
C4CAM: A Compiler for CAM-based In-memory
Accelerators

Hamid Farzaneh
TU Dresden

Dresden, Germany
hamid.farzaneh@tu-dresden.de

João Paulo C. de Lima
TU Dresden and ScaDS.AI

Dresden, Germany
joao.lima@tu-dresden.de

Mengyuan Li
University of Notre Dame
Notre Dame, Indiana, USA

mli22@nd.edu

Asif Ali Khan
TU Dresden

Dresden, Germany
asif_ali.khan@tu-dresden.de

Xiaobo Sharon Hu
University of Notre Dame
Notre Dame, Indiana, USA

shu@nd.edu

Jeronimo Castrillon
TU Dresden, ScaDS.AI and

Barkhausen Institut
Dresden, Germany

jeronimo.castrillon@tu-dresden.de

Abstract
Machine learning and data analytics applications increas-
ingly suffer from the high latency and energy consumption of
conventional von Neumann architectures. Recently, several
in-memory and near-memory systems have been proposed
to overcome this von Neumann bottleneck. Platforms based
on content-addressable memories (CAMs) are particularly
interesting due to their efficient support for the search-based
operations that form the foundation for many applications,
including K-nearest neighbors (KNN), high-dimensional com-
puting (HDC), recommender systems, and one-shot learning
among others. Today, these platforms are designed by hand
and can only be programmed with low-level code, accessible
only to hardware experts. In this paper, we introduce C4CAM,
the first compiler framework to quickly explore CAM config-
urations and seamlessly generate code from high-level Torch-
Script code. C4CAM employs a hierarchy of abstractions that
progressively lowers programs, allowing code transformations
at the most suitable abstraction level. Depending on the type
and technology, CAM arrays exhibit varying latencies and
power profiles. Our framework allows analyzing the impact
of such differences in terms of system-level performance and
energy consumption, and thus supports designers in selecting
appropriate designs for a given application.
ACM Reference Format:
Hamid Farzaneh, João Paulo C. de Lima, Mengyuan Li, Asif Ali
Khan, Xiaobo Sharon Hu, and Jeronimo Castrillon. 2024. C4CAM:
A Compiler for CAM-based In-memory Accelerators. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’24), April

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651386

27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3620666.3651386

1 Introduction
Search operations come in numerous forms at the heart of many
comparison-intensive applications. In the past decade, the rev-
olution in machine learning, data analytics, and bioinformatics
has played a significant role in driving the demand for efficient
hardware acceleration of these operations. Domains such as
network security [12], bioinformatics [45], data mining, and
data analytics [53] heavily rely on exact matching of the query
pattern with pre-stored patterns. In other applications, such
as K-nearest neighbors (KNN) and genome analysis [15, 39],
the emphasis lies on identifying similarities rather than exact
pattern matching. In approximate search, when the dissimilar-
ity between a stored pattern and the query pattern is within
a predefined threshold, the stored pattern is regarded as a
"match". From the computational standpoint, both exact and
approximate search operations are time-consuming and are
often bottlenecks in comparison-intensive kernels [50].

Recently, there has been a surge in the adoption of content
addressable memories CAM-based system designs for efficient
search operations. Originally employed in network routing
and CPU caching [40], CAMs have now found applications in
a wider range of data-intensive domains [15, 32, 39]. CAMs
allow massively parallel search operations for an input query,
enabling the search to be performed across the entire memory
with a single operation. CAM’s high-speed parallel search
makes it a popular component for constructing cutting-edge
compute-in-memory (CIM) systems, aiming to provide an
energy-efficient alternative to the von Neumann bottleneck in
terms of both latency and energy consumption.

CAM designs are broadly classified into binary, ternary,
multi-state, and analog CAMs (BCAM, TCAM, MCAM,
ACAM, respectively), with implementations based on either
conventional CMOS or emerging non-volatile memory (NVM)
technologies [6, 34, 39, 50]. Compared to CMOS technologies,
NVM technologies, like magnetic RAM (MRAM), resistive
RAM (ReRAM), or ferroelectric (FeFET), are denser and

164

https://orcid.org/0000-0002-1780-6217
https://orcid.org/0000-0001-9295-3519
https://orcid.org/0000-0002-6322-9908
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-5007-445X
https://doi.org/10.1145/3620666.3651386
https://doi.org/10.1145/3620666.3651386
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651386&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

more energy efficient, yielding more efficient CAM arrays
[14, 16, 37]. BCAMs and TCAMs use a bit-wise Hamming
distance (HD) to compare the query and stored data, whereas
MCAMs and ACAMs apply a specific distance metric to
compare the query with memory entries and determine which
memory entries match the query based on the distance metric.
In terms of match types, CAMs can be classified into the exact
match (EX), best match (BE), and threshold match (TH) [16].

Although CAM designs have shown better performance
than traditional methods for computing similarity in many
domains [15, 32, 39], effectively mapping applications writ-
ten in high-level programming languages onto CAM-based
accelerators remains a challenge. This is due to the disparity
in the abstractions of the applications (high-level) and the
(low-level) set of commands needed to program the CAM
arrays. Presently, CAM arrays are programmed manually with
low-level code that only the device experts understand. Exist-
ing design automation and compilation tools for in-memory
computing [46, 47] do not provide support for CAM prim-
itives, highlighting the need for solutions that can support
mapping a wider range of applications and accelerate the
design process.

This paper proposes C4CAM, the first end-to-end auto-
mated retargetable framework that enables efficient mapping
of applications from a higher TorchScript program onto CAM
arrays. C4CAM leverages the multi-level intermediate rep-
resentation (MLIR) framework to seamlessly optimize and
offload comparison-intensive kernels to CAM-enabled sys-
tems. Concretely, we make the following contributions:

• An automated end-to-end compilation flow that (i)
makes CAM accelerators accessible to non-experts
and (ii) enables device/circuit/architecture experts to
explore design trade-offs. C4CAM takes applications
written in TorchScript along an architectural model
for retargetability and generates code for the given
architecture (see Section 4).

• An extension to the MLIR front-end to express search
operations in PyTorch applications (see Section 4.3).

• Extension to the CIM abstraction from [26] to cater to
CAM accelerators. Specifically, we propose analyses to
detect computational primitives in applications that can
be rewritten as search operations (see Section 4.4.1).

• A novel CAM abstraction that supports different CAMs
types and search operations (see Section 4.4.2).

• Transformation passes to optimize for latency, power,
and array utilization (see Section 4.4.2).

• A comprehensive evaluation of the generated code,
including validation and comparison to a GPU target
and the hand-crafted implementations (see Section 5).

Our evaluation of C4CAM demonstrates that the generated
code achieves comparable results to hand-crafted designs.
We also showcase the capabilities of C4CAM in performing
design space exploration on different CAM architectures.

SLF1SLT1

CAM cell

CAM cell

CAM cell

En
co

d
er

ML1

ML2

MLN

ScL1

ScL2

ScLN

SLF2SLT2

CAM cell

CAM cell

CAM cell

SLFMSLTM

CAM cell

CAM cell

CAM cell

...

...

...

Se
n

se
 A

m
p

lif
ie

rs

M
at

ch
 L

in
e

d
ri

ve
r

Search Data

ML

ScL

SLFSLT

Figure 1. Structure of a FeFET-based CAM array [51]

2 Background
This section presents background on the MLIR framework
and CAM-based structures and describes our proposed archi-
tecture. It also motivates the need for automatic compilation
tools by explaining the challenges in the state-of-the-art pro-
gramming models for CAMs.

2.1 MLIR compiler infrastructure
MLIR is a framework that enables representing and transform-
ing intermediate representations (IR) at various abstraction
levels, catering to diverse application domains and heteroge-
neous hardware targets [30]. It offers a customizable IR with
minimal built-in features, enabling compiler developers to
incorporate their own abstractions. This empowers them to op-
timize for specific domains or targets by leveraging matching
techniques at the appropriate levels of abstraction.

