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Abstract

Simulations have become well established means in scientific research since they
are capable of predicting the behavior for a variety of problems, e.g. fluid flows,
diffusion of gases or chemical reactions. Particle methods in particular are able to
simulate discrete as well as continuous models where continuous simulations require
discretization. The particle methods domain-specific language (DSL) OpenPME allows
to directly formulate simulations of continuous fields without explicit discretization.
The choice of discretization schemes and their parameters traditionally required a lot
of domain knowledge combined with tedious manual optimization effort. Choosing
the right schemes is of utmost importance since it has a considerable impact on
both accuracy and computational cost of the simulation. This work presents a multi-
objective autotuning approach for numerical discretization schemes used in particle
methods to automate this process. The proposed approach strives for optimization
regarding the accuracy and computational cost of the target simulations while also
considering numerical stability. The implementation of the autotuning approach involves
efficient variant generation and means to measure the tuning objectives. The autotuning
framework OpenTuner is used to implement general optimization techniques while
domain knowledge is utilized to design model-based search and prediction approaches.
The evaluations show the advantage of the model-based approaches where the search
is consistently able to find highly performant configurations within 14 to 17 steps in a
search space containing hundreds of thousands of configurations. The model-based
prediction is able to predict similar performant configurations while conducting only a
few swift initialization measurements with no further search steps required.
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1. Introduction

Autotuning systems have been used since the late 1990s to tune performance critical
application kernels and libraries for new platforms and problems. They select the most
desirable configuration out of large search spaces of possible implementations through
models and empirical measurements. While the early systems mainly targeted algebra
libraries, they have been used to optimize a wide variety of problems ever since. They
are of particular importance in High-Performance Computing (HPC) environments.

Since the early 2000s, the computing power in HPC environments has exponentially
increased due to the use of multi-core architectures with ever-growing numbers of cores.
Such growth gave birth to a large number of programming models and tools to benefit
from the prominent advancements.

There are classical parallel models like OpenMP’s shared memory, MPI’s message pass-
ing or Pthreads’ thread model which are universal and hardware independent. Addition-
ally, hardware specific languages are used such as CUDA for NVIDIA GPUs [22]. Further-
more, implicit parallel programming can be heavily utilized by functional programming
languages that do not impose an explicit order of operations. Many scientific applica-
tions, which are greedy in terms of computing power, showed a pertinent need to ex-
ploit HPC systems. A known example of such applications are particle simulations. They
are formulated in terms of interacting and evolving point-like objects called particles.
Since the particles evolve individually over time, particle simulations are well suited for
parallelization in HPC environments over potentially thousands of CPU cores.

However, using the aforementioned programming models and tools to efficiently
develop these applications is a cumbersome task for domain experts who may lack
specialized skills to implement highly scalable parallel applications. This problem is
known as the knowledge gap [53].

Domain-specific languages (DSLs) have the potential of closing this knowledge gap
by using high-level abstractions which are easily understood by domain experts on
the one hand and by generating highly performant parallel code on the other hand.
The OpenPME [40] DSL for instance allows the formulation of discrete and continuous
particle-mesh simulations. It generates C++ code on top of the OpenFPM library [37].
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OpenPME does not only use abstractions to ease the parallelization of simulations but
also to describe continuous fields and the application of partial differential equations
(PDEs) over them without explicit discretization. Still, the abstraction of continuous fields
have to be discretized onto particles using concrete numerical methods. The choice of
which method and other discretization parameters to use, has a substantial impact on
the computational costs, accuracy and even stability of the resulting simulation.

The question investigated in this work is how to choose the best discretization method
and its parameters given a specific simulation. There is no universally best choice that
could be applied for all simulations since the requirements are problem specific. For
a subclass of problems it has been shown that analytical solutions for some parame-
ters are possible [57]. However, in the general case, a purely analytical solution is be-
yond reach [57]. This thesis presents a multi-objective autotuning approach which com-
bines analytical knowledge with empirical measurements to find the best discretization
method considering both accuracy and computational costs for continuous particle sim-
ulations written in OpenPME. After giving an overview of the general field of autotuning,
optimization algorithms, particle methods and the DSL OpenPME in particular in Chap-
ter 2, Chapter 3 will introduce two particle simulations that will be used throughout this
work and identify the exact tuning opportunities. Chapter 4 and Chapter 5 describe
the design and implementation of this thesis’ autotuning approach including the applied
general purpose and model-based domain specific optimization techniques. In Chap-
ter 6 the optimization techniques are evaluated and the general quality and feasibility of
the autotuning system is investigated. The work is concluded in Chapter 7 followed by
an outlook on future work.
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2. Background

This chapter will present a general overview over existing autotuning systems, describe
a selection of general purpose optimization algorithms, introduce the basics of particle
methods needed throughout this thesis and briefly discuss OpenPME.

2.1. Autotuning

Autotuning is the automatic generation of a search space of possible valid implementa-
tions combined with a search for the most suitable one. Suitability is often defined by
runtime but may, as in this case, be dependent on multiple criteria. This is referred to
as multi-objective autotuning. The automated search for the best implementation of-
fers huge potential for performance improvements and relieves the programmer from
a lot of manual optimization work. This section provides a general overview of different
autotuning approaches and what decisions have to be made when implementing one.

2.1.1. Autotuning Systems

This section presents a selection of successful autotuning systems and briefly describes
the areas they are applied in as well as their individual approaches.

ATLAS is an autotuning approach for linear algebra libraries from 1998. It is often
regarded as one of the earliest applications of autotuning. The Application Programming
Interface (API) in question was the Basic Linear Algebra Subprograms (BLAS) that
contained a small number of widely used and performance critical routines like vectors
and matrix operations. Usually, hardware vendors provided implementations which
were optimized by hand for the specific machine architecture. The idea of Automatically
Tuned Linear Algebra Software (ATLAS) [68] was to automate this process. A number of
target architecture dependent optimizations are applied. These include loop unrolling
(enough to decrease overhead but not too much so that the instruction cache does not

3



overflow), instruction reordering for latency hiding, adjusting blocking factors and loop
reordering. Depending on the architecture properties such as cache size, register count
and the number of floating point units, a search space of possible implementations is
created. The search space is explored by testing each value of a single tuning parameter
while leaving all others unchanged. This is done for all parameters and repeated multiple
times. While this strategy does not guarantee to find the globally best value, it does find
a local minimum.

FFTW is a widely used C library implementing discrete Fourier transformation. It adapts
to different hardware and problems by conducting empirical measurements at runtime
before executing the actual transformation. To ensure that the improvement is not
overshadowed by the tuning cost, FFTW [28] provides multiple methods with different
trade-offs between tuning time and result quality.

OSKI provides automatically tuned sparse matrix operations as sparse matrix-vector
multiply and sparse triangular solve. The tuning is conducted at runtime to not only
adapt to the specific hardware but also to the given matrix. OSKI [67, 66] exposes the
decision of if and when to tune to the user to ensure that the overhead is amortized by
the improved performance since the tuning can cost 40 times as much as a single sparse
matrix operation. The literature introducing it focuses strongly on the interface for the
user and does not describe the implementation of the actual optimization in detail.

CHiLL is a polyhedral loop transformation framework that is enhanced with automatic
parameter tuning [20, 60]. The optimization utilizes a parallel simplex method and allows
for user interaction and constraint specification.

PetaBricks is a language that allows to define multiple implementation variants for a
single problem. To decide which variant to execute, PetaBricks [4] deploys autotuning
techniques. In the optimization phase, smaller sub-problems are tuned using a genetic
optimization approach. The best solutions of the sub-problems are then combined over
multiple stages and optimized again until they form a global selection.

Orio tunes the performance of annotated C and C++ codes by performing source-to-
source transformations as loop unrolling, loop tiling and loop permutation. Structured
comments containing performance tuning directives are processed in a pre-compilation
phase defining the search space. To explore the search space, Orio [33] implements
exhaustive search, random search, the Nelder-Mead simplex method and simulated
annealing. Each global optimization is followed by a greedy local search. The system
is implemented in Python.
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Apollo dynamically optimizes input sensitive C++ kernels at runtime. To achieve this,
a decision tree classifier is trained offline, meaning before the actual execution. Using
this pre-trained model, tuning decisions are made at runtime leading to performance
improvements that were not possible with statically optimized code. Apollo [10] is
implemented in Python using the scikit-learn [50] package to implement the decision
tree.

2.1.2. Autotuning Frameworks

Autotuning frameworks provide the means for implementing autotuners for new lan-
guages, libraries and even single programs. They may provide tools to integrate auto-
tuning directives directly into program code via annotations and automatically generate
the search space from it. They also usually provide the implementation of an optimiza-
tion algorithm or even a large collection to choose from. This section will briefly introduce
Nitro, which allows the construction of input sensitive online autotuners. The two general
purpose frameworks to build offline autotuners OpenTuner and ATF will be discussed in
a bit more detail.

Nitro

Nitro is an autotuning framework that utilizes supervised learning in an offline training
phase to generate an input sensitive model [46]. The autotuner itself is implemented in
Python and deploys Support Vector Machines (SVMs) as means of supervised learning.
The learned model is exported as C++ header file and the prediction is performed
through the libSVM [19] library.

OpenTuner

OpenTuner [3] is a framework for building domain-specific, multi-objective autotuners
and focuses on the optimization part of an autotuner. It provides the user with the search
algorithm and leaves the integration and measurement to the user. This increases the
flexibility while decreasing the ease of use, especially for single program autotuning,
compared to solutions like ATF (2.1.2).

OpenTuner’s core idea is to combine multiple search techniques (ensembles) by using
them in conjunction. Those, that are performing better are assigned bigger parts of the
tuning time. Results are shared between techniques via a common database.

The main benefit of this is that OpenTuner’s resulting search technique is able
to work in “search spaces [that] are much more complex, with discontinuities, high
dimensionality, plateaus, hills with some of the configuration parameters strongly
coupled and some others independent from each other” [3, p.304].

The problem of how much time should be allocated to which search algorithm is mod-
eled by the multi-armed bandit problem. This problem is an instance of the exploration
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versus exploitation dilemma. Each gambling machine (optimization technique in this
case) has an unknown expectation of reward (improvement in this case). So an alloca-
tion strategy that maximizes the overall reward is sought [5]. The strategy used is the
area under the curve credit assignment (AUC Bandit) meta technique with sliding win-
dow, where the sliding window ensures that only the most recent, and by that most
significant history is considered. As area under the curve, OpenTuner essentially uses
the number of new best values each technique found as proposed in [27].

Available search techniques in OpenTuner include differential evolution, Nelder-Mead
search, Torczon hillclimbers, evolutionary mutation, pattern search and particle swarm
optimization among others. The meta techniques may use a selection of these given
techniques.

ATF

The Auto-Tuning Framework (ATF) [52] is a generic directive-based approach to auto-
matic program optimization. It emphasizes ease of use strongly and focuses on depen-
dent tuning parameters.

ATF is used by annotating the source code with tuning directives. They define tuning
parameters and their possible values, the cost function, the search technique and abort
conditions to use. ATF parses this file and automatically generates the defined search
space, does measurements and tunes the generated program variants according to the
directives. This is especially useful when creating an autotuner for a single program as
only the regular source file enriched with annotations is necessary.

Tuning parameters may define constraints that express dependencies between pa-
rameters. For example, one could define that one parameter always has to divide an-
other one. In this way, ATF is able to define a search space more precisely.

As optimization techniques it provides exhaustive search, simulated annealing and
OpenTuner search. To use OpenTuner’s optimization, ATF has to work with the fact that
its own search space is defined using constraints while OpenTuner does not support
them. To handle this, ATF uses a range of integers as OpenTuner parameter and creates
a mapping into its own search space. This mapping seems subpar for multi dimensional
search spaces where relevant correlations between neighboring configurations exist,
since those will be lost in the flattened mapping. When no dependent parameters are
used, the search space of ATF is directly translated into the equivalent for OpenTuner.

It is demonstrated that ATF shows speedups over OpenTuner of up to a factor of
5.31 for a case of general matrix multiplication where the tuning parameters have a lot
of interdependencies. Since OpenTuner can not inherently represent them, it is given
the full search space where only one in 107 configurations is valid. For cases without
interdependencies, ATF and OpenTuner show equal performances as expected since
their search spaces coincide and both use OpenTuner’s optimization technique.
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2.1.3. Differences in Autotuning Systems

Although the main goal of all autotuning systems is to find the best configuration
automatically by evaluating the search space, they differ in many other aspects. This
section categorizes the previously introduced approaches according to Balaprakash et
al. [8].

Packaging

Many autotuners are packaged as library optimizations and aim at improving codes for
specific hardware architectures to achieve performance portability. ATLAS [68] is an early
example from this category tuning algebra routines like matrix and vector operations.
OSKI [20, 60] tunes sparse matrix kernels for specific machines. The widely used library
FFTW [28] optimizes the discrete Fourier transform (DFT) to adapt to changing hardware
and problems at runtime.

Autotuners have also been integrated into compilers to aid optimization decisions.
CHiLL [20, 60] tunes loops by combining empirical optimization techniques with compiler
analysis to prune the search space. The language PetaBricks [4] is even build around the
idea of defining multiple implementation variants of functions and letting the compiler
decide for the best one.

The third way, autotuners might be packaged at application level. They are usually
designed as tuning frameworks which can be applied by users to tune specific applica-
tions. Some of these frameworks, like CLTune [48], target specific areas working on user
defined search spaces of OpenCL code. More general frameworks, as OpenTuner [3]
and ATF [52], are generic regarding the programming language, application domain and
tuning objective. These general frameworks can also be used to build compiler directed
autotuners which will be discussed more in section 5.

Selection Approach

The variant selection approaches can roughly be divided into model-based, search-
based and hybrid approaches.

Most autotuners go under the category of search-based approaches. A large set of
search algorithms is applied ranging from exhaustive search to different local search
algorithms such as gradient methods and global strategies like simulated annealing. The
subsequent section presents a more detailed overview.

