0(empty, 0b0);
  write0(data, val)

fun dequeue1 () : tau =>
  guard(!read1(empty));
  write1(empty, 0b1);
  read1(data)

Listing 12: Generalization of queue implementation

5.1.2 Typing Kôika’s Standard Library

Furthermore, the new parser was utilized to perform type checking on portions
of Kôika’s standard library. For instance, it successfully type checked the valid
function shown in Listing 13, which was not possible previously due to its depen-
dence on the parameter tau.
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fun valid (x: tau) : struct_t Maybe =>
  struct_t Maybe::{ valid := 0b1; data := x }

Listing 13: A function of Kôika’s std lib

Likewise, the entire FIFO implementation of the standard library was successfully
type checked while maintaining it parametric over the type of data stored. This
FIFO implementation bears some similarity to the queue depicted in Listing 12.

5.1.3 Design Flaws in the AST

An issue that emerged during these case studies exposed a design flaw in the type
definitions of the AST nodes. Specifically, in the unary and binary operations,
where the argument types and the return type are unified into a single one.

A simplified expression illustrating this issue is presented in Listing 14. In
this example, the specific bit vector values are irrelevant, as only their types
matter. Due to the and connective, the left-hand side and the right-hand side are
required to have the same type — more precisely, their return types must be equal.
However, since their argument types are stored within the same data structure,
they are unintentionally affected by this unification.

For the given example, the retSig function is intended to extract the last entry,
yielding the type bits_t 1 for both sides. However, because these types already
match syntactically, the retSig function is never evaluated. Instead, Rocq’s type
checker directly unifies the meta-variable ?sz with 1 to align both types. Unfortu-
nately, this results in an unnecessary restriction, forcing the variables a and b to
have the type bits_t 1.

bits_t (retSig {$ 1 ~> 1 ~> 1 $})

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(0b1 || 0b1) && 

bits_t (retSig {$ ?sz ~> ?sz ~> 1 $})

⏞⏞⏞⏞⏞⏞⏞(a > b)

Listing 14: Expression with incorrect unification

The only viable solution to this issue seems to be restructuring the types of
the unary and binary operations. However, implementing this change would be
time-consuming, as it interferes with large parts of Kôika’s implementation and
requires modifications throughout the codebase.

5.1.4 Escaped Functions

Another issue encountered relates to certain components of Kôika’s standard
library that make use of a special feature of the language to bypass the parser.
This mechanism allows portions of the AST to be generated through custom Rocq
functions. Such Kôika meta-programming facilitates the construction of complex
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macros by leveraging Rocq features, such as recursion, to systematically generate
large and repetitive sections of the AST. An example of such a macro could be
a switch tree that determines which register in a register file is read based on a
selector bit vector.

The original type-checking implementation attempted to handle these
macros by expanding them into their definitions. Through this approach, recur-
sive macros were unrolled as far as possible. If the resulting structure formed
a standard Kôika AST, the type checker could proceed as usual. However, if
any macros remained that could not be fully expanded, type checking would
ultimately fail.

Since these macros bypass the parser, actions that depend on them cannot
be seamlessly adapted by merely switching to the new parser implementation.
Instead, these macros must be manually re-implemented to directly generate
typed ASTs. However, by re-implementing them, developers can take advantage
of the typical benefits provided by the additional type information.

5.2 Hoare Infrastructure

To assess the usability and effectiveness of the proposed proof framework, it is
evaluated on different case studies with increasing complexity.

5.2.1 Verifying Parametric Descriptions

The first case study evaluates the applicability of the Hoare framework for veri-
fying parametric actions. To this end, a simple function from the collatz example
was selected and generalized to bit vectors of an arbitrary size sz, as shown in
Listing 15. Subsequently, the function was type checked using the new frontend
implementation.

fun times_three (a: bits_t sz) : bits_t sz =>
  (a << 0b1) + a

Listing 15: Simple function from collatz.v

The Hoare infrastructure was then assessed through a proof, demonstrating func-
tional correctness with respect to the multiplication of natural numbers. In detail,
as depicted in Listing 16, the proof goal asserts that the returned value of this
action is three times its input value. Notably, this input is specified by asserting
that the local variable a holds the value n, which is feasible due to the fact that all
parameters of a function are passed through the local context Γ, as mentioned in
Section 4.4.2.
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Theorem times_three_correct :
  ∀ sz n : nat,
  {{ Γ[a] = n }} times_three sz {{ r, r = 3*n }}

Listing 16: Correctness theorem for times_three

Using the BinOp rule as well as the Const and Var rules, the proof goal could be
transformed into the following equality:

(bits(n) <<b 1) +b bits(n) = bits(3 * n)

Then, to formally establish this equality, additional lemmas were required to
demonstrate the correspondence between operations on bit vectors and their
effects on the encoded numerical value. For example, one such lemma proves that
shifting a bit vector by one position is equivalent to multiplying its represented
value by two.