MLIR consists of a collection of reusable abstractions
organized into dialects. Each dialect incorporates custom
types, operations, and attributes, which serve as fundamental
building blocks of the IR. In MLIR, values are associated
with compile-time known types, while attributes provide
compile-time information linked to operations. Dialects in
MLIR maintain preconditions for transformation validity
within their IR, reducing the complexity and cost of analysis
passes. Dialects are typically designed for specific domains
(e.g., linalg for linear algebra, TOSA for tensor operations),
representations (e.g., affine for the polyhedral model, scf
for control flow), or targets (e.g., gpu, cim). The llvm dialect
models LLVM IR constructs. Abstractions in MLIR can
be progressively lowered (from high-level domain-specific
dialects to low-level platform-specific dialects) and raised [9].

2.2 Content addressable memories
CIM fabrics are generally categorized into three classes: CIM-
crossbars, renowned for their ability to compute matrix-vector
multiplications in constant time; CIM-logic, facilitating the
acceleration of bulk bitwise logic operations; and content
addressable memories (CAMs), enabling fast and energy-
efficient search operations [25].

CAMs support two main functions: search, which identifies
the memory entries that match the input query, and write,
which stores data entries in the memory cells. With CAMs,
parallel searches can be performed on all stored data in

165

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 2. Hierarchical structure of a CAM-based accelerator

memory in constant time (O(1)). The most common type of
CAM is the ternary CAM (TCAM), where the data elements
can be either 0, 1, or don’t care (‘x’), which is a wildcard state
matching both 0 and 1. Figure 1 illustrates a TCAM array
with 𝑅 rows and𝐶 columns. Each cell in a row is connected to
a common match line (ML) and stores one of the tree states.
During a search operation, each cell 𝐶𝑖 𝑗 in row 𝑖 performs an
XNOR operation between its content and the query element
𝑞 𝑗 . The ML implements a logic OR operation of all the cells
in the row to determine the result for that row.

Different sensing circuits can be designed to realize different
match schemes, such as EX, BE, and TH. EX search is the
fastest search type due to its simple sensing requirement,
whereas best match search reports the row with the least
number of mismatching cells and is widely used for nearest
neighbor search. To find the best match, more sophisticated
sensing circuits are needed, e.g., analog-digital-converters or
a winner-take-all circuit, with the latter being more energy
and area-efficient but limited to finding the best matches only
within a certain number of mismatch cells [20].

2.3 Accelerator architecture
For this work, we consider a general CAM-accelerator design
based on the state-of-the-art [23]. As illustrated in Figure 2,
the CAM structure is organized into a four-level hierarchy
comprising 𝐵 banks, each bank containing𝑇 mats where each
mat consists of 𝐴 CAM arrays which are further partitioned
into 𝑆 subarrays. The subarrays can be operated and accessed
independently. This hierarchical organization allows for scal-
able and flexible computation, as the number of banks, mats,
and arrays can be allocated according to the computational
requirements of each application. Within each bank, all mats
and arrays can perform parallel search operations using the
𝑆 CAM subarrays either in a sequential or parallel manner,
providing further granularity for parallel processing and re-
source allocation. 𝐵 banks operate independently to allow for
task-level parallelism. RecSys [32], for instance, can profit
from CAMs in both filtering and ranking stages, where each
stage executes different tasks on different banks in parallel.

3 Related work
CAM’s efficient data retrieval capabilities make it highly suit-
able for applications that rely heavily on large-scale matching
or search operations. CAMs have been proposed based on

various memory technologies including SRAM [5], resistive
RAM [17], racetrack memory [11], and FeFET [39]. Recent
works have demonstrated the use of CAMs in various fields,
e.g., bioinformatics [8], high dimensional computing [23],
reinforcement learning [31], few-shot learning [28] and rec-
ommender systems [32].

In terms of programmability, CAMs have received relatively
little attention compared to other CIM paradigms. Prominent
frameworks like TVM [10] and EXO [18] offer high-level
programming abstractions and optimization passes for kernels,
primarily from the machine learning domain, for CPU/GPU
systems and traditional HW accelerators. Today, however,
these high-level frameworks offer no support for CIM systems.
In fact, CIM support in compilers and programming frame-
works is scarce, with most approaches focused on accelerating
neural networks on CIM crossbars. For example, OCC [46]
automatically identifies the matrix multiplication (matmul)
pattern, transforms kernels to match it, and offloads them to
a PCM-crossbar. However, it does not support the diversity
in crossbar technologies and architectures. To address this,
CIM-MLC [43] is proposed, which considers the hierarchical
structure of the CIM hardware and generates efficient code
for it. For CIM-logic, Soeken et al. [47] introduced a com-
piler leveraging majority inverter graphs to enable operation
rewriting and optimization for a given RRAM CIM accel-
erator. Recently, Jin et al.[21] proposed a compilation flow
supporting both RRAM-based crossbar and logic architec-
tures. Unlike CIM-logic and crossbars, there is currently no
automatic general-purpose compilation framework targeting
CIM-CAMs and generating efficient code for them.

The fundamental programming model of the CIM abstrac-
tion introduced in CINM [26] is generic and designed to be
easily retargetable to different CIM architectures. CINM, how-
ever, primarily focuses on arithmetic and logic operations and
does not support the search-based operations of CAMs (e.g.,
for computing distances, similarities, or comparisons). For
CAM-based accelerators, frameworks such as DT2CAM [44]
and X-TIME [41] exist to map and simulate decision trees onto
TCAMs and ACAMs, respectively. However, these mapping
tools do not generalize to other comparison-intensive kernels
and require programmers to deeply understand both the appli-
cation and the accelerator architecture. Therefore, there is a
considerable demand for a generalized framework capable of
efficiently lowering high-level language programs for diverse
input applications. This framework should also incorporate
CAM array optimizations, e.g., selective row pre-charging,
to generate optimized code for the underlying architecture.
In the following section, we introduce how the hierarchical
C4CAM framework effectively addresses this gap.

4 The C4CAM framework
This section presents C4CAM, including the abstractions,
lowerings, analysis, and optimization passes.

166

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

Figure 3. A high-level overview of C4CAM flow

4.1 An overview of the compilation flow
Figure 3 shows a high-level overview of C4CAM. The Torch-
Script functions chosen for offloading to the CAM accelerators
are transformed into MLIR’s representation using the PyTorch
MLIR converter (see Section 4.3). This produces the Torch
IR, which is the entry point into C4CAM, which includes
ATen tensor library operations. Torch MLIR is then lowered
to the cim abstraction, which is a comprehensive dialect for
various CIM technologies, taking over the shared responsi-
bilities of host-device interfacing and device mapping (see
Section 4.4.1). The cim abstraction has been previously inves-
tigated in [46] and [26], where a programming model for CIM
devices was introduced. C4CAM extends this abstraction by
incorporating the necessary analysis for CAM devices.

To enable application mapping, cim supports partitioning,
rewriting, and kernel modifications. The latter transforms the
code to use device-compatible sizes and operations, which
the low-level dialects can then further process. Subsequently,
the cim dialect is either lowered to cam, loop, or other
device dialects. The cam dialect and other device dialects at
the same level, such as crossbar, offer an abstraction for
programming and executing functions on the target device (see
Section 4.4.2). The cam dialect also provides transformation
passes that enable mapping and optimization of the selected
kernel while accounting for the concrete hierarchy and other
characteristics of CAM-based architectures.