Model-based tuning reduces tuning cost by carefully designing an analytical model
of the search space based on system and problem characteristics. The model is
then enriched with empirical measurements. This can be done by conducting a small
number of samplings in the beginning to fit the model to the actual problem and the
target architecture and then using this model for the final prediction. The model could
alternatively be used as a search method by predicting the best configuration according
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to the current model, measuring this configuration and improving the model with the
new measurement point. The biggest limitation of model-based approaches is that they
require comprehensive domain knowledge and a lot of manual design decisions by the
person implementing the autotuner. If the model is not general enough, it may also occur
that the search space at hand does not fit the model which would render it unusable.

Hybrid approaches use some degree of modeling to narrow the search space using
systems characteristics as done by ATLAS and then conduct a regular search on the
remaining configurations.

Time of Application

The time of conducting the tuning varies a lot between different autotuners. The two
overarching categories here are online and offline tuning referring to tuning before and
during the execution of the target program respectively.

Offline tuning can be applied when a library or application is ported to a new
architecture as done in ATLAS and CHiLL. In other cases, especially in case of application
level tuning as in CLTune, ATF or OpenTuner, the tuning has to be repeated after each
change of the program or at a time chosen by the user.

Online tuning can be accomplished in two manners. The first possibility is that general
measurements are conducted offline to train an input sensitive predictive model which
chooses the configuration to use. This approach is used by Apollo and Ding [23]. The
second way is that actual empirical evaluations are performed at runtime as practiced
by FFTW and OSKI. They are able to adapt more precisely to new problems which are
unknown before runtime.

Integration into Application

Usually, the configuration found by the tuner is directly integrated into the final code
either through compilation or linking. In the case of online tuning, different code variants
might be created and an implemented selector chooses which one to use. If the tuning
parameters are primitive values not needed at compile time, they might perfectly be
integrated through a configuration file. The latter approach is also preferable if re-tuning
should afterwards be an option as long as they have no relevant negative impact on the
runtime.

2.2. Search and Optimization Algorithms

The words search method and optimization method are often used interchangeably in
the field of objective function tuning. They refer to techniques that estimate the best
element out of a set of possible configurations (search space). More generally, search
methods also refer to a wider field of information retrieval techniques, e.g. the check
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whether a text contains a specific word. This section will briefly discuss techniques that
are widely used in the field of autotuning.

Exhaustive Search

Exhaustive search is the technique of thoroughly measuring every configuration in the
search space. It is the only technique that can guarantee to find the best configuration
for arbitrary problems but also represents the slowest of optimization method. In many
cases it is not feasible because either the search space is too large, the measurement of
single configurations occupies substantial amounts of time or a combination of both.

Random Search

Random search refers to various different search techniques that involve iterative selec-
tion of randomly chosen configurations in the search space. They differ in the question
whether all configurations are eligible [11], or only those inside a hypersphere around
the current best configuration [59]. The eligible configurations are either selected equally
likely or according to a normal distribution around the best configuration [45].

Simulated Annealing

Simulated annealing [1] is an optimization approach which tries to approximate the
global optimum of a given problem. Its idea is inspired by the process of annealing
metals. The search uses a decreasing temperature value for exploration decisions.
High temperatures at the beginning allow large changes to the configuration and
also to accept worse ones. As the temperature cools down over time the steps get
smaller and the probability of choosing worse configurations decreases. This process
enables simulated annealing to overcome local minima in the beginning and do local
optimizations in the end. To avoid losing priorly found good configurations, simulated
annealing can be enhanced with restarts which sets them back to the best configuration
found earlier.

Genetic Algorithm

Genetic algorithms [34] use optimization strategies based on Darwin’s theory of evo-
lution. A set of active configurations is maintained and used as base for operations like
crossover and mutation to create a new generation. Using selection, the active configura-
tion base is pruned. These means are repeated until a maximum number of generations
or timeout is reached.
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Nelder-Mead

The Nelder-Mead [47] method approximates a local optimum in a n-dimensional search
space. It uses a simplex1 with n+ 1 vertices. The vertices represent configurations. The
search progresses using repeated movement of single vertices. Usually the worst vertex
is moved either by reflection through the remaining points or by expansion or retractions
of the simplex. Many improvements and variations of the method have been developed
since it was proposed in 1965 [9, 41, 44, 29].

Hill Climbing

Hill climbing describes the class of local optimization techniques that start with an
arbitrary initial configuration and apply incremental changes. If a change leads to a better
solution, this new configuration becomes the base for further changes. This process is
repeated until a local optimum is found or a timeout is reached. It naturally will only
reach a local optimum and not necessarily a global one for non convex problems. A
countermeasure to this would be the use of repeated restarts [17].

Gradient Descent

Gradient decent is a local optimization technique similar to hill climbing with the
difference that it is only applicable for differentiable functions. In each step the
configuration is altered in the direction of its negative gradient whereas hill climbing
approaches accept any changes that lead to improvements. Hence, the gradient descent
method is not, in contrast to all other algorithms discussed in this section, a direct
search algorithm meaning it utilizes information about the gradient. However, this does
not imply that the gradient has to be known analytically. It can also be estimated by
measuring surrounding configurations.

Bayesian Optimization

Bayesian search is based on the idea of building a probabilistic model of the objective
function based on already observed data points. The most promising unobserved data
point gets evaluated and refits the model [25]. This approach is especially promising
when the evaluation of individual points takes a relatively long time as it has the potential
to predict the optimal configuration early on, if the model closely resembles the reality.

1A simplex is a generalized triangle for arbitrary dimension.
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2.3. Particle Methods

Nowadays, simulations belong to the fundamental assets in science alongside experi-
ments and theory. Whenever a problem is too complex to analyze analytically, simula-
tions enable predictions of the behavior for a wide spectrum of problems such as fluid
flows, diffusion of gases or chemical reactions. Particle methods are numerical simula-
tions schemes that are formulated as interacting and evolving particles [37]. This section
will introduce the fundamentals of particle methods following the elaborations in [54].

A particle simulation consists of many simulation time steps during which the particles
interact with each other and evolve their properties and positions. In theory, each
particle p ∈ P could interact with each other particle in each step, resulting in a time
complexity of O(steps · |P |2).
for (step : steps) {

for (p1 : particles) {
for (p2 : particles) {

p1.interact(p2);
}

}

for (p : particles) {
p1.evolve();

}
}

However, in many cases it is only necessary to interact with particles that are nearby.
This reduces the complexity to O(steps · |P | · Nmax). Assuming that the neighborhood
N (p) of each particle is significantly smaller than the total number of particles, this also
leads to a substantial reduction in runtime.

To find particles in the neighborhood, many different solutions and data structures
exist. Depending on the particle arrangement, e.g. (regular) grid-like or non grid-
like formation, particles can be simply indexed by their position or may require more
laborious approaches.

Cell lists One way to iterate particle neighborhoods is to use cell lists [2]. Cell lists are
buckets arranged in a grid formation containing the particles. Each particle interacts
with the particles in its own and neighboring cells (buckets). The cell size has to be
chosen such that all relevant interaction partners are guaranteed to be in neighboring
cells. Smaller cell sizes reduce the runtime, since the number of neighbors is defined
by the number of particles per cell and the number of neighboring cells. The number
of neighboring cells only depends on the dimensionality of the problem. It includes the
own cell and is given by 3dim.

Verlet lists Another approach are Verlet lists [63]. In Verlet lists, the neighboring parti-
cles are stored as direct references for each particle. The resulting major disadvantage
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is that moving particles may come in and out of the neighborhood. This leads to the
necessity of rebuilding the Verlet lists each time step which would negate all advantages
but can be counteracted to a certain extent by adding a margin. Now, the Verlet lists
only have to be rebuild when particles moved far enough that they might have over-
come this margin. Thus, they work well for slowly moving or only oscillating particles but
still perform poorly for fast moving particles.

2.3.1. Discretization Methods

This thesis is focused on problems that are continuous in time as well as in space. To
handle those cases, a discretization is necessary.

Temporal discretization

In the continuous-time case, the particles change according to

dxp(t)
dt

= vp(t).

So they change their position xp at each point in time t according to their velocity vp

at that moment t.

dωp(t)
dt

= gp(t)

The properties ω change according to the property rate g.

Explicit Euler scheme The explicit Euler scheme is one of the simplest time discretiza-
tion schemes. To approximate a function of the form dy

dt (t) = f(y(t)), a finite time step
size δt = tn+1 − tn is chosen, leading to

y(tn+1)− y(tn)
δt

≈ f(y(tn))

so in each time step, the new value of y is given by

y(tn+1) ≈ y(tn) + f(y(tn)) · δt.

Since the discretization is only an approximation, it introduces an error to the
simulation. The smaller δt, the smaller the error. Explicit Euler is first-order accurate
meaning that the doubling of δt leads to the doubling of the error.

Leapfrog scheme The leapfrog scheme is an alternative time stepping method that
provides a higher order of accuracy than explicit Euler. Here continuous time is
approximated with
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y(tn+1)− y(tn−1)
2δt

≈ f(y(tn))

and new values of y are given by

y(tn+1) ≈ y(tn−1) + 2δt · f(y(tn)).

In contrast to explicit Euler, the Leapfrog scheme does not only depend on the current
value of y but also its previous one. This essentially doubles the memory requirements
but in exchange it is second-order accurate meaning the error decreases with the square
of the time step size for small enough δt. This is particularly beneficial for achieving high
levels of accuracy while keeping the computational costs reasonably low.

Runge-Kutta-4 and implicit Euler In this work, only the explicit Euler scheme is used
but there is a great variety of other methods. Runge-Kutta-4 divides each time step into
four stages and achieves fourth-order accuracy.

All methods discussed thus far are explicit schemes meaning they only rely on the
present and past states to calculate future ones. Implicit schemes like implicit Euler
in turn include the future state’s value for calculating the current one. This leads to a
system of linear equations that has to be solved. While implicit Euler is still only first-
order accurate it is unconditionally stable in contrast to all aforementioned schemes.

Spatial discretization of differential operators

Many continuous particle simulations involve the calculation of differential operators
over fields. The following methods allow to numerically solve them over discretized fields
on particles.

SPH Consider spatial differential operators of the form

Dβ =
∂|β|

∂xβ1
1 ∂x

β2
2 · · · ∂x

βd
d

where d is the number of dimensions in space and β defines the derivative in each
dimension.

Using smoothed particle hydrodynamics (SPH) [42], the differential operator applied
to a function f describing the field is approximated with

Dβf(x) ≈
∑
p

f(xp) · [DβWε](x− xp) · Vp.

[DβWε] is the differential operator applied to the smoothing kernel Wε. Vp represents
the volume of interacting particles. A typical smoothing kernel is the Gaussian kernel
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Wε(z) =
1

ε
√

2π
· e
−z2
2ε2

where ε is the kernel width.

PSE The discretization method particle strength exchange (PSE) [24] uses symmetric
particle interaction meaning that quantities are always exchanged between particles,
hence the name. The differential operator Dβ applied to f is approximated by

Dβf(x) ≈ Vp

ε|β|
·
∑
p

(f(xp)± f(x)) · ηβε (x− xp).

In contrast to SPH, PSE requires a different kernel ηε for each differential operator.
Gaussian kernels for the Laplacian operator can be found in Section 4.2.1.

DC-PSE The discretization method discretization corrected PSE (DC-PSE) [58, 13]
generally works similar to PSE with the difference that the kernel η now is not fixed
anymore but has to be calculated for each particle separately. The general scheme is
given by

Dm,nf(xp) =
1

ε(xp)m+n

∑
xq∈N(xp)

(f(xq)± f(xp))η
(
xp − xq
ε(xp)

)
. (2.1)

To generate a kernel, Bourantas et al. [13] proposed the following template:

η(xp)


i+j<r+m+n∑

i,j

ai,jx
iyje−x

2−y2 √
x2 + y2 < rc

0 otherwise

(2.2)

In this template, the coefficients ai,j have to be determined. The vector a(xp) puts
them in an arbitrary but fixed order. The vector p(xp) contains the corresponding
monomial basis such that if ak = ai,j then pk = xiyj . Both are of size l =
(r+m+n)(r+m+n+1)

2 and the number of neighboring particles k has at least the value of
l. The value r allows to specify the convergence rate. Since it directly influences l (which
defines the size of the following matrices and vectors), it also has a substantial effect on
the computational cost. Vector a(xp) is given by the equation

A(xp)a(xp)T = b (2.3)

where

A(xp) = B(xp)TB(xp) ∈ Rlxl (2.4)

B(xp) = E(xp)TV(xp) ∈ Rkxl (2.5)
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b = (−1)m+nDm,np(x)|x=0 ∈ Rlx1. (2.6)

Since Dm,npi(x)|x=0 equals zero unless pi(x) = xmyn, the equation 2.6 essentially states

bi =

(−1)m+n ·m! · n! pi(x) = xmyn

0 otherwise
. (2.7)

V(xp) is the Vandermonde matrix containing the monomial basis evaluated over the
neighboring particles and E(xp) a diagonal matrix, meaning all entries outside the main
diagonal are all zero.

V(xp) =



p1

(
xp−x1
ε(xp)

)
p2

(
xp−x1
ε(xp)

)
. . . pl

(
xp−x1
ε(xp)

)
p1

(
xp−x2
ε(xp)

)
p2

(
xp−x2
ε(xp)

)
. . . pl

(
xp−x2
ε(xp)

)
...

... . . . ...

p1

(
xp−xk
ε(xp)

)
p2

(
xp−xk
ε(xp)

)
. . . pl

(
xp−xk
ε(xp)

)


∈ Rlxl (2.8)

E(xp) = diag

{e−|xp−xq |2

2·ε(xp)2

}k
q=1

 ∈ Rkxk (2.9)

Using equations 2.4 to 2.9, A(xp) and b are well defined. This means, that equation
2.3 can be solved for a(xp) using LU decomposition. While a(xp) has to be recomputed
at each time step for moving particles, it can be re-used if particles are not moving or are
re-meshed each step. As stated before, the convergence rate r is an open parameter
which greatly influences the computational cost but is worthwhile for smaller particle
distances h.