Nevertheless, the necessity of additional lemmas, to verify the alignment of
the implementation with its specification, is a separate concern. The Hoare logic,
for its part, performed as intended, reducing the verification process to the proof
of a single logical assertion.

5.2.2 Modularized Proofs

Building on this foundation, the next case study evaluates the modularization
of proofs through a more complex example. In this regard, the queue implemen-
tation from Listing 12 is examined.

One of the verified theorems is illustrated in Listing 17. This theorem asserts
that whenever a value n is enqueued, invoking the dequeue function will return
the exact same value. For this statement to hold, it is assumed that the queue is
initially empty, meaning the empty register is set to 1. Furthermore, the value n
is passed by asserting that a local variable a holds this value in the precondition
and subsequently using this variable as a parameter to enqueue0.

Theorem queue_correct :
  ∀ n: nat,
  {{ env[empty] = 1 ∧ Γ[a] = n }} <{ enqueue0(a); dequeue1() }> {{ r, r = n }}

Listing 17: Correctness theorem for queue implementation

Using the sequencing rule, this theorem can now be modularized using two
lemmas. One reasoning over enqueue0 and another one over dequeue1. These two
statements can be seen in Listing 18 and Listing 19, respectively.
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Lemma enq_correct :
  ∀ n: nat,
  {{ env[empty] = 1 ∧ Γ[a] = n }}
  <{ enqueue0(a) }>
  {{ env[data] = n ∧ env[empty] = 0 }}

Listing 18: Correctness lemma for enqueue0

Lemma deq_correct :
  ∀ n: nat,
  {{ env[data] = n ∧ env[empty] = 0 }}
  <{ dequeue1() }>
  {{ r, r = n }}

Listing 19: Correctness lemma for dequeue1

Assuming the validity of these lemmas, the proof of queue_correct follows
very naturally from the application of the sequencing rule, as demonstrated in
Listing 20.

Theorem queue_correct : ...
Proof.
  intros.
  eapply hoare_seq.
  - apply deq_correct.
  - apply enq_correct.
Qed.

Listing 20: Correctness theorem for queue implementation

Through the construction of this proof from smaller lemmas, it becomes easier to
understand the proof structure and to identify the source of reasoning errors.

Notably, the Hoare infrastructure was even able to automate significant parts
of the proofs for the two lemmas. In detail, it reduced them to the goals shown
in Listing 21 and Listing 22, which were trivial to prove using the provided
hypotheses.

env[empty] = 1 →
Γ[a] = n →
if env[empty]
  then Γ[a] = n ∧ 0 = 0
  else True

Listing 21: Proof goal of enq_correct
after Hoare automation

env[data] = n →
env[empty] = 0 →
if neg env[empty]
  then env[data] = n
  else True

Listing 22: Proof goal of deq_correct
after Hoare automation

5.2.3 Frame Problem

One issue that was encountered, during the evaluation of the proof infrastructure,
was the well-known limitation of Hoare logic referred to as the frame problem
[BMR93]. This problem describes the difficulty of utilizing first-order pre- and
postconditions to explicitly specifying which parts of the system’s state remain
unchanged during an action’s execution. Typical Hoare proofs reason only over
specific portions of the overall state, leaving the effects on the remaining state
unspecified. However, this lack of specification leads to challenges when attempt-
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ing to combine seemingly unrelated proofs over actions which operate on disjoint
parts of the environment.

To illustrate this challenge, consider the property involving two independent
variable assignments, shown in Listing 23. Ideally, the proof of this property
should be derivable from two separate proofs, each reasoning independently
about a single assignment, as outlined in Listing 24.