4.2 Architecture specification
In addition to the input application, C4CAM takes the architec-
tural configuration as input, as shown in Figure 3. This outlines
the hierarchy of the proposed architecture (as discussed in
Section 2.3), as well as the access mode for each level of the
hierarchy, whether it supports sequential or parallel accesses.
Note that all active rows within a subarray are accessed in
parallel. However, through selective row accessing [55], it
is possible to activate and pre-charge only a subset of rows
within a subarray. This specification makes it easy to retarget
C4CAM for different CAM accelerators. Apart from the archi-
tecture description, this input file specifies the optimization
target, which can be set to latency, power, or array utilization.

4.3 C4CAM front end
The PyTorch MLIR converter [13] is responsible for con-
verting Python code written in TorchScript. However, certain
operations from the ATen library, particularly those used in
search-based applications such as norm and topk, are not
supported. From the CAM perspective, these are essential
primitives in any input application. Since C4CAM is built
upon the MLIR framework and this is the only available front-
end that enables lowering TorchScript input to the MLIR torch
dialect, we extend the front-end to support the norm and topk
primitives that are commonly accelerated on CAM arrays.

To implement the benchmarks in Section 5, TorchScript was
used. However, C4CAM is not confined only to TorchScript
and the PyTorch MLIR Converter as its front-end. Represent-
ing every CAM-suitable application in TorchScript may not
be straightforward (such as DNA mapping). For that, it is also
possible to use alternative flows, such as ONNX-MLIR [4] and
supported importers in IREE [3]. Such flows can also serve
this purpose by implementing necessary conversions from
their corresponding dialect to cim.

4.4 C4CAM progressive lowering
The compilation flow begins with the Torch dialect, as de-
picted in Figure 3. This dialect includes most of the ATen
tensor library operations. To enable support for the cim ab-
straction, we have introduced a torch-to-cim conversion
pass. This pass lowers the operations that are compatible
with the cim abstraction. Examples of these operations in-
clude topk, norm, sub, and matmul, which can be executed
individually or as part of a kernel on a CIM device.

To demonstrate how the IR of the application is transformed
at each hierarchy level, we use the similarity kernel in hyperdi-
mensional computing (HDC) as a running example. Figure 4a
shows the TorchScript code of the input kernel. Figure 4b
presents its MLIR representation at the Torch abstraction
as produced by the MLIR PyTorch front-end. The conver-
sion from Torch to cim is accomplished with target-agnostic
transformations. The outcome of the conversion primarily
showcases the interface with a generic CIM device.

4.4.1 The extended cim abstraction. cim is a high-level
dialect for device-supported operations that includes essential
transformations required to prepare kernels to run on target

167

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

def forward(self, input: Tensor, dot: bool = False)
↩→ -> Tensor:
others = self.weight.transpose(-2, -1)
matmul = torch.matmul(input, (others))
values, indices = torch.ops.aten.topk(matmul, 1,

↩→ largest=False)
return indices

(a) PyTorchScript code for HDC dot similarity
%1 = torch.aten.transpose.int %0, %int-2, %int-1 : !

↩→ torch.vtensor <[10,8192],f32>, !torch.int, !
↩→ torch.int -> !torch.vtensor <[8192,10],f32>

%2 = torch.aten.mm %arg0, %1 : !torch.vtensor
↩→ <[10,8192],f32>, !torch.vtensor <[8192,10],f32
↩→ > -> !torch.vtensor <[10,10],f32>

%values, %indices = torch.aten.topk %2, %int1, %int
↩→ -1, %false, %true : !torch.vtensor <[10,10],
↩→ f32>, !torch.int, !torch.int, !torch.bool, !
↩→ torch.bool -> !torch.vtensor <[10,1],f32>, !
↩→ torch.vtensor <[10,1],f32>

(b) Torch IR for HDC dot similarity

Figure 4. Python and MLIR representations of HDC similarity

devices. This abstraction is mainly responsible for: (i) analyz-
ing the input code to identify CIM-amenable primitives that
can be offloaded to the accelerator, (ii) if a CIM-executable
pattern is identified but the operand sizes exceed the array
sizes specified in the given architecture, dividing the input into
smaller partitions to ensure compatibility with the accelerator,
and (iii) providing an abstract programming model to enable
the execution of kernels on a device.

The programming model of the cim abstraction is based on
three main functions. To allocate an accelerator, cim uses the
cim.acquire function that returns a handle to the device. The
cim.execute function uses this handle and specifies the op-
erations that are to be executed on this accelerator. Finally, the
device is released using the cim.release function. For CAM
architectures, we show how these functions are lowered to
different CAM functions in Section 4.4.2. Figure 5a shows the
IR for the running example at the cim abstraction, which can
be produced by running the conversion pass torch-to-cim
at the Torch abstraction. As the Torch abstraction does not,
and is not supposed to, specify the kernel type, the fundamen-
tal assumption of the torch-to-cim conversion is that each
supported operation can be executed on a separate (non-)CIM
device. Since all the torch operations are supported by the
cim dialect (as they are part of the dot similarity), they are
lowered to their corresponding cim versions.
Pattern matching and fusing: cim implements analysis and
optimization passes to recover patterns that can be offloaded
to a CIM accelerator and, when possible, optimizes them
for the target. The analysis pass identifies blocks containing
operations that cannot be directly lowered to the accelerator
and fuses them. Once the code analysis is completed, the
execution blocks can be transformed and offloaded to CIM

accelerators, or they can follow the standard MLIR pipeline
to generate llvm code for execution on the host processor.

Algorithm 1: Similarity search detection.
1 /* Pattern matching for dot product similarity */
2 Replace op<topk> (op<matmul> (arg2, op<transpose> (arg1)), arg3)
3 with op <similarity> (dot, arg1, arg2, arg3);

4 /* Pattern matching for Euclidean distance */
5 Replace op <topk>(op<norm> (op<sub> (arg1, arg2)), arg3)
6 with op <similarity> (euc, arg1, arg2, arg3);

7 /* Pattern matching for cosine similarity */
8 Replace op <smulmat>(op <div> (cons1, op<mul>(op<norm>(arg1),

op<norm> (arg2))), op<matmul>(arg1, op<transpose>(arg2)))
9 with op <similarity> (cos, arg1, arg2);

10 /* Pattern matching for Hamming distance */
11 Replace op <nonzero>(op <cmp>(lt, op <popcount>(op <xor>(arg1,

arg2), arg3)
12 with op <similarity> (ham, arg1, arg2, arg3);

Algorithm 1 illustrates the function designed for pattern
matching within an execution block, tailored explicitly for
identifying various similarity search operations. This func-
tion assesses whether a given data flow graph aligns with
pre-defined supported patterns and replaces it with the corre-
sponding similarity search operation.

The pattern matching for dot product, Euclidean norm, co-
sine, and Hamming similarity are defined in Lines 2, 5, 8, and
11, respectively. Algorithm 1 is the simplified illustration of
cim-fuse-ops pass, which, when enabled with the similarity
flag indicating the type of search, identifies code blocks that
match the criteria and subsequently replace their operations
with the cim.similarity operation. Figure 5a shows the
base cim IR produced by the torch-to-cim conversion pass,
while Figure 5c showcases the result obtained after applying
the cim-fuse-ops pass to Figure 5b.
Compulsory partitioning: Kernels often require more space
than what the processing elements (PE) of the target can
support. To overcome this limitation, the kernel is partitioned
according to the size supported by a PE. In a CAM system, the
smallest block within the system is the subarray. Therefore,
when partitioning the application, it is important to consider
this level of granularity and divide it accordingly. To support
this, C4CAM includes a partitioning transformation within the
cim abstraction. This transformation can be likened to tiling in
compiler terminology, with hardware-specific considerations.
It enables the efficient partitioning of kernels to facilitate
their execution on the device(s), but requires an abstraction
to accumulate partial results. To this end, the cim dialect
was extended with the cim.merge_partial operation. It
considers both the type of operation for which partial results
are generated and the direction in which these results are
accumulated. The partitioned version of Figure 5c for a device
of size 32x32 is shown in Figure 5d. Note that this partitioned
code and the surrounding loop (scf.for) is still serial.