2.3.2. OpenFPM

OpenFPM [37] is a C++ library targeting the implementation of scalable particle and
hybrid particle-mesh simulations in HPC environments. It provides abstractions that
allow to spread particles over processors with distributed memory, enable transparent
cross-processor particle interactions and offers methods for dynamic load balancing and
communication. The data structures can be used flexibly for different dimensionalities of
space and floating-point precisions of particle positions and properties due to the heavy
use of template parameters.

The two main data structures vector_dist<...> and grid_dist_id<...> represent
particle sets and meshes respectively. Both are distributed over multiple processors
transparently for the user. This is done by domain decomposition and assignment of the
subdomains to processors. Each processor only stores and computes the interactions
for its assigned particles. For particles to be able to interact across those domain
borders, the sub-domains are extended by a ghost layer containing all particles within
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interaction radius of the sub-domain particles. Communications between processors to
keep the ghost layers updated are implemented using non-blocking MPI communication.

Furthermore, OpenFPM provides implementations of the neighborhood lists
VerletList<...> and CellList<...> to allow neighborhood iteration.

Additionally, OpenFPM provides an ever-growing collection of numerical solvers fre-
quently used in particle methods. This includes an implementation of the finite differ-
ence method but currently no general interface for the spatial discretization methods
SPH, PSE and DC-PSE. An interface for DC-PSE is currently in the process of being imple-
mented but has not made it into the official release [35].

2.4. OpenPME

Even though OpenFPM partly bridges the knowledge gap, it is still not easy for domain ex-
perts to handle its complexity and to understand error messages caused by incorrect use
of template parameters. Those problems can be solved by using a DSL. OpenPME [40]
forms an intermediate layer between the user and the particle library. It provides an
user-friendly interface that should be intuitively comprehensible for domain experts. Er-
ror messages could express problems in a intelligible manner, e.g. by informing about
the mismatching use of spatial dimensionality rather than cryptic C++ template errors.
Additionally, it has the potential of warning the user about problems that do not involve
semantic incorrectness but will likely lead to unintended behavior as missing or dupli-
cated position and property updates during the same time step or the use of unreason-
ably small or large neighborhood radii.

OpenPME is the successor of the Parallel Particle-Mesh Environment (PPME) [38]
which uses similar abstractions but generates Parallel Particle-Mesh (PPM) [6] code.
Parallel Particle-Mesh Language (PPML) in turn is a particle language embedded into
Fortran2003 and uses the PPM library [56]. As PPME, OpenPME uses Meta Programming
System (MPS) [18] to build a language workbench providing advanced features such as
code highlighting and completion.

OpenPME programs are structured in three phases: initialization, simulation and
visualization. In the initialization phase, all properties and parameters of the simulation
are defined. This includes dimensionality of space, shape and size of the simulation
domain and boundary conditions. Additionally, global variables like physical constants
can be defined in this phase. During simulation phase particle and grid points are
initialized and evolve in the time loop. The visualization phase specifies how to handle
the results of the simulation. A typical way would be to save the particle positions and
properties in VTK files that can e.g. be imported into Paraview [7] for data analysis and
visualization.
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The time loop describing the diffusion of a continuous field u in OpenPME would be
expressed as follows.

time loop
start: 0 dt: 0.1 stop: 5000
ode method: explicit_euler

∂u

∂t
= D · ∇2u

It is clearly visible that the expressions are on a very high level and describe how the
field u evolves using a PDE. However, this leaves open how it should be calculated on
the discretized field. The code only hints that for temporal discretization the explicit Euler
scheme should be used with a time step size of δt = 0.1. It does not specify, though,
which spatial discretization scheme should be used, e.g. whether a SPH with a gaussian
kernel of width ε = h or a DC-PSE with a polynomial kernel of some other width should
be used. Currently, a default choice is made which is anything but ideal. The choice
of discretization method and its properties has a significant influence on the resulting
accuracy and computational cost of the simulation. This problem could be approached
by providing the user with the possibility to specify those information as he currently
already specifies the temporal discretization scheme. This however would increase the
burden on the user and would most likely lead to trial and error approaches until a
fitting configuration was found. For this reason, autotuning approaches are applied in
this work.
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3. Case Studies and Identification
of Autotuning Opportunities

This chapter examines the diffusion and Gray-Scott reaction-diffusion system simula-
tions. It introduces their general idea, illustrates how they would be implemented in
OpenPME and defines the specific implementation characteristics that will be used in
the rest of this thesis. OpenPME is currently in the early stages of development and the
code generation not fully implemented. Due to this, the actual OpenFPM code which
later will be generated for the following simulations, is written by hand for the purposes
of this thesis.

3.1. Case Study: Diffusion

The first example is the diffusion of a field value u. This field could for example represent
the temperature change in a material (heat transfer) or the change of concentration in
a gas or fluid (mass transfer). Particles do not represent individual molecules here but
they are sampling the field.

Fick’s second law of diffusion states how the concentration changes with respect to
time:

∂u

∂t
= D∇2u

where D is the diffusion coefficient and ∇2 = 4 is the Laplace operator which is a
generalization of the second derivative into the n-dimensional space. For 2D it equals

∇2u =
∂2u

∂x2 +
∂2u

∂y2 .

Figure 3.3 shows the OpenPME code that would generate a diffusion simulation. Lines
5 and 6 define the number of dimensions and the size of the simulation area. Line 7
states the boundary conditions for the simulation’s border areas as periodic. Thereby,
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periodic indicates that the top and bottom as well as left and right borders are connected
to each other so that particles near the borders interact with particles on the opposite
side. Thus, the simulation essentially takes place on the surface of a torus. The uniform
conditions in line 8 define that the particles are initialized on a regular Cartesian grid
inside the domain. The subsequent parameters such as the number of particles, the
spacial discretization method (SPH, PSE or DC-PSE including a corresponding kernel),
the cutoff radius and the kernel width (epsilon) are subjects to tuning (lines 9-11). Lines
18-20 initialize the property u for all particles according to their position such that the
field describes a Gaussian bell curve as shown in Figure 3.1 (a). Lines 23-27 describe the
main time loop of the simulation in which the field u evolves according to the given PDE.
The visualization phase (lines 32-33) defines the output of the simulation which is shown
in Figure 3.2.
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Figure 3.1.: Initial condition used in the diffusion simulation along with its Laplacian.

The value of ∇2u at t = 0 is shown in Figure 3.1 (b). Its interpretation is quite intuitive
since at the point of highest concentration, the largest negative change is shown which
would be expected for diffusion.

(a) t = 0 (b) t = 2500 (c) t = 5000

Figure 3.2.: Diffusion simulation with 502 particles on a regular Cartesian grid. The
quantity u is visualized by the color on a logarithmic scale.
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1 module Diffusion
2
3 initialization
4
5 dimension: 2
6 domain_size: box(( 0 , 0 , 0 ),( 5 , 5 , 5))
7 boundary_conditions: periodic
8 initial_conditions: uniform
9 num_particles = tune

10 cutoff_radius = tune
11 epsilon = tune
12 D = 0.0001
13
14 simulation
15
16 type of simulation: continuous
17 // initialize particle values
18 foreach particle p
19 distance_squared = (2.5− p.x)2 + (2.5− p.y)2

20 p.u = 1 / (0.16 * π) * exp(-distance_squared / 0.16)
21
22 // main timestepping
23 time loop
24 start: 0 dt: tune stop: 5000
25 temporal ode method: explicit_euler
26 spatial pde method: tune

27 ∂u

∂t
= D * ∇2u

28
29
30 visualization
31
32 visualize particles:
33 output file: "diffusion"
34
35 end module

Figure 3.3.: OpenPME code for diffusion simulation.
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3.2. Case Study: Gray-Scott Reaction-Diffusion System

The second considered case study is the Gray-Scott reaction-diffusion system [31, 49].
While it may model a variety of physical phenomena, it is most commonly used to
simulate two chemicals reacting with each other and diffusing individually. The system
is described by the following two PDEs:

∂u

∂t
= Du∇2u− uv2 + F (1− u)

∂v

∂t
= Dv∇2v + uv2 − (F + k)v.

Du and Dv are the diffusion constants of the chemicals u and v. The constants F
and k are additional parameters that determine properties of the system and by that
the pattern that is formed. Figure 3.8 shows the OpenPME code that implements
the Gray-Scott system. It reflects an abstraction of the Gray-Scott implementation in
OpenFPM [37, 36].

The 2D implementation in OpenFPM uses a square plateau as initial condition as
shown in Figure 3.4. While this is acceptable for low spatial resolutions, the used
discretization schemes assume sufficiently smooth fields. For the Laplace operator, this
means that the field has to be two times continuously differentiable which is not the case
for the discontinuous plateau as initial condition.
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Figure 3.4.: Square plateau used as initial condition in OpenFPM.

For this reason, a smoothed square plateau function is used.

q(x, y) =
1

xn+yn
rn + 1

The exponent n specifies the steepness. For n → ∞ the function approaches the
square plateau. By 2r the side length of the square is defined and adjusted. The
simulation uses n = 4 and r = 0.15 and adjusts the height with a prefactor. The
smoothed square plateau function with these parameters is shown in Figure 3.5 next
to its Laplacian.
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Figure 3.5.: Smoothed square plateau with its corresponding Laplacian. It is used as
initial condition in the OpenPME Gray-Scott simulation.
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Figure 3.6.: Discontinuity at the borders due to connected edges. It is visualized by
moving the actual edges into the center and vice versa.

Due to the continuous boundary conditions, the field is not smooth along the edges
as visualized in Figure 3.6. Those incontinueties are negligibly tiny though.

The initialization of the particles is implemented in lines 22-25. As in the diffusion
simulation, this is followed by the main time loop (lines 28-33) in which the particles
evolve according to the previously defined systems of equations. In the visualization
phase in the end is responsible for generating an output as displayed in Figure 3.7.

(a) t = 0 (b) t = 5000 (c) t = 10000

Figure 3.7.: Gray-Scott simulation with 1502 particles on a regular Cartesian grid. The
quantity v is visualized by the color on a linear scale.
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1 module GrayScott
2
3 initialization
4
5 dimension: 2
6 domain_size: box(( 0 , 0 , 0 ),( 5 , 5 , 5))
7 boundary_conditions: periodic
8 initial_conditions: uniform
9 num_particles = tune

10 cutoff_radius = tune
11 epsilon = tune
12 Du = 0.0001
13 Dv = 0.0001
14 F = 0.055
15 k = 0.03
16
17
18 simulation
19
20 type of simulation: continuous
21 // initialize particle values
22 foreach particle p
23 distance4 = (2.5− p.x)4 + (2.5− p.y)4

24 p.u = 1 - 0.5 / ((distance4 / 0,00050625) + 1)
25 p.v = 0.25 / ((distance4 / 0,00050625) + 1)
26
27 // main timestepping
28 time loop
29 start: 0 dt: tune stop: 10000
30 temporal ode method: explicit_euler
31 spatial pde method: tune

32 ∂u

∂t
= Du * ∇2u - u * v2 + F * (1 - u)

33 ∂v

∂t
= Du * ∇2u + u * v2 - v * (F + k)

34
35
36 visualization
37
38 visualize particles:
39 output file: "gray_scott"
40
41 end module

Figure 3.8.: OpenPME code for Gray-Scott reaction-diffusion simulation.
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3.3. Tuning Opportunities

The aim of this work is the autotuning of the (spatial) discretization method. Therefor,
the choice between SPH, PSE and DC-PSE is considered. Changing the discretization
scheme also includes changing the smoothing kernel and its width ε. That is because the
smoothing kernels are method specific, although there might be similar ones for all of
them. Specifying ε regardlessly of both kernel and method would ignore the differences
among the methods, and defining a fixed ε per spatial discretization scheme would make
adaptions to higher or lower target accuracies impossible.

The spatial discretization scheme and smoothing kernel influence the order of error
convergence and thus, the best choice for the spatial resolution h for a given target
accuracy. Therefore, it would be beneficial to also tune it in conjunction with the
aforementioned parameters. Moreover, including the temporal resolution δt as tuning
parameter enables full control over the achieved accuracy and computational cost.

All the mentioned parameters (discretization scheme, smoothing kernel, ε, h and
δt) have in common that they do not define what a continuous simulation represents
but only its accuracy, stability and computational costs. Contrary to this, for discrete
simulations a change of the spatial resolution, and by that the number of particles, would
alter the problem. The same is true for the temporal resolution.

smoothing kernel

2rc

h

2

Figure 3.9.: Visualization of tuning parameters. The vertices at the bottom represent
particles in 1D with inter-particle distance h. The function shows a Gaussian
smoothing kernel with width ε. The vertical bars show the neighborhood
radius. The influence of the particles beyond is truncated.

This work is limited to the aforementioned tuning parameters. Nonetheless, it would
also be possible to integrate others as long as they do not alter the basic characteristic
of the simulation defined by the programmer. Possible additions will be discussed in the
Section 7.1.3.
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4. Autotuning Numerical
Discretization Schemes

This chapter introduces the autotuning approach developed in this work. It presents
and justifies the design decision regarding variant generation, accuracy and runtime
measurement and reduction of the multi-objective problem into single-objective one.
The optimization techniques used to tune for this objective are presented in the following
chapter.

4.1. General Autotuning Approach

In Section 2.1.3, an overview of autotuning systems in the literature was presented
and also highlighted the differences in their approaches. This section classifies the
chosen system according to that overview and thus describes the general structure of
the autotuner as shown in Figure 4.1.

Since this autotuner will be integrated into OpenPME, it is packaged as a compiler-
directed tuner. However, this does not imply that the tuning will necessarily be applied
at compile time but rather that the compiler will provide necessary hints to carry it out.
It will generate the search space optionally defined by the user in the OpenPME code.
If not, a reasonable default range for the different tuning parameters will be assumed.
The compiler will provide the means to generate the code variants in the search space.
Additionally, it will insert the necessary measurement facilities during code generation
and generate ultimately the final version.
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Figure 4.1.: General structure and components of the implemented autotuner.