Theorem assignent :
  ∀ n m: nat,
  {{ ⊤ }} <{ a := #n; b := #m }> {{ Γ[a] = n ∧ Γ[b] = m }}

Listing 23: Property over unrelated variable assignments demonstrating the frame problem

Lemma assign_a :
  ∀ n: nat,
  {{ ⊤ }}
  <{ a := #n }>
  {{ Γ[a] = n }}

Lemma assign_b :
  ∀ m: nat,
  {{ ⊤ }}
  <{ b := #m }>
  {{ Γ[b] = m }}

Listing 24: Example of insufficient decomposition

Unfortunately, this decomposition is insufficient as the assignment lemma for b
does not proof that the value of a remains unaffected by the execution. As a
result, the sequence rule fails to guarantee the preservation of a’s postcondition,
preventing the proof of the overall theorem.

An immediate solution to this problem, would be the adaptation of the
lemma for b, to explicitly state that it does not interfere with the variable a. The
adjusted version of this lemma can be seen in Listing 25.

Lemma assign_b :
  ∀ n m: nat,
  {{ Γ[a] = n }}
  <{ b := #m }>
  {{ Γ[a] = n ∧ Γ[b] = m }}

Listing 25: Example of insufficient decomposition

However, this solution primarily addresses the specific case rather than resolving
the underlying issue. The problem may reoccur if the assignment of b is combined
with a different action. The complexity of this issue arises from the fact that the
complete set of variables is possibly unknown when formulating the lemma for b.
Moreover, this approach reduces the readability of the statement by significantly
inflating both, the precondition and postcondition.
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6 Conclusion
This thesis investigated the scalability of formal verification methods for
hardware design. A preliminary literature review revealed that conventional
techniques, such as model checking and assertion-based verification, are insuffi-
cient for handling complex scenarios. As a result, this work focused on a theorem-
proving-based approach. Specifically, it evaluated the capabilities of the Kôika
HDL, identifying key limitations, including the lack of support for parametric
designs and the absence of a modular proof infrastructure for complex verifica-
tion tasks.

To address the first limitation, this work introduced a new parser for Kôika,
leveraging Rocq’s type checker to directly construct typed ASTs, as originally
suggested by the creators of Kôika. However, this implementation went beyond
the initial proposal by incorporating bidirectionality hints to resolve type-check-
ing issues, ensuring the parser’s practical usability.

The second limitation was addressed through the development of a new
proof infrastructure based on Hoare logic. This framework enables modular
reasoning over complex actions by decomposing proofs into smaller sub-proofs,
each of which only focuses on a part of the original action, thereby enhancing
scalability in hardware verification. Additionally, this infrastructure facilitates
reasoning over parametric hardware designs, allowing for the construction of
generalized proofs.

6.1 Limitations

While the proposed solutions present advancements in the formal verification of
hardware designs, several limitations remain.

First, the new typed parser generates overly complex error messages when
provided with an inconsistent hardware description. These verbose and some-
times unintuitive error messages make debugging more challenging, potentially
hindering the development process and increasing the time required to identify
and resolve issues.

Second, as mentioned in the evaluation, the implemented Hoare logic is
subject to the frame problem, hindering the composition of certain proofs.

Furthermore, the current implementation of the proof infrastructure is lim-
ited to reasoning about individual Kôika actions. To enable verification on the

43



Chapter 6 Conclusion

specification level of complete circuits, additional lemmas are required to extend
the framework’s applicability to entire schedules. However, since these schedules
combine multiple actions into a single design, this extension will also encounter
the aforementioned frame problem.

Finally, while this work demonstrated the effectiveness of the proposed
methodology on different case studies, its practical applicability to large-scale,
real-world circuits remains an open challenge. The feasibility of the verification
of highly parameterized architectures has not yet been fully explored.

Despite these limitations, the contributions of this thesis lay a solid founda-
tion for hardware verification in Kôika.

6.2 Future Work

Future research could investigate various approaches to overcome the limitations
identified in this work. One promising direction would be to extend the Hoare
logic into a separation logic, which could address the frame problem by providing
more control over state partitioning. Another avenue of exploration could involve
evaluating the proposed framework on a larger hardware description, such as
the RISC-V implementation from the original authors of Kôika. Additionally, to
address a limitation of Kôika itself, future work could involve the specification
of a temporal logic and the development of an associated proof infrastructure to
enable robust formal reasoning over multiple execution cycles.
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