Our extension to the cim abstraction focuses on identifying
operations that can be offloaded to the CAM accelerator and

168

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

...
%4 = cim.acquire : index
%5 = cim.execute(%4, %2) ({
%11= cim.transpose %2: tensor <10x8192xf32 >
-> tensor <8192x10xf32>

cim.yield %11 : tensor <8192x10xf32>
}) : (index, tensor <10x8192xf32 >) -> tensor <8192x10xf32>
cim.release %4 : index
%6 = cim.acquire : index
%7 = cim.execute(%6, %0, %5) ({
%11 = cim.matmul %0, %5 : tensor <10x8192xf32 >,
tensor <8192x10xf32> -> tensor <10x10xf32>

cim.yield %11 : tensor <10x10xf32>
}) : (index, tensor <10x8192xf32 >, tensor <8192x10xf32 >) -> tensor

↩→ <10x10xf32>
...

(a) cim IR
...
%4 = cim.acquire : index
%5:2 = cim.execute(%4, %2, %0, %3) ({
%7 = cim.transpose %2 : tensor <10x8192xf32 >
-> tensor <8192x10xf32>

%8 = cim.matmul %0, %7 : tensor <10x8192xf32 >,
tensor <8192x10xf32>
-> tensor <10x10xf32>

%values, %indices = cim.topk %8, %3 : tensor <10x10xf32>
, i64 -> tensor <10x1xf32>, tensor <10x1xf32>

cim.yield %values, %indices : tensor <10x1xf32>, tensor <10x1xf32>
}) : (index, tensor <10x8192xf32 >, tensor <10x8192xf32 >, i64)
-> (tensor <10x1xf32>, tensor <10x1xf32 >)

cim.release %4 : index
...

(b) cim IR after fusing execution blocks
...
%4 = cim.acquire : index
%5:2 = cim.execute(%4, %2, %0, %3) ({
%values, %indices = cim.similarity dot %2,
%0, %3 : tensor <10x8192xf32 >, tensor <10x8192xf32 >,
i64 -> tensor <10x1xf32>, tensor <10x1xf32>

cim.yield %values, %indices : tensor <10x1xf32>, tensor <10x1xf32>
}) : (index, tensor <10x8192xf32 >, tensor <10x8192xf32 >, i64)
-> (tensor <10x1xf32>, tensor <10x1xf32 >)

cim.release %4 : index
...

(c) cim IR with rewrites for CAM lowering
scf.for %arg1 = %c0 to %c8192 step %c32 {
%extr_slice = tensor.extract_slice %2[0, %arg1] [10, 32]
[1, 1] : tensor <10x8192xf32 > to tensor <10x32xf32>

%extr_slice_0 = tensor.extract_slice %0[0, %arg1] [10, 32]
[1, 1] : tensor <10x8192xf32 > to tensor <10x32xf32>

%7 = cim.acquire : index
%8:2 = cim.execute(%7, %extr_slice , %extr_slice_0 , %3) ({
%values, %indices = cim.similarity dot %extr_slice ,
%extr_slice_0 , %3 : tensor <10x32xf32>, tensor <10x32xf32>,
i64 -> tensor <10x1xf32>, tensor <10x1xf32>

cim.yield %values, %indices : tensor <10x1xf32>,
tensor <10x1xf32 >}) : (index, tensor <10x32xf32>,
tensor <10x32xf32>, i64) -> (tensor <10x1xf32>,
tensor <10x1xf32 >)

%9 = cim.merge_partial values similarity dot horizontal
%7, %4, %8#0 : index, tensor <10x1xf32>, tensor <10x1xf32>
-> tensor <10x1xf32>

...
cim.release %7 : index

}

(d) cim IR after partitioning

Figure 5. cim IR of the HDC similarity function, after dif-
ferent analysis and optimization passes. Similar operations at
different stages are highlighted using the same color.

on preparing the code via partitioning for further lowering to

CAMs. It does not address the mapping of an input applica-
tion or its partitions onto the CAM accelerator, nor does it
incorporate any device-specific optimizations. Our novel cam
abstraction takes on these responsibilities.

4.4.2 The cam abstraction. To convert the cim IR into
the cam IR, C4CAM introduces the cim-to-cam conversion
pass. This pass requires specifying the target CAM device
type (e.g., ACAM, TCAM, or MCAM) in the architecture
specification, which also determines the search type (EX, BE
or TH) and the metric to be utilized during the conversion
process. Additionally, it requires specifying the method for
accumulating partial results. By default, this is handled by the
CPU. Alternatively, a specialized method with HW support
can be specified. This accounts for CAM arrays that include
dedicated circuitry (e.g., an adder tree) or an extra CIM module
to support typical accumulation functions. Depending on the
merging circuitry and the mapping to the CAM arrays, the
search and merge operations can be pipelined or executed
sequentially. For example, in BioHD [54], search operations
and the accumulation of partial Hamming Distance values are
pipelined to improve throughput.

The cam dialect is responsible for mapping the high-level
functions from the cim dialect to the CAM-device calls. After
applying this conversion pass, occurrences of a sequence of
cim.acquire, cim.execute, and cim.release working
on the same device handle are substituted with allocation
calls at bank, mat, and array-level. The allocated modules, i.e.,
banks, mats, arrays, and subarrays, then execute the search
operations in parallel.

More concretely, the cam.alloc_bank function is used to
allocate a CAM bank, taking the row and column sizes of the
desired CAM size as parameters. Furthermore, allocating a
mat from the bank, and a CAM array from the mat, and a subar-
ray from an array is accomplished using the cam.alloc_mat,
cam.alloc_array, and cam.alloc_subarray functions,
respectively. Similarly, the cim.execute function is low-
ered into three CAM function calls: cam.write_value,
cam.search, and cam.read_value. The write operation
(line 16) programs the CAM arrays with the input data. The
search operation (line 18) performs the actual search on the
data based on the specified search type and metric. The sup-
ported search types include exact match, best match, and range
match, while the available distance metrics are Euclidean and
Hamming. The read operation (line 20) reads the values and
indices of the search results from the device.

The original program underwent partitioning at the CIM
dialect without considering the hierarchy. This approach was
chosen because dealing with synchronization and accumula-
tion of partial results across different levels of the hierarchy
often requires hardware-specific information, which goes
against the principles of the cim dialect. To map an applica-
tion onto the CAM abstraction, the cam-map pass within the

169

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 %bank_values_buffer = memref.alloc() : memref <2x10x1xf32 >
2 %bank_indices_buffer = memref.alloc() : memref <2x10x1xf32 >
3 ...
4 scf.parallel (%arg1) = (%c0) to (%c8192) step (%c4096) {
5 %1 = cam.alloc_bank %c32, %c32 : index, index -> cam.bank_id
6 ...
7 scf.parallel (%arg2) = (%c0) to (%c4096) step (%c1024) {
8 %4 = cam.alloc_mat %1 : cam.bank_id -> cam.mat_id
9 ...

10 scf.parallel (%arg3) = (%c0) to (%c1024) step (%c256) {
11 %7 = cam.alloc_array %4 : cam.mat_id -> cam.array_id
12 ...
13 scf.parallel (%arg4) = (%c0) to (%c256) step (%c32) {
14 ...
15 %12 = cam.alloc_subarray %7 : cam.array_id -> cam.

↩→ subarray_id
16 cam.write_value %12, %subarray_data_buffer :
17 cam.subarray_id , memref <10x32xf32>
18 cam.search exact eucl %12, %subarray_query_buffer :
19 cam.subarray_id , memref <1x32xf32>
20 %13:2 = cam.read exact %12 : cam.subarray_id
21 -> memref <10x1xf32>, memref <10x1xf32>
22 ... }
23 ...}
24 ...}
25 ...}
26 ...
27 %value_res = cam.merge_partial bank values horizontal %1,
28 %bank_values_buffer :cam.bank_id, memref <2x10x1xf32 >
29 -> memref <10x1xf32>
30 ...