4.2. Variant Generation

In Section 3.3, the open parameters affecting only the tuning goals but not the general
purpose of the simulation are identified. A concrete instantiation of all parameters
is called a configuration of the simulation. An optimization algorithm trying to find
the best configuration must be able to generate code for all configurations. Thereby,
numerical parameters such as the kernel width ε, the number of particles and size of the
neighborhood can be easily translated into the target code. However, parameters like
the discretization method including its kernel are more complicated. For SPH and PSE
this involves iterating over the neighborhood of all particles and accumulating a value
according to the fitting kernel version, to the number of dimensions of the simulation
and the order of the differential operator. For DC-PSE this even involves building up a
system of linear equations and solving it for each particle.

Currently, OpenPME is not able to generate code for an arbitrary discretization method,
kernel function, dimensionality of space and differential operator. The predecessor PPME
would in case of diffusion generate code as shown in Figure 4.2. In line 1, the discretized
differential operator is defined to be a Laplacian (∇2) over the particles c using second
order accurate DC-PSE with a ratio c = h

ε = 1. As the decision for this discretization
method is not defined in the PPME code and no autotuning is conducted, it is a static
choice. In line 4, this discretized operator is applied to the field U which is discretized
over the particles in c. The result is saved on each particle and can now be accessed in
line 7 as dU_p.

Since OpenPME is compiling down to C++ and linking against OpenFPM, these
constructs from PPML are not available. At this point, OpenFPM does not provide
comparable constructs but as stated before it is not a trivial task to simply generate
the whole code for the discretization method directly from OpenPME. This is the reason
why a new interface has to be created providing comparable ease of code generation to
the PPML constructs.
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PP
M

E 1 deqn method "rk4" on c

2 ∂c→ U

∂t
= constDU * ∇2c→ U

3 end deqn

PP
M

L

1 W = discretize_op(Lap, c, ppm_param_op_dcpse, [order=>2,c =>1.0_mk])
2 ...
3 get_fields(dU)
4 dU = apply_op(W, U)
5
6 foreach p in particles(parts) with sca_fields(U, V, dU)
7 dU_p = D_u * dU_p
8 end foreach

Figure 4.2.: Code generation for PDEs in PPME. Adapted from [39].

This task is fulfilled by the new C++ class Differential_Operator which takes as
template arguments the dimensionality of the space, the datatype used for particle
position, the order of the differential operator to be used, the discretization method
and its kernel that should be utilized. Different ways of how it could be instantiated for
diffusion in two dimensional space are shown in Figure 4.3.

Differential_Operator<2, double, 2, OP_SPH, KERN_GAUSSIAN> sph_operator(eps);
Differential_Operator<2, double, 2, OP_PSE, KERN_GAUSSIAN> pse_operator(eps);
Differential_Operator<2, double, 2, OP_DCPSE, KERN_POLY> dcpse_operator(eps);

Figure 4.3.: Instantiations of the Differential_Operator class for SPH, PSE and DC-PSE

As shown in Figure 4.4 line 3, the class provides the method apply_op which does, as
the identically named PPML function, iterate over all particles in the distributed vector vd
and calculates the result of the discretized differential operator over the property given
by the template parameter Diff_U. The result is saved in the property given by Lap_U.
This value then can be used as any scalar value in the main loop (line 7-18) where it is
accessed in line 12. Line 13 reassembles line 2 of the OpenPME code with ∇2u now
available as simple number and temporal discretization handled via Euler time stepping
as the factor δt shows.

4.2.1. Implementation of Differential_Operator

The class Differential_Operator is partially defined over its template parameters.
This is due to the fact that the implementation is done through partial specialization
of the template parameters fixing e.g. the discretization method and dimensionality.
The primary template without specialization only writes error messages and exits. So
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1 Differential_Operator<2, double, 2, OP_DCPSE, KERN_POLY> dcpse_operator(eps);
2 ...
3 dcpse_operator.template apply_op<Diff_U, Lap_U>(spacing, r_cut, nl, vd);
4
5 // Iterate all particles to calculate the new value
6 it_p = vd.getDomainIterator();
7 while (it_p.isNext()) {
8 // Get particle p
9 auto p_key = it_p.get();

10
11 // Integrate with Euler step
12 double laplacian_u = vd.template getProp<Lap_U>(p_key);
13 double p_prp_change = diff_D * laplacian_u * dt;
14 vd.template getProp<Diff_U>(p_key) += p_prp_change;
15
16 // Next particle
17 ++it_p;
18 }

Figure 4.4.: Advised code generation in OpenPME.

useful implementations only exist where specializations have been implemented. With
the current interface, this can not be the full argument space since arbitrary integers are
possible for the dimensionality and the order of the operator but PSE would require an
individually crafted kernel for each of these combinations.

The following paragraphs will briefly talk about the specializations for SPH, PSE and
DC-PSE without going too much into detail since the implementation is merely the
careful following of the mathematical definitions and the conduction of extensive unit
testing to detect numerical errors caused by mistakes in implementation, interpretation
and generalization of the equations at hand. The implementation primarily targets
functionality and not maximal performance. It does not utilize symmetries to reduce
computational costs and in case of DC-PSE, no caching or lookup tables are used to
prevent the necessity of constructing the smoothing kernel in each iteration for each
particle. This implies, that the relative computational costs of the discretization methods
measured throughout this work do not necessarily arise from general advantages of the
methods. However, for the design and evaluation of an autotuning system this is no
major concern.

30



SPH The definition of SPH in Section 2.3.1 is general over all possible numbers of
dimensions but requiresDβWε to be known. This work implements SPH with a Gaussian
kernel. The Gaussian kernel in n-D equals

Wε(x) =
1
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√

2π)n
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2ε2 .
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Using this equations, the discretization of the Laplacian operator with a Gaussian SPH
kernel in n-D does not involve any other complicated steps and can be implemented as
such.

PSE As for SPH, the general equation for PSE defined in Section 2.3.1 is applicable
for each dimensionality and differential operator but requires the use of the correct
kernel for a given combination. In contrast, the kernels are not retrieved by applying the
differential operator to a base kernel but are created for given dimension and differential
operator by hand such that they fulfill specific analytical properties. This work will use
kernel functions found in literature [54]. In this case a Gaussian kernel for the Laplacian
operator in 1D, 2D and 3D.

ηε(x) =
1

2ε
√
π
e−

x2

4ε2 x ∈ R

ηε(x) =
1

4ε2π
e−
|x|2

4ε2 x ∈ R2

ηε(x) =
1

8ε3
√
π3
e−
|x|2

4ε2 x ∈ R3

A collection of polynomial PSE kernels of several orders of accuracy for first and second
derivatives in 1D and 2D can be found in Eldredge, Leonard and Colonius [24]. Various
kernels for the discretization of the Laplacian operator can be found in Schrader et
al. [57].

DC-PSE In DC-PSE, the kernel is calculated at runtime following the scheme presented
in Section 2.3.1. The matrices and vectors are implemented using the C++ Eigen template
library [32] which also provides the functionality to compute the decomposition needed
to solve the linear system shown in Equation 2.3.
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Unit Testing

Implementing numerical methods easily results in numerical errors that are often hard to
detect as the sources of these errors can be manifold. They can be the result of mistakes
made during the analytical calculation e.g. of SPH kernels, misunderstandings in reading
the source material describing the discretization method, incorrect generalizations for
other dimensions or differential operators and also normal implementation errors.
Usually, the compiler is also not very helpful in finding these since they neither involve
incorrect types nor other syntactic or semantic errors.

For these reasons, it is even more important than usually to conduct strong unit
testing. The different discretization schemes of Differential_Operator are tested
using Google Test [30] in the 1D, 2D and 3D case for first and second derivatives. The
initial conditions for the testing are chosen so that an analytical solution for comparison
is easily found. The testing is conducted against these analytical solutions and between
discretization schemes.

4.3. Measurements

The previous section described how OpenPME could generate multiple variants of the
same simulation with different tuning parameter configurations. The next step according
to Figure 4.1 is to evaluate the quality of a configuration so that in the end a quality
measure can be provided to the optimization algorithm. This Section will answer the
questions of when to conduct measurements, how to measure the different objectives
(accuracy, computational cost, stability) and how to combine them into a single quality
measure. Additionally, it will discuss whether combining them is even favorable.

4.3.1. When to Conduct Measurements

The natural point in time to take measurements is at the end of a simulation. Before that
it is not possible to measure the actual runtime of the simulation, the final accuracy and
to decide on stability at some point. In general this is not feasible though. Moreover,
the individual tuning runs would take as long as the final simulation and depending
on the tested configuration even longer. This could not be amortized by the improved
computational costs.

To circumvent this problem, one has to measure only over a small portion of the
simulation. Since tuning requires many benchmark runs, this portion should presumably
be less than one percent to make sure that the tuning costs are worthwhile.

Effect on compuational costs The smallest drawback of the reduced measuring time is
in determining the computational cost. From the runtime of the measured portion one
can extrapolate for the whole simulation by plain multiplication. This does not always
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work perfectly since moving particles might come closer together which leads to an
increased number of particles in the neighborhood of each other which implies more
interactions and by that higher computational costs. However, this effect is limited in
real scenarios since bulking particles usually require remeshing which sets them back to
grid positions.

Effect on accuracy The effect on the measured error is more problematic. It strongly
depends on how much change is currently happening in the simulation. If quantities
are changing a lot, one should also expect a higher absolute error. Additionally, errors
might accumulate or cancel out over time. The second is plausible for a diffusion reaction
where one should expect an even distribution after a sufficiently long time period. Since
PSE ensures that quantities are only exchanged between particles, this final distribution
will be the same as the accurate one even if the simulation was inaccurate in between1.
This essentially means that the tuning will provide a configuration with a specific error
at a chosen point in time. It will and cannot claim a specific error for the end of the
simulation. While this is certainly limiting it is, if communicated correctly to the user, still
very valuable to tune for a target accuracy at an early point in time.

Effect on stability However, the biggest downside of measuring only over a short pe-
riod of time is in identifying instabilities. If they occur within the measured period, they
are easily detected. If not, it is not possible in the general case to know whether the
simulation is stable or not. Still, for both simulations introduced in Chapter 3, unstable
simulations showed their instability within the first few time steps. If the chosen con-
figuration by the tuning reveals to be unstable, one would have to decrease δt until it
reaches stability.

At large, measuring over a reduced period of time is a clear engineering decision that
does come with crucial disadvantages but it is still necessary.

4.3.2. How to Conduct Measurements

This section will describe how the quality measures are measured.

Computational Cost

The computational cost is measured by inserting measurement points into the target
C++ code. The start point is measured just before the main time loop starts. This means,
that the setup time for creation, initialization and distribution of particles between
processors is not captured. The main reason for this is that the setup time is negligibly
short compared to the full simulation time but might not be in comparison to the

1This is only true if the simulation is stable.
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measured time period. The time is naturally measured up at the end of the tuning
period. The runtime is measured using std::chrono::steady_clock in milliseconds,
which is adequate since the measured time periods usually span over multiple seconds
or minutes.

It is also possible to estimate the runtime using predictive methods that are trained
on a small set of sample measurements. This way it would not be necessary to run a
simulation for a given configuration at all to get a measure of the computational costs.
The prediction approach and how it can be utilized is presented in Section 5.4.

Accuracy / Error

The evaluation of the error requires some more considerations than the computational
cost. It basically involves two steps: Measuring the error at the individual particles and
accumulating the individual errors to a global one.

The individual error is measured by subtracting the measured value from the correct
one and taking the absolute value of the result |ucorrect − umeasured|. The main problem
here is that in the general case the correct solution is unknown. Otherwise, one would
not need to simulate the problem in the first place but could use the correct analytical
solution.

As first step, it is possible to calculate the correct analytical solution of the Laplacian
for the diffusion problem with the given initial condition of the field value u by

u =
1

4σ2π
∗ e−

x2+y2

4σ2 .

The Laplacian of this evaluates to

∆

(
1

4σ2π
· e−

x2+y2

4σ2

)
=
x2 + y2 − 4σ2

16σ6π
· e−

x2+y2

4σ2 .

This allows first measurements for the diffusion problem without time stepping. To
measure the error over multiple time steps for a general problem, one has to use a
comparison configuration which is assumed to be more accurate as done by Bourantas
et al. [13]. For this purpose, a configuration is used which halves the spatial and temporal
resolution of the lowest value in the search space and takes the maximum neighborhood
radius for the chosen discretization method and kernel. In this work, PSE with a Gaussian
kernel and a neighborhood radius of nine is used.

Since both considered problems use a regular Cartesian particle distribution, it is
possible to measure the accuracy at common grid points. To ensure a high number
of overlapping grid points between the configurations in the search space and the
reference configuration, only particle numbers that are a multiple of 50 per dimension
are considered. By that, it is ensured that there are always 2 500 common particle
positions.
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Achieving the same for non Cartesian distributions or measuring the accuracy for all
particles and not only the overlapping subset would require additional steps. One pos-
sible approach would be to use a smoothing function to calculate values between par-
ticles on the reference solution. The existing SPH implementation without a differential
operator applied, could fulfill this purpose. This approach would take considerably more
computational resources for the evaluation and introduce a new source of inaccuracies
that would have to be compensated by higher numbers of particles. So in the considered
cases it is less favorable but will be necessary to extend the tuning for a wider range of
problems.

The individual errors at particles have to be accumulated in order to form a global
accuracy that can be compared between configurations. In the particle methods
literature, theL2 error norm often fulfills this purpose [62, 69, 13, 43, 51]. ForN particles
it is defined as

L2 =

√√√√ 1
N

N∑
p=1

(ucorrect(xp)− umeasured(xp))2.

It equals the quadratic mean over the individual errors. The Lp norm describes the
generalization of the L2 norm for other exponents p

Lp = p

√√√√ 1
N

N∑
p=1

(ucorrect(xp)− umeasured(xp))p

and resembles the generalized mean over the individual errors. The limit case of the
Lp norm, the L∞ norm is defined by the maximum individual error

L∞ =
Nmax
p=1

(ucorrect(xp)− umeasured(xp)) .

While other values for p could be used, the only two relevant norms in the literature
are L2 and L∞.

Measuring stability

Deciding stability over the considered time period is accomplished by checking whether
the discretized field values stay bounded. Usually this would imply the further question
where to set these boundaries. Since unbounded values result in huge errors for
bounded correct solutions, the check can be omitted. High errors are already regarded
as unfavorable when tuning the accuracy. This observation reduces the tuning task to
two-objective optimization problems.

To decide if the final simulation is stable or not, it suffices to check whether the values
stay within the boundaries of the used datatype since it usually takes only few time steps
to reach this condition after crossing any other boundaries.
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4.3.3. Multi-Objective Autotuning

When tuning for multiple objectives, there most often is no such thing as a single best
solution. Trade-off optimal solutions, known as Pareto-optimal solutions exist. The goal
is either to transform the multi-objective optimization via a quality measure into a single-
objective problem, or to find Pareto-optimal solutions and then decide the trade-off [21,
p. 407-408].

“The classical means of solving such problems were primarily focused on scalarizing
multiple objectives into a single-objective, whereas the evolutionary means have been
to solve a multi-objective optimization problem as it is” [21, p. 403].

Dominance and Pareto-Optimality

This section will formally define dominance and pareto-optimality according to Sbalzarini
et al. [55].

A configuration c = (x1, . . . ,xm) ∈ X with parameters xi has the objective vector

f(c) = (f1(c), . . . , fn(c))

A configuration a is said to dominate a configuration b (written as a � b) if and only if:

∀i ∈ {1, . . . ,n} : fi(a) ≥ fi(b)

∧ ∃j ∈ {1, . . . ,n} : fj(a) > fj(b)

A configuration a is called nondominated regarding a set of configurations X if and
only if there is no configuration in X that dominates a. Formally

@b ∈ X : b � a.

Nondominated configurations regarding the whole search space are called Pareto-
optimal. A set of Pareto-optimal configurations is called Pareto-front. Figure 4.5 shows
the Pareto-front for the two objective problems with the trade-off between runtime and
error.

Optimization Procedures

It is clear from the definition of Pareto elements that the best configuration should
be one. Otherwise it is dominated by a Pareto element which hence is preferable. In
the book Search Methodologies, Kalyanmoy Deb describes the two main approaches of
finding a desired solution [21]. Both are visualized in Figure 4.6. The approaches differ in
the point of deciding the trade-off between the objectives to find a single best solution.

Approach A (Figure 4.6, bottom left) starts by finding a set of nondominated solutions
and then chooses among them. This choice may involve user feedback.
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Figure 4.5.: Nondominated configurations in the objectives time and error are connected
via the yellow line. Assuming that the whole search space is visualized, those
configurations are called Pareto-optimal. Any position above the yellow line
is dominated by one of the Pareto elements. The plot uses measurements
of the diffusion problem for t=0, with varying ε, h, rcut and discretizations
methods.

Approach B (Figure 4.6, top right) starts by defining a composite objective function
that reduces the problem to a single-objective one. This is then optimized by a single-
objective approach.

In this thesis, only approach B will be used. It promises to take fewer steps since it
searches only for one solution to begin with. Lowering the number of tuning steps is
crucial since they are unusually extraordinarily costly as discussed in 4.3.2. Additionally,
approach A needs user feedback at the end of the tuning to be truly beneficial. Without
user feedback, some score has to be calculated to decide which single configuration
should be used. That function then could have also been used to reduce the multi-
objective problem to a single-objective one immediately. Since this autotuning approach
is meant to be integrated into the OpenPME compiler later, user interaction would at
least be unusual but not inconceivable.

However, the biggest disadvantage of approach B is that the decision has to be made
at a point in time when the achievable trade-offs are unknown. As a result this, the user
might set a different focus than he would have in approach A. For this reason, it would
be interesting to investigate how well approach A would perform in practice.
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Figure 4.6.: Schematic of the two possibilities for multi-objective optimization procedures
based on Deb [21, pp. 408-409].

Weighted sum

One of the most widely used approaches of combining a set of objectives into a single
scalar value are weighted sums. The composite objective function F (c) is formed by
summing up the weighted objectives.

F (c) =

M∑
m=1

wmfm(c)

Usually, the objectives are normalized for comparability and the weights are adjusted
according to preferences. Since the absolute value ofF (x) does not change the problem,
the weights are usually chosen such that their sum is one.

Even though the grand scheme of weighted sums is easy, it has one major difficulty
on how to choose the weights and performing the normalization. These choices define
whether the configurations are good or not. In the case of optimizing computational cost
t and error e, both objectives have possible values for the whole interval [0,∞). Thus,
there is no obvious choice even for normalization. For this reason, this work proposes
the use of a goal objective vector (tg, eg) which defines the target relation between the
individual objectives. The values in the target vector are used as normalization quotients.

F (c) = 0.5 · t(c)
tg

+ 0.5 · e(c)
eg

Figure 4.7a displays the effect of this composite function. All configurations on the gray
line share the same quality measure as the goal objective vector (tg, eg) of F (c) = 1. All
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points below the curve have a quality value of less than one and are considered superior.
The inverse is true for the points above the curve. One can easily imagine how moving
the point (tg, eg) would redefine the target trade-off. Notice that actual weights w do not
have to define the relation between e and t since this is already done by the goal vector.
Therefore, they are set to 0.5 to ensure that a configuration with the same quality as the
target vector has a quality value of one. If not for this reason, or to stick to the convention
that

∑M
m=1wm = 1, both could be set to one and by that can be omitted.

The weighted sums approach allows to trade some degree of error and runtime. If
the relative error e(c)

eg
decreases by x, this might be compensated by an increase of x in

the relative runtime t(c)
tg

. Whether this is regarded favorable or not largely depends on
the preferences of the user. To enforce a stricter compliance to the relation between
tg and eg , an exponent can be introduced into the normalization. By that, deviations in
both directions have increased impact as visualized in Figure 4.7b.

F2(c) = 0.5 ·
(
t(c)
tg

)2

+ 0.5 ·
(
e(c)
eg

)2

The same is possible in the other direction by using an exponent smaller one.

F0.5(c) = 0.5 ·

√
t

tg
+ 0.5 ·

√
e

eg

This reduces the effects of the exact choice of (tg, eg) as shown in Figure 4.7c.
The principle can be generalized for any exponent p to

Fp(c) = 0.5 ·
(
t(c)
tg

)p
+ 0.5 ·

(
e(c)
eg

)p
.

Objective Product

Even though weighted sums are the most popular methods of combining multiple
objectives into a single one, they are not the only option. A simple product of the
objectives could be used.

Fproduct(c) = t(c) · e(c)

This would essentially describe a combined objective where the halving of one original
objective would allow the duplication of another. One advantage of this method is that
no goal vector is needed. The method is visualized in Figure 4.8a. As one can see in the
graph, this method closely resembles the form of the Pareto front. While this seems to
be good at first, it essentially means that it is not effective at select which element along
the Pareto front should be chosen. The method may select elements at both extremes,
very fast and inaccurate and the inverse, which is undesirable. At one extreme would be
an imaginary method that does nothing, and would lead to a finite error and a runtime
of t = 0. With the product method this would result in a perfect score of Fproduct = 0.
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(a) Normalized weighted sum
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(b) Square-normalized weighted sum
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(c) Root-normalized weighted sum

Figure 4.7.: Weighted sum objective functions. Points along the line share the same
quality while the points below have a higher and the points above a lower
quality.

It should be noted that the objective product could be expressed using the weighted
sum approach as one can see by applying the logarithm. This is valid because the
logarithm is strictly increasing for values greater than zero and consequently does not
change the order induced by the combined objective function.

Flog(c) = log t(c) + log e(c), t(c), e(c) > 0

While the imposed order by the weighted sum of logarithms and the objective product
is the same, they might be perfectly handled in different ways by single-objective
optimization algorithms. The weighted sum of logarithms is depicted in Figure 4.8b.

Threshold Objectives

Besides the weighted sum approach and the objective product, the idea of defining a
threshold for all but one objective and optimizing only the remaining one is a popular
approach of transforming a multi-objective problem into a single-objective one. In Search
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(a) Objective product
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(b) Logarithmic normalized weighted sum

Figure 4.8.: Objective product and the equivalent using weighted sums of logarithms.
Points along the line share the same quality while the points below have a
higher and the points above a lower quality.

Methodologies, Kalyanmoy Deb also refers to this principle as the ε-constraint method
where εm is the threshold of the objective function fm [21, p. 420-421]. The problem
can be formulated as

minimize fk(c)
subject to fm(c) ≤ em, m = 1, 2, . . . ,M ∧m 6= k.

If one of the objectives exceeds its threshold, the configuration is invalid. One major
advantage of this method is that it closely resembles methods used in benchmarking dis-
cretization schemes in particle methods. There, the error level is fixed to different values
and the runtime of the fastest configuration within these error limits is measured [57].

To translate the aforementioned formalism into a single-objective function, the inva-
lidity can be interpreted as an infinite objective value. Applying this idea to the problem
at hand, one obtains

Fε(c) =

t(c) e(c) ≤ εe
∞ otherwise

as a composite function. This might be disadvantageous though, since the single-
objective tuner does not receive any feedback on improvements or degradation for
invalid configurations. This is particularly problematic if a significant portion of the search
space is invalid according to the threshold, since the optimization algorithm would not
have guidance to find any valid configuration at all. This problem can be solved by
replacing∞ with a value that is larger than the maximum value for the open objective.

Fε(c) =

t(c) e(c) ≤ εe
tmax + e(c) otherwise

41



0.1 1 10
time [s]

1e-5

1e-4

1e-3

1e-2

er
ro

r

Time-Error Threshold Accuracy Plot

Figure 4.9.: Error threshold. All configurations above the line are considered invalid.
Among the remaining, the ones with the lowest runtime are considered to
have the highest quality.

In general, there is no upper limit on the computational costs tmax in particle methods,
but it exists for a given finite search space. The tmax could either be approximated or a
general upper limit for realistic runtimes might be used.
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5. Optimization Approaches

This chapter introduces the optimization approaches applied in this work. A selection
of general search algorithms are available through utilizing the OpenTuner framework.
Additionally, a detailed search space analysis for the diffusion and Gray-Scott simulations
is presented. The obtained results are used to design a model-based optimization
approach.

5.1. OpenTuner

Autotuning frameworks are the best approach when implementing the optimization part
of an autotuner. In particular, they provide a wide selection of optimization algorithms
which help to overcome the burden of implementing them by hand. Besides the
fact of saving a lot of time, widely used frameworks provide good code quality and
resilience as they have been tested on real world cases for a longer time. In contrast
to general optimization frameworks like Pagmo [12] and SciPy.optimize [64], autotuning
frameworks are well fitted for code optimization problems. They combine different
parameter types such as integer, floating point and categorical types and do not rely
on further knowledge like gradients which cannot be easily determined by a single
measurement.

5.1.1. Why Use OpenTuner

Unfortunately, the number of available general-purpose autotuning frameworks is fairly
limited. Section 2.1.2 introduced OpenTuner and ATF. This work utilizes OpenTuner. The
decision for choosing it over ATF will be discussed in the following paragraphs taking into
account their provided algorithms, features, interface, development state and availability.

Provided Algorithms OpenTuner contains a wide selection of local and global opti-
mization algorithms and is capable of using them in conjunction. ATF provides per default
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exhaustive search, simulated annealing and a binding to OpenTuner’s search engine.
Since OpenTuner also implements simulated annealing, they only differ in the exhaustive
search provided by ATF which is not feasible for the problem at hand. Additionally, both
frameworks allow the implementation of new search techniques. Consequently, there
is no reason to choose one framework over the other due to the selection of search
algorithms.

Parameter constraints One of the key improvements of ATF over OpenTuner is the
possibility to define dependencies between tuning parameters. Indeed, this would be
beneficial for autotuning the discretization parameters of continuous particle simula-
tions since the range of reasonable cutoff radii depends on the chosen discretization
method and kernel. However, the main concern of ATF’s constraints is their implemen-
tation. The constrained search space gets mapped to a single OpenTuner integer tuning
parameter and specifies the index in ATF’s search space. A visualization and an expla-
nation can be found in Figure 5.1. This approach loses almost all locality information.
Slight changes in the cutoff radius, particle distance, time step size or kernel width could
also result in only small performance changes. Therefore, locality is of great importance
in guiding essentially all optimization algorithms. Nonetheless, ATF demonstrated per-
formance improvements using constraints over unconstrained OpenTuner, but just for a
case study where only one in 107 unconstrained configurations was valid. Since this is not
the case here, ATF constraints could lead to worse performance. Instead, a subdivision
of the search space will be performed and discussed in Section 5.1.2.

(a) Full search space

0 1
2 3 4
5 6 7 8

9 10 11
12

(b) Search space with
constraints

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

35 36· · ·

(c) ATF’s mapped search space

Figure 5.1.: Problem of ATF constraints. Configurations with similar parameters can be
expected to have a comparable performance. Configuration similarity is
visualized by color. Constraints invalidate certain configurations of the full
search space as shown in (b). When mapping the whole search space into
a single integer as shown in (c), most similarities are lost as shown by the
mismatching colors. Even if the neighbors are still similar as in row two of (c),
the total number of neighbors strongly decreased.
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Interface New autotuners are created with OpenTuner by implementing a child class
of the MeasurementInterface class providing methods for search space creation and
configuration evaluation. ATF utilizes annotated source files to generate autotuners
automatically. While this is very convenient for application level autotuning, it does not
provide enough flexibility and is not expressive enough to implement the sophisticated
accuracy evaluations that are needed.

Development state and availability OpenTuner is available in GitHub and provides tu-
torials on how to implement tuners and new optimization techniques on opentuner.org.
It has successfully been used to optimize GPU compiler parameters [15, 14, 26], high-
level synthesis for FPGAs [16] and image processing schedules [70]. ATF, in contrast, is
currently not available online.