Figure 6. cam IR after mapping. Similar operations at cim
and cam stages are highlighted using the same color.

cam dialect can be employed. This pass transforms the appli-
cation into a nested loop structure according to the provided
specifications, incorporating the required hardware calls at
each loop level.

The code in Figure 6 shows the mapping of the code in
Figure 5d to a system with two banks, four mats per bank, four
arrays per bank, and eight subarrays per array. In this example
we assume the method for merging partial results from [54],
enabling parallel execution of operations. Consequently, the
serial scf.for loop is substituted with a scf.parallel loop,
and the cim.merge_partial operation is replaced with a
corresponding cam operation. The required components of
the CAM accelerator (bank, tile, array, subarray) and buffers
for storing the results (values and indices) are allocated at
each level of the loop. In cases where the system size precisely
matches the data size, the levels of the nested loop, starting
from the outermost level, iterate over the banks, mats within
each bank, arrays within each bank, and subarrays within each
array. However, if the data size exceeds the system’s capacity,
an additional loop is introduced. This loop includes iteration
over banks, allowing the system to be called multiple times to
process the data effectively.

The cim-to-cam conversion pass also performs bufferiza-
tion of tensors involved in executing a kernel on the CAM.
This process determines how the memory is handled between
the host and the device. During the process of lowering from
cam to scf and subsequently to llvm, the cam operations are
mapped to function calls corresponding to the low-level API
to access the CAM accelerator.

Built-in optimizations: C4CAM provides an extensible
and flexible framework that enables future research in code
optimizations and auto-tuning. Currently, the framework uses
simple heuristics to optimize for different metrics, namely,
for latency/performance, power consumption and device uti-
lization. This is enabled by device-specific transformations
that can be further composed by performance engineers. For
example, in order to minimize latency, C4CAM prioritizes
maximizing the utilization of parallel-executing arrays in the
system. In contrast, C4CAM reduces the number of enabled
subarrays at a time inside an array to minimize power con-
sumption. For devices that support selective search and in
cases where the standard data placement underutilizes an
array due to the number of data entries being smaller than the
number of rows in the memory, it is possible to place multiple
batches of data on the same array. By utilizing selective search,
different queries can be searched on corresponding rows of
the same array in multiple cycles.

As demonstrated in Section 5.6.1, employing the same
hierarchy specification (mat, array, and subarray sizes) con-
sistently leads to longer latencies. However, the impact on
latency varies depending on the dimensions of the subarrays,
which subsequently alters the number of banks. These de-
sign choices significantly impact energy consumption and are
challenging to predict without an integrated framework that
facilitates such optimizations and is supported by simulation.
Thus, C4CAM enables quickly identifying the configurations
that best meet workload requirements, while considering scal-
ability and favorable compromise between latency and energy
consumption.

5 Evaluation
This section presents our experimental setup and gives a
detailed analysis of the code generated with C4CAM.

5.1 Experimental setup
5.1.1 System setup and technology parameters. For the
CAM technology parameters, we consider the 2FeFET CAM
design proposed in [51] at the 45 nm technology node. Energy
and latency numbers for TCAM and MCAM operations were
extracted from Eva-CAM [36], which is backed by experi-
mental demonstrations of manufactured FeFET CAMs. Since
we are varying the array size for design space exploration, the
search latency can vary from 860 ps to 7.5 ns for array sizes
of 16 × 16 and 256 × 256, respectively. For the GPU results,
we use the NVIDIA RTX 3090 GPU (8 nm process) with a
base clock speed of 1395 MHz. The power consumption is
measured using the NVIDIA System Management Interface
nvidia-smi, and energy is derived thereof.

5.1.2 Simulation infrastructure. For evaluation, we use
the open-source CAM simulator CAMASim [33] and extend
it with an interface to connect it to C4CAM. Table 1 lists our
configuration parameters for all experiments in this section.

170

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

Table 1. Simulator configuration
Architecture & Circuit configuration

Type HDC KNN DNA
Horizontal merge Voting Voting Counter
Vertical merge Comparator Comparator Gather
Cell TCAM T/MCAM TCAM
Sensing circuit BE BE TH

Cost of additional circuits
Type Latency Energy
Adder 0.25 ns 1.3 fJ/bit
Register 0.5 ns 4.5 fJ/bit
Comparator 0.25 ns 0.4 fJ/bit
Decoder/Encoder 0.25 ns 29 fJ

The simulator consists of two main modules: the Functional
Simulator and the Performance Evaluator. The functional
simulator module performs quantization and mapping to
the subarrays of the simulated CAM. It also executes the
search operation on each subarray and merges the partial
results. The performance evaluator estimates device specifics,
including the size of peripheral circuits at each hierarchy level,
predicts the circuit types and sizes depending on the merge
scheme for estimating merging costs and adjusts buffer size
accordingly. The peripheral estimator manages the latency of
merge operations generated at the CAM abstraction through
the compiler flow. At the subarray level, CAMASim integrates
external circuit-level CAM modeling tools like EvaCAM [36]
or SPICE simulation results to generate performance values,
ensuring compatibility with various CAM cell designs. To
handle large data dimensions and entry sizes, the extended
simulator allows for fine-grain control of the hierarchy, and
models CAM queries to obtain energy and latency based on
real hardware behavior.

5.2 Evaluated applications
In a real-world scenario, the data transfer for chosen bench-
marks on an accelerator, like a GPU or CAM, would be
amortized in the long run. For that, unless specified, reported
latency and energy exclude preprocessing (e.g., hashing and
quantization) and transfer of training data or reference genome,
focusing only on the query processing for all applications.

5.2.1 K-nearest neighbors. KNN is a popular classification,
regression, and anomaly detection algorithm. It identifies the
𝐾 closest training examples in the feature space to a given test
sample. It is especially interesting because of its versatility
and explainability, with no training required. KNNs are both
memory and computationally-intensive, making their scalabil-
ity and performance strongly limited on conventional systems.
Two versions of KNN were implemented, utilizing cosine
similarity with matmul and Euclidean distance with norm,
both followed by a topk operation. For a direct comparison
with [24] in Section 5.3, we classify the top 4 most popular
datasets: Iris, Wine, Breast Cancer, and Wine Quality [1],
using an 80/20 training/test split on them. We also evaluated

KNN on chest X-Ray images from the Pneumonia dataset [2]
in Section 5.6, Table 2.

5.2.2 Hyperdimensional Computing. HDC is a framework
inspired by the human brain’s ability to process information.
It utilizes high-dimensional vectors known as hypervectors
as a fundamental building block. Hypervectors are large
binary vectors with thousands of dimensions. We evaluated
binary and multi-bit HDC models with 8k dimensions on the
MNIST dataset following the approach outlined in [52]. The
TorchScript implementation of the main kernel employs the
same operations shown in Figure 4a.

5.2.3 DNA read mapping. Read mapping is a fundamental
step in genome analysis, aiming to identify the origin of each
read 𝑅 from an input genome in a reference genome𝐺 . This
task is computationally challenging due to the very large
genome sizes and permissible minor differences in the form
of insertions, deletions, and substitutions. One algorithm used
for this purpose is known as the fast seed-and-vote algorithm
(FVSA) [35]. This approach performs a read-by-read compar-
ison with the reference genome and counts matching seeds
(smaller substrings in a read). The block with the highest vote
count in the reference genome is selected as the most likely
location of a read 𝑅 in the reference genome𝐺 . Unlike KNN
and HDC, which is based on one-shot similarity search, read
mapping finds high-similarity sections based on the Hamming
distance of overlap positions of reads against 𝐺 . Hamming
distance is often used in prior CAM-based designs for read
mapping [22, 27, 29].

We implemented the FVSA algorithm in TorchScript,
drawing inspiration from SaVI [29] (seed-and-vote-based
in-memory accelerator), where the seed-reference lookup
and voting steps are solely performed by TCAM subarrays
and shift-register counters, respectively. We encode base
pairs using 4-bit encoding as in [29], which allows for rep-
resenting low-quality bases (N), transversions, and transi-
tions. Figure 7 illustrates the seed-reference lookup based on
the Hamming distance between the reference genome and
seeds of a read sequence implemented at the cim abstrac-
tion. The Hamming distance of two words, A and B, is
calculated as A xor B (line 11) followed by a population
count (line 14). The next step in FVSA involves counting
votes based on the location of matched seeds in the refer-
ence genome through a threshold operation. This threshold
accounts for partial matches, allowing for substitutions in
the genome sequence. The below_threshold operation is
achieved through a cim.cmp (compare) operation with lt
(less than) argument (line 16), followed by a nonzero op-
eration (line 18) to return the indices of the matched rows.
We evaluated the FVSA use-case using the publicly available
real human genome GRCh38 build (3 GB) [38] and the read
sequence NA12878 (59 GB). This allowed us to stress-test
our compilation framework and mapping algorithm for CAM
arrays. We evaluated the accuracy, throughput and energy

171

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 ...
2 scf.for %arg1 = %c0 to %read_count step %c1 {
3 ...
4 // 1. Seed generation
5 %seeds = func.call @seed_generation(%read, %cst16) :
6 (tensor <70xi8>, i64) -> tensor <1x110x16xi8 >
7 ...
8 // 2. Seed-reference lookup
9 %0 = cim.acquire : index

10 %1 = cim.execute(%0, %ref_genome , %seeds, %cst3) ({
11 %2 = cim.xor %ref_genome , %seeds :
12 tensor <8192x1x16xi8>, tensor <1x110x16xi8 > ->
13 tensor <8192x110x16xi8 >
14 %3 = cim.popcount %2 : tensor <8192x110x16xi8 >,
15 -> tensor <8192x110xi64 >
16 %4 = cim.cmp lt %3, %cst3 : tensor <8192x110xi64>,
17 i64 -> tensor <8192x110xi1>
18 %5 = cim.nonzero %4 : tensor <8192x110xi1>,
19 -> tensor <?x?xi64>
20 cim.yield %5: tensor <?x?xi64>
21 }) : (index, tensor <8192x1x16xi8 >,
22 tensor <1x110x16xi8 >, i64) -> (tensor <?x?xi64>)
23 // 3. Voting
24 %6 = func.call @voting (%1) : (tensor <?x?xi64>)
25 -> tensor <8192xi64>
26 ...} ...

Figure 7. Seed-reference lookup in FVSA

efficiency across three array sizes and compared them to
BWA-MEM implementation on GPUs [42], both with read
sequences consisting of 100-bp reads.

5.3 Validation
To validate the C4CAM framework, we use the CAM-design
and hand-optimized designs that for the HDC use case [23]
and the DNA read mapping use case [29].

We use the manual designs from [23] as baseline for the
HDC use case. We generate code for binary and multi-bit
implementations of HDC for different CAM architectures, i.e.,
with array sizes of 32 ×𝐶 where𝐶 is varied to 16, 32, 64, and
128. The validation results for accuracy, latency and energy
are shown in Figure 8a, Figure 8b, and Figure 8c respectively.
For a fair comparison, we use the same system configuration
as in the baseline, i.e., four mats per bank, four arrays per mat,
eight sub-arrays per array, and as many banks as needed to
store the whole dataset.

In this experiment, the observed deviation in the latency
and the energy consumption is, on average (geomean), 0.9%
and 5.5%, respectively (notice that the y-axes do not start
at 0 for better visualization). These small deviations can be
attributed to slight differences in the versions of the simulation
environment rather than to fundamental differences in the
implementations. Except for the 32-column design in the
1-bit implementation and the 128-column design in the 2-bit
implementation, where the generated code shows a 1% higher
accuracy, the accuracy is equal to the baseline. Hence, C4CAM
effectively matches the quality of hand-tuned implementations
by expert CAM designers.

To understand the latency results in Figure 8b, it is important
to note that all search operations happen in parallel, and the

match line (ML) discharges more slowly for larger columns.
As for the energy numbers shown in Figure 8c, larger 𝐶
leads to lower energy consumption because fewer peripherals
and fewer levels (arrays, mats, and banks) are required as 𝐶
increases. Moreover, as observed in [23], we corroborate that
1-bit implementations are more energy efficient than multi-bit
ones. This improvement is associated with the higher ML and
data line voltages of the multi-bit implementations.

Figure 9 shows the versatility of C4CAM to support a
fundamentally different and more complex algorithm, namely
the FVSA inspired by [29]. The figure shows the accuracy,
performance (as throughput in millions of reads per second)
and energy efficiency (throughput per Watt) for both manual
design and C4CAM-generated code, applied to 100-bp reads
on the human genome [38] across three array sizes. These units
are commonly used to compare the efficiency of accelerators
due to the streaming nature of the read-mapping execution.
Compared to the manual design, the C4CAM-generated codes
achieve the same baseline accuracy for all setups. Regarding
performance and energy estimation, our results vary by 7.8%
and 6% on average for throughput and throughput per Watt,
respectively. This variation might be attributed to minor
architectural differences not presented in [29]. This example
illustrates C4CAM’s capability to handle the parallel operation
of a substantial array workload totaling 1.5 GB of the encoded
human reference genome. Specifically, this dataset requires
from 805K to 12.8M subarrays in the 128 × 128 and 32 ×
32 setups, respectively. Despite also managing a significant
volume of encoded queries (29 GB of reads), the compiler
does not significantly impede the processing speed per read.
This is because the bottleneck of the FVSA lies in the seed-
reference lookup, and the problem size is determined by the
size of the reference genome.

5.4 Impact of CAM cell precision
Due to limited CAM cell precision, the data entries and queries
of applications must be encoded, quantized or hashed to be
suitable for CAM search. The results for the HDC execution, as
illustrated in Figure 8a, show that more bits per cell consistently
improve accuracy. On the other hand, as depicted in Figure 8b,
2-bit and 3-bit CAMs have similar search latency, which is,
on average, 12% higher than the 1-bit setting across various
column counts. This latency increase is attributed to the
greater complexity of the sensing circuit [23], and its impact
is more pronounced in energy consumption. Across different
column sizes, employing the 3-bit configuration, on average,
results in a 4.5% and 29.1% increase in energy consumption in
comparison to 2-bit and 1-bit configurations.