In conclusion, ATF and OpenTuner provide the same variety of optimization algorithms
but OpenTuner’s interface fits better for the purpose of this work. Furthermore, this
framework is easily available and widely used in practice. ATF’s support for constraints is
highly beneficial but would be disadvantageous for the tuning performance of the given
problem.

5.1.2. Defining the Search Space

As mentioned when discussing ATF constraints, the considered range of cutoff radii
depends on the discretization method and kernel function. Additionally, they influence
the effect of the kernel width, the error convergence order and time stepping stability.
Hence, there is barely similarity between two configurations that are identical in all
parameters but the discretization method and kernel function. Considering that, the full
optimization is divided into multiple smaller optimizations. One for each discretization
method and kernel function pair. Since there is currently only one kernel function
implemented per discretization method, this amounts to three optimizations. One for
SPH, PSE and DC-PSE respectively.

The remaining open parameters are the normalized cutoff radius rc
h , normalized kernel

width ε
h , the spatial resolution h represented by the number of particles per dimension

and the time step size δt. All of them are represented as fixed-point numbers and all
value ranges have a fixed step size. Since OpenTuner does not support fixed-point
numbers with a given step size, the ranges are transformed into integer ranges with
step size one which is done by plain multiplication with the step size. For example, the
range of values for δt of {0.05, 0.06, . . . , 0.99, 1.00} is represented as the integer range
[5, 100]. The corresponding translations between ranges have to be done before and
after interactions with the OpenTuner API.

45



IntegerParameter( 'cutoff_radius ', 3, 10) # factor 1
IntegerParameter( 'epsilon ', 6, 20) # factor 0.1
IntegerParameter( 'x_particles ', 1, 40) # factor 50
IntegerParameter( 'dt ', 5, 100) # factor 0.01

Figure 5.2.: OpenTuner Integer parameter specification.

5.1.3. Evaluating a Configuration

The general approach on conducting measurements and combining them into a single
quality measure has been discussed in Section 4.3. Here, only OpenTuner-specific issues
are discussed.

Implementing an instance of OpenTuner’s MeasurementInterface involves the speci-
fication of the run method which maps a configuration dictionary to a Result containing
the quality measure. A possible configuration dictionary is shown in Figure 5.3

{
'cutoff_radius ': 5,
'epsilon ': 10,
'x_particles ': 5,
'dt ': 10

}

Figure 5.3.: Configuration as passed by OpenTuner.

The OpenTuner configuration is then translated into the corresponding configuration
with correct values ( rch = 5, εh = 1.0, 1

h = 250, δt = 0.1). The configuration is run as
described in Section 4.2 and the measurements are conducted as in Section 4.3. The
calculated quality measure is afterwards returned inside a Result object. OpenTuner
provides also the possibility to define other objectives than minimizing a single value.
The ThresholdAccuracyMinimizeTime objective allows to use the ε-constraint method
by returning a time and accuracy measure inside the Result.

5.2. Model-Based Search

Model-based search approaches require more effort to design as they entail good
understanding of the search space. Fortunately, particle methods are analytically well
understood. For all used spatial discretization methods the error convergence rate is
known. The same is true for the used temporal discretization method. The main problem
is that these theoretical convergence rates assume otherwise perfect conditions. The
spatial error convergence for example assumes infinite neighborhood radius, arbitrary
accurate floating point values and time step sizes approaching zero. To investigate the
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influence of the interaction of tuning parameters on accuracy and computational cost, a
parameter study is conducted.

5.2.1. Parameter Study

Since not all tuning parameters can be displayed in a single diagram, a series of them
is used. For this purpose, exhaustive measurements are conducted over a reduced
parameter space for both case study simulations. The used parameter spaces for Gray-
Scott and diffusion are shown in Table 5.1 and Table 5.2 respectively.

Discretization
method

Smoothing
kernel

Para-
meter

Measured values

all

1
h {50, 100, 150, . . . , 800}
1
δt {1, 2, 4, 8, . . . , 512}
ε
h {1.0}

SPH Gaussian rc
h {4, 5, 6, 7}

PSE Gaussian rc
h {4, 5, 6, 7}

DC-PSE Polynomial rc
h {2, 3, 4}

Table 5.1.: Parameter space for Gray-Scott parameter study.

Figure 5.4 shows multiple aspects. Firstly, if δt is not small enough, h does not matter
and the error does not converge to zero. The smaller the time step, the larger the
range of particle distances for which the error converges. Since there is basically no
change from δt = 1

256 to 1
512 it can be assumed that the former is small enough for the

measured interval. Secondly, the convergence rate equals two, as should be expected
for second order accurate kernels, assuming small enough δt and h. This is visualized by
a comparison line with slope −2 which corresponds to the actual quadratic function for
the accuracy on a nonlogarithmic scale. Thirdly, the used neighborhood radius does set
a limit on the minimal error for SPH and PSE. While a low rc does not make a difference
for high δt and h, increasingly higher neighborhoods are required for smaller spatial and
temporal resolutions. This does not apply to DC-PSE since the discretization correction
eliminates the cutoff error.

For the diffusion simulation, a slightly different parameter space is analyzed (Table 5.2).
Since the requirements for time step sizes are lower, a larger range of spatial resolutions
could be measured in an adequate amount of time.

In comparison to Gray-Scott, the measurements for the diffusion simulation show very
low errors even for relatively large δt (Figure 5.5). This is most likely due to the fact that
fewer interactions occur and the pattern formed by the simulation is less complex.
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Discretization
method

Smoothing
kernel

Para-
meter

Measured values

all

1
h {50, 100, 150, . . . , 1000}
1
δt {1, 2, 4, 8, . . . , 32}
ε
h {1.0}

SPH Gaussian rc
h {4, 5, 6, 7}

PSE Gaussian rc
h {4, 5, 6, 7}

DC-PSE Polynomial rc
h {2, 3, 4}

Table 5.2.: Parameter space for diffusion parameter study.

Especially for PSE with large δt the error spikes to extremely low levels (Figure 5.5).
This behavior can be assumed to be an artifact of the small measurement period and
absolute chance. Due to its relative simplicity, the diffusion simulation is prone for these
kind of measurement errors. The effect is especially articulated for PSE presumably
due to its symmetry. These spikes are a big problem for autotuning though, since they
seem to have a very good trade-off between runtime and accuracy according to the
measurements. To prevent these, longer measurement periods could be used or model-
based approaches that do not consider them in the first place.

Other than that, the observations coincide with the Gray-Scott case. The relevance
of the neighborhood size becomes even more apparent caused by the larger range of
spatial resolutions.
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Figure 5.4.: Gray-Scott parameter study relating the error, spatial and temporal resolu-
tion and discretization method. The dashed line has a slope of -2 represent-
ing quadratic relations in the logarithmic diagram.
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Figure 5.5.: Diffusion parameter study relating the error, spatial and temporal resolution
and discretization method. The dashed line has a slope of -2 representing
quadratic relations in the logarithmic diagram.
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5.2.2. Accuracy Regression Based on Number of Particles

The previous measurements encourage the idea of determining the exact relation
between the error and spatial resolution. For second order accurate discretization
methods, one should expect the error to shrink quadratically with decreasing particle
distances which coincides with the measurements when all parameters where large or
small enough. Measuring a small set of values, the function e = a · h2 can be estimated
using regression. By considering the root of the measured error, it becomes a case of
linear regression.

Based on these observations the following algorithm is proposed. It uses a threshold
error optimize runtime approach.

1. Set rc to the maximum value in the search space rcmax
Set δt to the minimum value in the search space tmin
Set h to the minimum value in the search space hmin
Set ε

h to 1
C = ∅

2. Measure configuration and place in the set C

3. Use linear regression on C to estimate a in e = a · h2

4. Use h =
√

e
a to estimate hestimate for ethreshold

5. hnext := max(hestimate,hmin)

6. Create new configuration c by setting h to hnext

7.



Go to 2. if c /∈ C

Continue at 8. if c ∈ C and e(c) ≤ ethreshold

Decrease hestimate by one step and go to 5.
if c ∈ C and e(c) > ethreshold

and hnext > hmin

Report ethreshold could not be reached otherwise

8. Use bisection search to find the lowest ε that does not change e significantly

9. Use bisection search to find the lowest rc that does not change e significantly

10. Use bisection search to find the largest δt that does not change e significantly

Steps 1. to 7. find the most suitable particle distance for the given error threshold.
There, the best values for rc and δt in the search space are used. Since neither the
minimal nor the maximal ε in the search space can be expected to perform best, the
value of 1 is used. The minimum kernel might not take neighboring particles sufficiently
into account whereas the maximum might lead to not large enough rc. Steps 2 to 7
repeatedly try to estimate the value of h. This process is visualized in Figure 5.6.
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Figure 5.6.: Model-based search steps used to optimize h. The plots use an accuracy
value (one divided by the error) rather the error to better visualize the
quadratic dependency between error and resolution.

The regression search succeeds when the estimated configuration was already mea-
sured and is below the error threshold as in Figure 5.6d. The regression based search
is followed by individual bisection searches on the remaining three parameters. In the
bisection search the valid range of the parameters is repeatedly split in two, keeping the
lower or upper half depending on whether the measurement of the midpoint lead to
a significant change of the error or not. To prevent to the selection of the seemingly
low error spikes seen in diffusion, the requirement is insignificant change rather than no
significant increase.

The major disadvantages are on the one hand that ε is handled subpar since no
obvious most accurate value is available as for the other parameters and on the other
hand that by choosing the extreme values for rc and h, the required measurement time
of the configurations can be expected to be above average.

The model-based search algorithm is implemented as new OpenTuner optimization
technique using the SequentialSearchTechnique interface. While no features of Open-
Tuner are needed for the implementation, the integration into OpenTuner simplifies the
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optimization technique selection. It can be accessed as any other technique by specifing
it in OpenTuner’s --technique parameter.

The linear regression is implemented using scikit-learn [50].

5.3. Model-Based Prediction

The previous section utilized the knowledge about the error convergence rate of the
spatial discretization method in conjunction with empirical measurements to predict the
best number of particles to be used for a specified error threshold. The same idea can
be expanded to also predict the best choice for δt. As for the relation between error and
spatial resolution, measurements are conducted to validate the analytical properties in
actual simulations. Since the diffusion simulation did not require small time step sizes
as in Gray-Scott, the measurements are done for the latter.

Figure 5.7 clearly shows that for small enough h, the error converges with the expected
rate of one. The convergence rate depends on the temporal discretization scheme,
which is fixed to explicit Euler. The graphs also visualizes that for small enough h, the
spatial discretization method does not matter. This implies that the predictive model
can be used for all of them together and does not have to be trained individually.

Combining the idea of using regression to determine the actual dependency between
the spatial resolution and the error with the observation that the same can be done
for the temporal resolution, a fully predictive model can be created. The main idea
of this predictive model is to only do a few swift measurements to adapt it to the
given simulation. The accuracy of the predicted configuration is then never evaluated
accepting the chance of slight inaccuracies and gaining the advantage of not requiring a
highly accurate comparison configuration. This significantly reduces the computational
costs of the tuning phase.

To integrate the neighborhood radius into the prediction, a simple heuristic is created
choosing rc depending on the target accuracy. Based on the observations in this chapter,
for a target accuracy below 10−n, a value of rc = n · h is selected for SPH and PSE while
for DC-PSE always rc = 2 · h is used. This heuristic is not guaranteed to generalize well
and should be reconsidered in the future.

For the sake of simplicity, the value ε is always set to h accepting the possiblity of
missing the optimal configuration.

To summarize, the model-based prediction method works as follows: A small number
of configurations with maximum neighborhood radius, minimum δt, ε = 1 and varying
h are measured for each discretization method. The results are used to determine a

in e = a · h2 using linear regression for all methods. Additionally, a small number of
configurations with maximum neighborhood radius, minimum h, ε = 1 and varying δt
is conducted for PSE. The results are used to determine a in e = a · δt. The functions
determined this way are reversed and used to calculate a value for δt and one for h for
each discretization method using the error threshold. The neighborhood radius rc is
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determined using the aforementioned heuristic and the kernel width is set to one. This
way, there exists one candidate configuration per discretization method. For all of them,
the runtime is measured over the evaluation period and the fastest one is chosen.
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Figure 5.7.: Gray-Scott parameter study relating the error, temporal and spatial resolu-
tion and discretization method. The dashed line has a slope of -1 represent-
ing linear relations in the logarithmic diagram.
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5.4. Runtime Regression

The previous sections explored the idea of using an analytical model in conjunction
with regression over sample measurements to determine the relation between the
configurations and the error. The same can be done for the computational costs.
Essentially, the runtime scales with the number of particle interactions i. This in turn
depends on the the total number of particles, the number of particles within the
neighborhood of each other and the number of time steps. It can be calculated with

i = Nn ·
(

3 · rc
h

)n
· t
δt

where N is the number of particles in each dimension in a n-dimensional space, so Nn

denotes the total number of particles. Figure 5.8 explores the actual measured relation
between the number of particle interactions and runtime. The configurations measured
vary in the number of particles, time steps, and neighborhood radii.
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0.1

1

10

tim
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discretization method
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Figure 5.8.: Relation between the number of particle interactions and runtime. The
dashed lines have a slope of one and denote linear relationships in the
logarithmic diagram.
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SPH and PSE show a clear linear growth. For DC-PSE, one should not expect a full linear
growth, since the computation of the weights (solving the system of linear equations)
does not linearly depend on the number of particle interactions per particle, so the
influence of rc is not linear. Nevertheless, the measurements show to be close enough
for an approximation.

Using these observations, the runtime can be predicted using linear regression on
a small set of measurements for each discretization method. A similar approach was
proposed by Schrader et al. [57]. To reduce the effect of time measurement inaccuracies,
only configurations with a runtime above one seconds are considered.

The resulting runtime model could be used in conjunction with the diffrent methods
described in this thesis. The empirical autotuners could benefit from skipping the
actual evaluation of time consuming simulations. If used together with the model-
based prediction approach, the whole trade-off between runtime and accuracy could
be presented to the user.

Although the runtime regression approach is implemented and performs perfectly, it
is currently not utilized by any of the aforementioned optimization techniques.

5.5. Separate Spatial Optimization

Evaluating the influence of the spatial discretization of a simulation separately from
the temporal discretization enables a rapid tuning approach. The idea here is not
to measure over multiple time steps but only the result of the discretized differential
operator. Since the actual result is not needed for subsequent time steps, it is possible
to approximate the accuracy by evaluating and measuring it for a representative subset
of particles. The approach prohibits the measurement of the computational costs which
can be compensated by the previously discussed runtime regression approach. The
configurations are then optimized using any general optimization technique.

The advantage of this approach is that it does not require any analytical knowledge
about the spatial discretization method and is by that easily transferred to changing
tasks. To be used for the optimization problems at hand, it has to be combined with
a technique determining a fitting temporal discretization method which is not in the
scope of this thesis. Indeed, using the techniques from the model-based prediction
approach (Section 5.3) is promising.
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6. Evaluation

The empirical evaluation aims at answering multiple questions. How well do the available
optimization algorithms perform in terms of the found solution and required tuning
time? How profitable are the autotuning approaches in general comparing the tuning
time with the gain in simulation time improvement?

All measurements are conducted on the HPC cluster of the Centre for Information
Services and High Performance Computing (ZIH) of TU Dresden. Intel Haswell nodes
with two Intel Xeon E5-2680v3 CPUs with 12 cores each at 2.50 GHz were used. The 24
core nodes have 64 GB of RAM available and are connected by an InfiniBand network
with a 40Gb/s bandwidth. Even though OpenFPM code has shown to scale well for large
amounts of cores [37], single nodes are used for the measurements in this chapter. This
allows for a wider evaluation within the limited access to the HPC environment.

The DC-PSE implementation used in this thesis does not employ any optimizations
like remembering kernel functions for stationary particles or lookup tables to avoid the
construction of the smoothing kernel for each particle in each time step. For this reason,
the computational costs are considerably higher than for SPH and PSE. Due to this, one
cannot expect to find configurations using DC-PSE which outperform any configurations
found by the other two methods. Besides, the tuning takes significantly (up to four times)
longer due to slow evaluations of single configurations. Therefore, the tuning runtimes
of DC-PSE where neglected in this evaluation to not obfuscate the times measured for
SPH and PSE.

6.1. Comparison of Optimization Techniques

This section will compare the achieved optimizations from the different available tech-
niques. These are the model-based search described in Section 5.2, OpenTuner’s main
composed optimization technique and a wide selection of individual techniques imple-
mented in the OpenTuner framework as listed in Table 6.1. The model-based prediction
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described in Section 5.3 is evaluated separately as it does not guarantee to find a con-
figuration with an error below the threshold. The presented runtime measurements are
the mean over ten executions of the optimization algorithms.

Technique
Short
name

OpenTuner name

Model-based search AccReg AccuracyRegression

OpenTuner default search AUC AUCBanditMetaTechniqueA

Differential Evolution DE DifferentialEvolution

Genetic Algorithm GA ga-base

Greedy Mutation
UniGM UniformGreedyMutation10

NormGM NormalGreedyMutation10

Nelder Mead
RegNM RegularNelderMead

MulNM MultiNelderMead

Particle Swarm Optimization PSO pso-PMX

Pseudo Annealing Anneal PseudoAnnealingSearch

Torczon Hill Climber
RTorc RegularTorczon

MTorc MultiTorczon

Random search Rand PureRandom

Table 6.1.: Overview of the evaluated optimization techniques. The first column names
the general technique. Second column states the short name used in
diagrams. Third column states the technique name passed to OpenTuner
via --technique.

The search space used for the evaluations is given in Table 6.2. It contains 798 720
configurations. The measurement of a single configuration at t = 2 takes between 0.003
and 735 seconds. This is what renders optimization challenging as in the worst case
an optimizer is not able to measure even five configurations within an hour. For the
accuracy measurement, a configuration using PSE with a Gaussian smoothing kernel of
width ε

h = 1 with h = 1
1600 , δt = 1

1024 and rc
h = 9 is employed.

6.1.1. Diffusion Simulation

For the diffusion simulation, the aforementioned optimization algorithms where used
to tune the runtime while keeping the measured error below a threshold of 10−5 as
shown in Figure 6.1 and 10−6 as in Figure 6.2. As measurement point t = 2 was chosen
and the optimization was limited to 0.5, 1 and 2 times the runtime of the model-based
search approach for the given problem. Since a separate tuning is conducted for all
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Discretization
method

Smoothing
kernel

Para-
meter

Measured values

all

1
h {50, 100, 150, . . . , 800}
1
δt {1, 2, 3, 4, . . . , 256}
ε
h {0.6, 0.7.0.8, . . . , 2.0}

SPH Gaussian rc
h {5, 6, 7, 8, 9}

PSE Gaussian rc
h {5, 6, 7, 8, 9}

DC-PSE Polynomial rc
h {2, 3, 4}

Table 6.2.: Search space used for autotuning the diffusion and Gray-Scott simulations.

discretization methods, these limitations apply per method. The runtime of the model-
based search approach is defined by tAccReg = max(tAccReg SPH , tAccReg PSE).

Threshold 10−5

In the case of an error threshold of 10−5, the model-based search approach took on
average 277 s for PSE and 166s for SPH. For PSE and DC-PSE, the tuning consisted of 15
measurements and 14 for SPH. Since the method is deterministic, the number of steps
did not vary. The found configuration (SPH, 1

h = 200, εh = 0.9, δt = 1, rch = 5) took 0.06 s
for period t = 0 to t = 2, so the whole simulation would take 155 s. As Figure 6.1 shows,
the other optimization algorithms found considerably slower configurations even within
double the tuning time. There, OpenTuner’s default search technique performed best
with an average runtime over the tuning period of 3.84 s (9 598 s simulation runtime).
Since the other optimization techniques are nondeterministic, their performance varied
between tuning runs. Normal greedy mutation found the same configuration in one run
and found configurations taking less than 0.1 s in four out of ten runs. To get a better
insight on the variation in between the individual tuning runs, a box plot can be found in
the appendix (Figure B.1).

Threshold 10−6

With an error threshold of 10−6, the model-based search for PSE took 1 765 s on
average whereas SPH needed 1 216 s for 14 to 15 steps, respectively. The found
configuration (SPH, 1

h = 600, ε
h = 1.0, 1

δt = 4, rc
h = 5) takes 1.00 s for the tuning

period (2 500 s full simulation). In this case, some other optimization algorithms
were consistently able to outperform the model-based search when given double the
tuning time, but never achieved this within the same amount of time. Particle swarm
optimizations scored an average found runtime of 0.19 s (467 s full simulation). Despite
the fact that this is five times faster, it does not amortize the increased tuning time.
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The best individual configuration found by other algorithms was (PSE, 1
h = 250, εh = 0.6,

δt = 1, rch = 5). There are two aspects that should be noted about this configuration.
Firstly, a very high time steps size was chosen despite the low target error. In the
parameter study, Figure 5.5 showed low error spikes for high values of δt. Since they were
interpreted as unfavorable, the model-based search actively avoids them. Secondly, the
width of the smoothing kernel is surprisingly small but does seem to be the main reason
for the low error that would not be explainable with other parameters. This however
contradicts the parameter study done by Schrader et al. [57] who found that higher
kernel widths lead to higher accuracies (assuming sufficiently large rc which is given in
this case). Based on these observations one would assume that the high accuracies
are only artifacts of the measurement at an early point during the simulation. However,
first tests inspecting other time points were not able to confirm this theory. Further
evaluations are necessary to investigate this matter.

Model-Based Prediction

Besides the search based optimization techniques, this thesis presented a model-based
prediction approach. As data points for the regression, three values per prediction (tem-
poral, spatial SPH, spatial PSE, spatial DC-PSE) were measured evenly distributed within
the lower quarter of the search space and took a total of 98 s for all 12 measurements.
The configuration used to measure the accuracy was also reduced to a quarter for the
spatial resolution and time step size which took 133 s to be created. After this initializa-
tion, predictions for different target accuracies barely take any noticeable time. For the
spatial resolution, the regression found a function with a coefficient of determination of
R2 = 0.998 for all three discretization methods1. For the temporal resolution however,
the regression was not able to find a function at all (R2 = −47). This can be attributed
to the fact that δt did not seem to have a large influence on the accuracy for diffusion as
reported in the parameter studies (Figure 5.5). Interpreting the negative coefficient of
determination as no influence by the temporal resolution, a constant value of δt = 1 is
chosen. The predicted configurations for an error threshold of 10−5 took 0.08 s for the
tuning period and 0.50 s with a threshold of 10−6. In both cases the error threshold was
met. The resulting runtimes were close to or even superior to those of the model-based
search. However, it should be noted that this might be attributed to the fact that the
chosen configurations partially fall into the previously discussed low error spikes whose
correctness stays an open question.

1A coefficient of determination of one denotes a perfect fit. The value can also be negative.
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Figure 6.1.: Achieved simulation runtimes by different optimization algorithms for the
diffusion simulation with an error threshold of 10−5. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). The
bars represent the mean over 10 runs. Each algorithm is evaluated with an
upper tuning time limit of 0.5, 1 and 2 times the tuning time of the model-
based search. The percentage on the left indicates how often any valid
configuration below the error threshold was found.
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Figure 6.2.: Achieved simulation runtimes by different optimization algorithms for the
diffusion simulation with an error threshold of 10−6. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). The
bars represent the mean over 10 runs. Each algorithm is evaluated with an
upper tuning time limit of 0.5, 1 and 2 times the tuning time of the model-
based search. The percentage on the left indicates how often any valid
configuration below the error threshold was found.
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6.1.2. Gray-Scott Simulation

As in the diffusion simulation, the optimization algorithms for the Gray-Scott simulations
are evaluated for error thresholds of 10−5 and 10−6 and the evaluation point is t = 2.
Additionally, the tuning times were again limited to 0.5, 1 and 2 times the tuning time of
the model-based search.

Threshold 10−5

For an error threshold of 10−5, the model-based search took on average 1 114 s over 16
steps for PSE and 584 s over 15 steps for SPH. The found configuration (SPH, 1

h = 250,
ε
h = 0.9, 1

δt = 30, rch = 5) took 2.94 s (14 700 s full simulation). The general optimization
algorithms performed considerably worse on average, even if given the double amount
of tuning time. The best average runtime found is 7.95 s (39 750 s full simulation)
by normal greedy mutation. In individual runs, normal greedy mutation was able to
outperform the model-based search in six out of ten runs given double the tuning time.
The best configuration found this way takes 1.18 s (5 917 s full simulation). Hence, it
would be able to amortize the increased tuning costs if the result was found consistently.
Nonetheless, it has to be noted that these superior configurations have all used PSE with
ε
h = 0.6. The issue with this was discussed before in Section 6.1.1. For more insights on
the variation between the individual tuning runs, a box plot can be found in Figure B.3.

Threshold 10−6

For an error threshold of 10−6, the tuning runtimes and resulting computational cost for
the simulations were infeasibly long. For this reason, the evaluation was only performed
five (and not ten) times and excluded the tuning time limit of 2 · tAccReg . The model-
based search took 13 426 s over 15 steps for PSE and 12 340 s over 17 steps for
SPH. The found configuration (PSE, 1

h = 750, ε
h = 0.6, 1

δt = 219, rc
h = 5) took

211 s (12 days full simulation). As Figure 6.4 shows, multiple general search algorithms
were able to outperform the model-based search, although most of them were not able
to consistently find a configuration which fulfills the threshold and even none of them
outperformed the model-based search in all runs.

Model-Based Prediction

Similarly to diffusion, the regression used three measured values per prediction which
were evenly spread across the lower quarter of the search space. Their evaluation took
a total of 196 s. This is double the time required for diffusion since two fields (u and v)
are simulated, whereas in diffusion it is only one. The configuration used to measure
accuracy was created in 268 s. The temporal model was fitted with a coefficient of
determination of R2 = 0.99 and the spatial models for SPH, PSE and DC-PSE one with
0.95, 0.96 and 0.84, respectively. The predicted configuration for an error threshold of
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10−5 takes 2.00 s but only achieves an error of 1.4 · 10−5. For the error threshold 10−6,
the predicted configuration has a runtime of 235 s but also exceeds the error threshold
with an error of 1.4·10−6. The achieved performance compares well with the considerably
more computationally expensive search methods. The error levels above the threshold
are possible since on the one hand the method is not exact and on the other hand, the
spatial and temporal errors may add up. To counteract this, one could target a lower
error level to begin with.

6.1.3. General Observations

The model-based search showed consistency in the number of needed tuning steps
which varied between 14 and 17. In contrast to this, the tuning time varied strongly
depending on the computational costs of the final simulation and this is because most
of the measurements are performed on configurations that rapidly approach the final
one. The quality of the general optimization algorithms seemed to depend less on the
specified target since they performed better in comparison when given long tuning times
to find long running configurations.

Out of the general optimization algorithms, none was able to compete with the model-
based search in all experiments. Among of them, OpenTuner’s AUC Bandit technique
and the genetic algorithm were able to achieve good results most reliably regarding all
experiments.

The model-based prediction performed astonishingly well considering its strongly
reduced tuning time. Nonetheless, one has to keep in mind that it does not guarantee
to stay below the error threshold.
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Figure 6.3.: Achieved simulation runtimes by different optimization algorithms for the
Gray-Scott simulation with an error threshold of 10−5. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). The
bars represent the mean over 10 runs. Each algorithm is evaluated with an
upper tuning time limit of 0.5, 1 and 2 times the tuning time of the model-
based search. The percentage on the left indicates how often any valid
configuration below the error threshold was found.
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Figure 6.4.: Achieved simulation runtimes by different optimization algorithms for the
Gray-Scott simulation with an error threshold of 10−6. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). The
bars represent the mean over 5 runs. Each algorithm is evaluated with an
upper tuning time limit of 0.5 and 1 times the tuning time of the model-
based search. The percentage on the left indicates how often any valid
configuration below the error threshold was found.
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6.2. Profitability Analysis

The previous section showed that some of the available optimization algorithms are
capable to find highly suitable configurations according to the optimization goals. This
section will investigate if the tuning is generally profitable. The main question here is
whether the performance gains are able to compensate for the costs introduced by
the required tuning phase. This question is not easily answered as it is not obvious
what should be compared here, since there exists no base configuration that could be
used to calculate the performance improvement. Additionally, the computational costs
of the tuning highly depend on the chosen search space, the reference configuration for
accuracy measurements and the size of the measurement period used for the tuning.
These parameters are assumed to be as in the previous section for the evaluation.