Increasing the number of bits per cell per feature would
intuitively improve the accuracy of other applications that use
the same distance metric. In KNN, the real-valued features
of the query and memory entries can be simply quantized
to match the same bit precision as the multi-bit CAM. Fig-
ures 10a, 10b, and 10c report the accuracy, latency, and energy

172

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

16 32 64 12880
85
90
95
100

of columns

A
cc

ur
ac

y
(%

)

C4CAM-1b Manual-1b C4CAM-2b Manual-2b C4CAM-3b Manual-3b

(a) Accuracy

16 32 64 128
6
8
10
12
14

of columns

La
te

nc
y

(n
s)

(b) Latency

16 32 64 1280
0.2
0.4
0.6

of columns

En
er

gy
co

ns
um

pt
io

n
(n

J)

(c) Energy consumption

Figure 8. Validation results per query against manual designs [23] for HDC

32 64 12880
85
90
95
100

of columns

A
cc

ur
ac

y
(%

)

C4CAM Manual BWA-GPU

(a) Accuracy over BWA-MEM

32 64 1280
10
20
30

of columns

M
re

ad
s/s

(b) Throughput

32 64 1280

20

40

of columns

kr
ea

ds
/s/

W

(c) Throughput/Watt

Figure 9. Comparison of accuracy, throughput and throughput per Watt against manual designs [29] and GPU implementation [42]
for read mapping

consumption of CAM designs with various bit precision set-
tings and different GPU implementations executing KNN on
different datasets. A similar pattern to HDC is observed in
KNN, where a 3-bit configuration yields, on average, 6.4%
and 10.3% more accurate results compared to 2-bit and 1-bit
designs, respectively. Similarly, the 3-bit configuration also
incurs an average of 2% increase in the energy compared to the
2-bit configuration. However, with binary CAMs, real-valued
query and memory entries must undergo a transformation
using a Locality-sensitive Hashing (LSH) algorithm [7]. In
this implementation, a CAM array stores the LSH signatures
of the memory entries and computes the Hamming distance of
the LSH signature of the query. The hashing step for queries
is done using the GPU and results in a 7.3× and ∼ 12, 000×
increase, on average, in latency and energy consumption,
respectively, compared to the 3-bit configuration. Although
the binary CAM+LSH approach can be more energy and
time-efficient than the GPU-only approach, especially in han-
dling larger and high-dimensional datasets, LSH sacrifices on
accuracy.

5.5 Comparison to GPU
Due to their parallel processing capabilities, optimized archi-
tecture for matrix operations and high memory bandwidth

and throughput, GPUs are often used in machine learning and
similarity search domains. To compare CAM-based systems to
GPUs, we also include results from CUDA implementations
of cosine similarity and Euclidean norm in Figure 10. While
it is known that cosine similarity performs better with higher
dimensions than Euclidean distance, we demonstrate that 3-bit
CAMs outperform GPU-based cosine similarity, operating
∼ 14× faster with ∼ 13, 700× less energy consumption. The
datasets used in Figure 10 have low dimensionality which
leads to resource under-utilization in the GPU. The larger
Pneumonia dataset provides a better perspective since these
experiments can exhaust the computational power of the GPU.
The results for the 3-bit CAM-based system on this large
KNN classification are shown in Table 2 (under cam-base).
As can be seen, the power consumption of the CAM-based
implementation is considerably lower than that of the GPU
(around 200 W).

We run the HDC implementation from [52] on the GPU,
which achieves a 95.4% accuracy rate. On average, it takes 5×
longer and consumes 14, 900× more energy compared to the
implementations generated by C4CAM. Corroborating with
prior works [19, 23, 24], CAM systems can outperform GPU
energy by orders of magnitude while still being significantly
faster. Note that the experiments on GPU and CAMs measure

173

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

I W C WQ40

60

80

100

Dataset

A
cc

ur
ac

y
(%

)
C4CAM-3b C4CAM-2b C4CAM-1b+LSH Cosine-GPU Euclidean-GPU

(a) Accuracy

I W C WQ
101

103

105

Dataset

La
te

nc
y

(n
s)

(b) Execution time

I W C WQ10−1

102

105

Dataset

En
er

gy
co

ns
um

pt
io

n
(n

J)

(c) Energy Consumption

Figure 10. Accuracy, latency, and energy consumption comparison of KNN implementations on 128×128 CAM arrays contrasting
with GPU execution. I, W, C, and WQ represent Iris, Wine, Cancer, and Wine Quality datasets, respectively

Table 2. EDP and power analysis for KNN execution on the Pneumonia dataset

EDP (nJ·s) POWER (W)
subarray size 16x16 32x32 64x64 128x128 256x256 16x16 32x32 64x64 128x128 256x256

cam-base 0.75 0.30 0.15 0.08 0.05 44.14 16.30 5.97 2.34 0.86
cam-power 1.32 0.61 0.44 0.29 0.23 25.23 8.15 2.10 0.66 0.19

solely the similarity search kernel. This kernel is by far the
most time-consuming part in KNN and HDC. By Amdahl’s
law, the end-to-end performance can be improved by the
fraction of the time that similarity search is actually used. For
example, Euclidean distance dominates the execution time
of standard KNN and takes 52 − 96% of the time in k-means
algorithms [49]. In standard KNN, for instance, Euclidean
distance dominates the execution time, while in k-means
algorithms, it constitutes 52 − 96% of the total time [49]. In
HDC, the associative search accounts for 51−85% of the GPU
execution [23]. In Memory Augmented Neural Networks,
similarity kernels contribute approximately 50 − 80% of the
time, depending on the platform [48].

For the DNA read mapping use case, we compare the
implementation of FVSA on TCAMs to the BWA-MEM
implementation on GPUs from [42]. BWA-MEM remains
the most efficient algorithm for GPUs and thus represents
a strong baseline. It is important to note that while BWA-
MEM and FVSA are distinct algorithms for the same problem,
BWA-MEM solves it with slightly improved accuracy, as
illustrated in Figure 9a. For aligning 100-bp reads, the GPU
baseline achieves 1 million reads per second (Mreads/s) with
an energy efficiency of 4 thousand reads per second per
Watt (kreads/S/W), as depicted in Figure 9. This implies
that CAM-based systems can potentially deliver up to 26×
higher mapping throughput than a highly-optimized GPU
implementation while consuming ∼ 9× less energy.

5.6 Design space exploration
Since C4CAM is retargetable, it can be used to quickly
generate implementations for different system parameters and

optimization targets. In this section, we explore the design-
space exploration capabilities for hardware/software designs.

5.6.1 Fixed architectural parameters. As discussed above,
C4CAM can reproduce the results of single manual designs. To
demonstrate its retargetability, we evaluate systems consisting
of sub-arrays with sizes of 𝑅 × 𝐶, where 𝐶 = 𝑅 assuming
values of 16, 32, 64, 128, and 256 with different configurations
for the same, as outlined in Section 5.1.1, namely:

• cam-base: In this configuration, applications are allo-
cated to the CAM accelerator without incorporating the
optimizations discussed in Section 4.4.2. In this setup,
parallel execution is enabled at each level.

• cam-power: This configuration implements a restric-
tion on the maximum number of sub-arrays activated
concurrently. Specifically, for each application, we have
chosen to enable only one sub-array per array at a time.

• cam-density: This configuration demonstrates the im-
pact of employing selective search [55] to enhance
both the utilization of arrays and the system’s overall
capacity, as shown in Table 3.

• cam-power+density: This configuration imposes limi-
tations on the number of enabled sub-arrays at a time.
Simultaneously, it incorporates selective search tech-
nique to enhance the system’s capacity.

For all sub-array sizes, the configuration remains consistent,
with 4 mats per bank, 4 arrays per mat, and 8 sub-arrays per
array. We use as many banks as needed to accommodate the
input data. Figure 11a and Figure 11b illustrate the energy
consumption and latency of the configurations mentioned
above respectively when executing the HDC application on
the MNIST dataset with 8k dimensions.

174

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

16 32 64 128 256

100.5

101

subarray size (𝑁 × 𝑁)

En
er

gy
(𝜇

J)
cam-base cam-density cam-power cam-density+power

(a) Energy

16 32 64 128 256
10−1

100

101

subarray size (𝑁 × 𝑁)

La
te

nc
y

(m
s)

(b) Latency

16 32 64 128 256
100

101

subarray size (𝑁 × 𝑁)

Po
w

er
(m

W
)

(c) Power

Figure 11. Impact of subarray size and C4CAM optimizations on latency, energy, and power

In the cam-power configuration, only one sub-array within
the array is active at a time. With a sub-array of size 16 × 16,
the power consumption is reduced to approximately 0.57×
with respect to the base configuration (Figure 11c). Similarly,
the power requirement for the largest array size is merely
20% of the base configuration. However, this reduction in
power consumption results in increased latency. For instance,
executing the application on a 32 × 32-sized subarray incurs
a latency increase of approximately 2× compared to the
baseline. As the array size increases, the latency rises, reaching
up to 4.86× the baseline for the largest sub-array size. The
overall energy consumption remains the same between the
two configurations, cam-power and cam-base.