Since no single obvious comparison is available, multiple ones will be considered.
On the tuning time side, the time needed by the best performing algorithms will be
evaluated for both simulations and target accuracies. On the simulation runtime side,
the best configuration consistently found the accuracy reference configuration and the
best configuration for the respectively other problem will be considered. The reasoning
for this choice is argued in the following paragraphs.

The best configuration consistently found represents the lowest simulation runtime
available. By that, it sets the lower bound on the simulation runtime spectrum. However,
one should not forget that this configuration would most likely not be available without
autotuning or be the result of even longer manual tuning work made by the programmer.

The accuracy reference configuration sets an upper bound on the simulation run-
time. It is the only configuration that is assumed to fulfill the accuracy requirements
beforehand by the autotuner. To ensure that it is sufficiently accurate as reference for
accuracy evaluations, it is computationally very costly and most likely not feasible as con-
figuration for the whole simulation. Otherwise, the tuning could be omitted since this
configuration is already assumed to be accurate enough.

The best configuration for the other simulation represents an intuitive choice by a
human trying to transfer knowledge from a known problem to a new one. For this com-
parison, not only the resulting runtime has to be considered but also the achieved ac-
curacy since it is not guaranteed that this configuration fulfills the accuracy requirements.

Table 6.3 lists the tuning time requirements and the time to create the reference
configurations for the given search space. Table 6.4 lists the resulting runtime of the
full simulations in the three previously defined categories.

For the diffusion simulation, the tuning is strongly dominated by the time to run the
reference configuration which is also significantly longer than the final runtime of the best
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Threshold Search Prediction

Reference AccReg Others Reference Prediction

Diffusion 10−5 8441 s 443 s 1108 s 133 s 98 s

10−6 8441 s 1216 s 3530 s 133 s 98 s

Gray-
Scott

10−5 17015 s 1698 s 4456 s 268 s 196 s

10−6 17015 s 25767s 26853 s 268 s 196 s

Table 6.3.: Tuning runtimes.

Threshold Reference Best own Best other

Time Error

Diffusion 10−5 244 days 155 s 3707 s 4.3 · 10−6

10−6 244 days 467 s 5 days 5.4 · 10−7

Gray-Scott 10−5 984 days 14700 s 590 s 2.6 · 10−4

10−6 984 days 12 days 834 s unstable

Table 6.4.: Simulation runtimes.

configuration. For an error threshold of 10−5 it exceeds the runtime of the suboptimal
configuration representing a user choice (best configuration from the other simulation).
For an error threshold of 10−6 it does not. Only the model-based prediction approach
compares well even including its accuracy reference configuration.

For Gray-Scott, the best simulation runtimes found, were similar to the tuning times
for a threshold of 10−5 but considerably longer for 10−6. The representation of the
user choice did lead to configurations that were either inaccurate or even unstable.
Nonetheless, the low accuracy might not have been detected without the measurement
of the comparison configuration. This shows that in addition to its necessity for the
tuning, the comparison configuration or something similar would be needed to measure
the accuracy when optimizing by hand.

Comparing the tuning time with the simulation runtime of the accuracy reference
configuration (Reference column in Table 6.4) visualizes how much the choice of an
appropriate configuration matters since the runtime does not only vary by small margins
but over multiple orders of magnitude.
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Finally, it should be noted that all tuning methods did not take more than few hours,
even including the creation of the reference configuration which is certainly fast in
comparison to manual optimization.
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7. Conclusion

This thesis designed, implemented and evaluated a multi-objective autotuning approach
for particle simulations written in OpenPME. It implemented an interface to easily
generate C++ code linked with the OpenFPM library for the spatial discretization methods
SPH, PSE and DC-PSE. Multiple methods to measure accuracy and runtime as well as to
combine them into a single-objective were explored and implemented. Ultimately, the
method of fixing the error while optimizing the computational cost is used.

To find the best performing configuration regarding this objective, this work utilized the
autotuning framework OpenTuner which provides a large variety of general purpose op-
timization algorithms. Additionally, multiple approaches involving domain specific knowl-
edge were designed. The model-based search uses the knowledge of the convergence
order of spatial discretization methods in conjunction with regression to guide an empir-
ical search. The model-based prediction uses the same idea combined with the knowl-
edge about the convergence order of the temporal discretization method to predict a
configuration without conducting a search.

The performance of the implemented optimization algorithms were evaluated for dif-
fusion and Gray-Scott simulations with different target accuracies. The evaluations showed
that especially the model-based approaches were able to perform well throughout all
considered scenarios. The model-based prediction approach was able to conduct the
autotuning within a few minutes while the search-based optimizations took considerably
longer due to the need of a computationally intensive reference configuration to evaluate
the accuracy. However, the search itself showed to reliably only require 14 to 17 steps
for the evaluated search space. While the general optimization algorithms were out-
performed by the model-based ones, they showed some potential when given enough
time. Their major advantage is that they are, due to their generality, easily adapted to
changing problem spaces. The evaluations also showed the large potential of autotun-
ing by quantifying how strongly the choice of configuration parameters influences the
resulting runtime and error. Both vary over multiple orders of magnitude where the fi-
nal decision is partially a trade-off but most importantly involves choosing the individual
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parameters in the correct proportions to each other since not every increase in com-
putational cost leads to an improved accuracy. The correct proportions showed to be
strongly dependent on the problem which justifies the applications of autotuning over
default decisions.

Conclusively, the developed autotuning system proved to be highly valuable as an
addition for particle DSLs in general and OpenPME specifically. Nonetheless, autotuning
should never replace the possibility of direct specification of the parameters if the
programmer intends to do so. The autotuner can not guarantee to find the best
configuration, the tuning takes time and the parameters may have other properties
which are not captured by the error and runtime measurements. One such feature
is the symmetry of the PSE operator which guarantees that quantities are always only
transferred between particles and neither created nor lost.

7.1. Future Work

While the autotuning system described in this work is already highly performant, there
are still optimization opportunities open for exploration, new problem spaces to be
adapted to and steps open in the full integration into OpenPME.

7.1.1. Integration into OpenPME

This thesis designed the autotuning system in a way, that it is easily integrated into
OpenPME but could not do the last steps since OpenPME is under heavy development
currently and not quite ready for the integration. The three steps OpenPME would have
to perform are:

1. Generate the tuning configuration json file. It includes the search space definition
and the accuracy reference configuration. Additionally, it defines the length of
the measurement period and the error threshold. This json file is parsed and
interpreted by the optimization implementations used in this work.

2. Read a runtime configuration file defining the chosen values for the tuning param-
eters in the generated C++ code as done in the implementation of the diffusion
and Gray-Scott simulations in this work.

3. Deploy the found final configuration either through direct integration or in a final
runtime configuration file.

Optionally, the call to the optimizers could be integrated into the OpenPME build process
but it would also be conceivable to leave it as a separate call.
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7.1.2. Evaluations on a Larger Number of Simulations

In this thesis, the optimization techniques were evaluated for diffusion and Gray-Scott
simulations. Evaluating them on a wider range of problems would be highly valuable to
test their generality or to expand them if necessary. In addition to completely different
simulation types, it would be interesting to include diffusion and Gray-Scott simulations
in 3D and with moving particles leading to irregular distributions. Schrader et al. [57]
showed that parameter studies made on uniform Cartesian particle distributions do
indeed have the potential to transfer well onto irregular ones.

7.1.3. Integration of More Tuning Parameter

This work is limited to tuning the discretization scheme, smoothing kernel, ε, h and δt.
Nonetheless, it would also be possible to include more parameters. One could tune
between multiple temporal discretization schemes as the explicit Euler, Leapfrog, Runge-
Kutta-4 or implicit Euler. Furthermore, it would also be imaginable to include the floating
point accuracy of particle positions and attributes as tuning parameter. Especially since
OpenPME currently does not have a typesystem that would allow to define it manually.

7.1.4. Threshold Computational Costs

The optimization techniques discussed in this thesis assumed the strategy of fixing the
error and optimizing the simulation runtime. Exchanging the roles would also be a viable
option. Fixing a target runtime and optimizing for the best possible accuracy does pay
attention to the fact that programmers usually have relatively clear expectations on how
long a simulation should take. The possible computational costs, however, vary over
multiple orders of magnitude.

An optimization technique that searches for the best accuracy while putting a thresh-
old on the allowed computational costs could use the runtime regression approach pre-
sented in Section 5.4 to prune the search space.

7.1.5. Search Space Pruning Using Predictive Models

In this thesis, predictive models were used to guide a search approach and to directly
predict the best configuration. Alternatively, they could be used to narrow the search
space and follow up with a classic search approach. This combines the speed of a
predictive approach with the exactness of an actual search. The idea additionally has the
potential of eliminating issues the model-based approaches have with parameters which
are challenging to predict because either no model for them was implemented yet or
their interactions are generally more difficult or even impossible to predict. In this work,
the fully predictive method fixes ε to a constant value potentially missing improvements.
In an approach that prunes the search space, all values for ε could be considered while
the ranges for h and δt are narrowed to a few possible values.
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7.1.6. Transfer Knowledge between Simulations

With a wider range of simulations, it could be possible to correlate problem character-
istics with performance behavior depending on the parameters. Characteristics could
include gradients and rates of change of particle properties. Using a sufficiently large set
of exhaustively benchmarked simulations (within some limits on the parameters), one
could explore the idea of transferring knowledge between simulations. This could be
used to predict optimal configurations without performing any measurements at all or
choosing more narrow search spaces.
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A. Acronyms

API Application Programming Interface

ATLAS Automatically Tuned Linear Algebra Software

AUC Bandit area under the curve credit assignment

ATF Auto-Tuning Framework

CUDA Compute Unified Device Architecture

DFT discrete Fourier transform

DSL domain-specific language

DC-PSE discretization corrected PSE

BLAS Basic Linear Algebra Subprograms

GPU Graphics Processing Unit

HPC High-Performance Computing

MPI Message Passing Interface

MPS Meta Programming System

OpenFPM Open Framework for Particle Methods

OpenPME Open Particle Mesh Environment

OpenMP Open Multi-Processing

PDE partial differential equation

PPM Parallel Particle-Mesh

PPML Parallel Particle-Mesh Language
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PPME Parallel Particle-Mesh Environment

PSE particle strength exchange

Pthreads POSIX Threads

SPH smoothed particle hydrodynamics

SVM Support Vector Machine

ZIH Centre for Information Services and High Performance Computing

78



Bibliography

[1] Emile Aarts and Jan Korst. “Simulated annealing and Boltzmann machines”. In:
(1988).

[2] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford
university press, 1987.

[3] Jason Ansel et al. “Opentuner: An extensible framework for program autotuning”.
In: Proceedings of the 23rd international conference on Parallel architectures and
compilation. 2014, pp. 303–316.

[4] Jason Ansel et al. “PetaBricks: a language and compiler for algorithmic choice”. In:
ACM Sigplan Notices 44.6 (2009), pp. 38–49.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[6] Omar Awile et al. “A domain-specific programming language for particle simula-
tions on distributed-memory parallel computers”. In: Proc. III Intl. Conf. Particle-based
Methods (PARTICLES). Stuttgart, Germany. 2013, p52.

[7] Utkarsh Ayachit. The paraview guide: a parallel visualization application. Kitware, Inc.,
2015.

[8] Prasanna Balaprakash et al. “Autotuning in high-performance computing applica-
tions”. In: Proceedings of the IEEE 106.11 (2018), pp. 2068–2083.

[9] Russell R Barton and John S Ivey Jr. “Nelder-Mead simplex modifications for
simulation optimization”. In: Management Science 42.7 (1996), pp. 954–973.

[10] David Beckingsale et al. “Apollo: Reusable models for fast, dynamic tuning of input-
dependent code”. In: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE. 2017, pp. 307–316.

[11] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter opti-
mization”. In: Journal of machine learning research 13.Feb (2012), pp. 281–305.

79



[12] Francesco Biscani and Dario Izzo. Pagmo. 2020. URL: https://esa.github.io/
pagmo2/ (visited on Apr. 11, 2020).

[13] George C Bourantas et al. “Using DC PSE operator discretization in Eulerian
meshless collocation methods improves their robustness in complex geometries”.
In: Computers & Fluids 136 (2016), pp. 285–300.
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Figure B.1.: Achieved simulation runtimes by different optimization algorithms for the
diffusion simulation with an error threshold of 10−5. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). Each
algorithm is evaluated with an upper tuning time limit of 0.5, 1 and 2 times
the tuning time of the model-based search.
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Figure B.2.: Achieved simulation runtimes by different optimization algorithms for the
diffusion simulation with an error threshold of 10−6. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). Each
algorithm is evaluated with an upper tuning time limit of 0.5, 1 and 2 times
the tuning time of the model-based search.
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Figure B.3.: Achieved simulation runtimes by different optimization algorithms for the
Gray-Scott simulation with an error threshold of 10−5. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). Each
algorithm is evaluated with an upper tuning time limit of 0.5, 1 and 2 times
the tuning time of the model-based search.
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Figure B.4.: Achieved simulation runtimes by different optimization algorithms for the
Gray-Scott simulation with an error threshold of 10−6. The runtime (x-axis)
refers to the measured time over the tuning period (t = 0 to t = 2). Each
algorithm is evaluated with an upper tuning time limit of 0.5 and 1 times the
tuning time of the model-based search.
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