The analysis of the KNN benchmark is similar to the
analysis for HDC. We summarize the results in Table 2 for
EDP and power. The absolute values of energy and latency are
considerably higher than in the HDC case. This is simply due
to the sheer size of the Pneumonia dataset, requiring many
banks in the CAM accelerator.

The cam-density configuration uses selective search to
improve resource utilization, as shown in Table 3. In the case
of the smallest array size (16 × 16), the execution time is less
than twice compared to the base configuration. This trend
scales further, and with the largest subarray size (256 × 256),
the execution time is nearly 23× longer compared to the cam-
base configuration. The energy consumption for subarray
sizes ranging from 16 × 16 to 64 × 64 in the cam-density
configuration is, on average, 0.6× that of the corresponding
sub-array size in the baseline configuration. However, for
sub-arrays of 128× 128 or 256× 256, the energy consumption
increases compared to the baseline, reaching 1.4× and 5.1×,
respectively. It is worth noting that by fixing the system
configuration and enabling selective search, the number of
banks required for application execution is reduced, thus
reducing the overall power consumption.

The cam-power-density configuration combines the ap-
proaches of both cam-power and cam-density to achieve the

most significant reduction in power consumption. A 16 × 16-
sized subarray utilizes only 23.4% of the base power, while
the largest sub-array requires only 4.2% of the base power.
However, this reduction in power consumption comes at the
cost of significantly increasing the execution time. In the case
of the largest subarray configuration, the execution time is ap-
proximately 121× longer compared to the base configuration.

Table 3. Number of subarrays used to implement HDC

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256
cam-base 512 256 128 64 32

cam-density 512 86 22 6 2

5.6.2 Iso-capacity analysis. With the iso-capacity experi-
ments, we investigate the relationship between energy con-
sumption and latency by changing the size of subarrays and
the number of subarrays per array while keeping the capacity
fixed to 216 TCAM cells per array. To achieve this, we modify
the subarray size, starting from 256 × 256 which corresponds
to one subarray per array, and gradually decrease it to 16× 16,
resulting in 256 subarrays per array. The numbers of arrays
per mat and mats per bank are fixed as in the previous sections.
It is important to note that these systems are not iso-area since
each subarray has its own set of peripherals. This means that
as the size of the subarrays is reduced, more peripherals are
needed, and chip area increases.

Figure 12b shows that the energy consumption in iso-base
remains nearly constant across subarray sizes. Moreover,
cam-density and cam-power+density, on average, achieve
1.75× energy improvement over iso-capacity-base, except
for large subarray sizes like 128 × 128 and 256 × 25. The
total execution time across different subarray sizes also varies
within a moderate range, i.e., from 58𝜇𝑠 for 16×16 to 150𝜇𝑠 for
256×256 , as shown in Figure 12b. Again, as the search latency
increases for larger columns, the execution time also increases
despite the consistent number of cells within an array. As
for the cam-density and cam-power+density transformations,

175

C4CAM: A Compiler for CAM-based In-memory Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

16 32 64 128 256
10−1

100

subarray size (𝑁 × 𝑁)

La
te

nc
y

(m
s)

iso-base iso-density iso-density+power

(a) Latency

16 32 64 128 256

100

101

subarray size (𝑁 × 𝑁)

Po
w

er
(m

W
)

(b) Power

Figure 12. Impact of optimizations on iso-capacity setups

Figure 12b shows a significant decrease in power consumption,
offering a potential CAM configuration that can be used in
power-constrained system setups.

6 Conclusions
We present C4CAM, the first framework for programming and
exploring trade-offs in CAM-based accelerators. We introduce
a retargetable MLIR-based code transformation flow from
high-level TorchScript code, featuring a novel cam abstraction
that is specifically tailored for CAM-based accelerators. This
abstraction provides control knobs that allow for the tuning of
various metrics by adjusting the mapping of applications to
the CAM arrays. To validate the effectiveness of C4CAM, we
compare our results with those obtained from a hand-crafted
designs and demonstrate that C4CAM produces comparable
results. Moreover, we demonstrate C4CAM capabilities by
automatically generating implementations optimized for per-
formance, power and device utilization. Finally, we show how
C4CAM retargetability facilitates design space exploration
by varying architectural parameters without any application
recoding effort. The architecture specification supported by
C4CAM, along with its compilation flow, also enables the
specification of heterogeneous systems. However, determining
the optimal mapping strategy for heterogeneous systems based
on different optimization targets remains a subject for future
research.

Acknowledgments
This work was partially funded by the Center for Advancing
Electronics Dresden (cfaed) and the German Research Council
(DFG) through the HetCIM project (502388442) under the

Priority Program on ‘Disruptive Memory Technologies’ (SPP
2377), the AI competence center ScaDS.AI Dresden/Leipzig
in Germany (01IS18026A-D), the Semiconductor Research
Corporation (SRC), the Logic and Memory Devices Program
(LMD), and the AI Chip Center for Emerging Smart Systems
(ACCESS) sponsored by InnoHK funding, Hong Kong SAR.

References
[1] Kaggle datasets, howpublished = https://www.kaggle.com/datasets,

note = Accessed: 2023-11-20.
[2] Pneumonia dataset, howpublished = https://dzl.de/en/core-datasets/

pneumonia/, note = Accessed: 2023-11-20.
[3] Intermediate representation execution environment. https://github.com/

iree-org/iree/, 2021. Accessed: 2022-08-30.
[4] Onnx-mlir. https://github.com/onnx/onnx-mlir, 2024. Accessed: 2024-

03-01.
[5] Ali Ahmed, Kyungbae Park, and Sanghyeon Baeg. Resource-efficient

sram-based ternary content addressable memory. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(4):1583–1587, 2016.

[6] Mustafa Ali, Amogh Agrawal, and Kaushik Roy. Ramann: in-sram
differentiable memory computations for memory-augmented neural
networks. In ACM/IEEE International Symposium on Low Power
Electronics and Design, pages 61–66, 2020.

[7] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Communications of
the ACM, 51(1):117–122, 2008.

[8] Hamza Errahmouni Barkam et al. Hdgim: Hyperdimensional genome
sequence matching on unreliable highly scaled fefetyperdimensional.
In 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2023.

[9] Lorenzo Chelini et al. Progressive raising in multi-level ir. In 2021
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO), pages 15–26, 2021.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated
end-to-end optimizing compiler for deep learning, 2018.

[11] João Paulo C. de Lima, Asif Ali Khan, Luigi Carro, and Jeronimo
Castrillon. Full-stack optimization for cam-only dnn inference. In 2024
Design, Automation and Test in Europe Conference (DATE), DATE’24,
pages 1–6. IEEE, March 2024.

[12] Paul Dlugosch et al. An efficient and scalable semiconductor architecture
for parallel automata processing. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3088–3098, 2014.

[13] others. The torch-mlir project. https://github.com/llvm/torch-mlir, 2023.
Accessed: 2023-11-20.

[14] Catherine E Graves et al. In-memory computing with memristor content
addressable memories for pattern matching. Advanced Materials,
32(37):2003437, 2020.

[15] Robert Hanhan et al. Edam: edit distance tolerant approximate matching
content addressable memory. In 49th Annual International Symposium
on Computer Architecture, pages 495–507, 2022.

[16] Xiaobo Sharon Hu et al. In-memory computing with associative
memories: a cross-layer perspective. In 2021 IEEE International
Electron Devices Meeting (IEDM), pages 25.2.1–25.2.4. IEEE, 2021.

[17] Li-Yue Huang, Meng-Fan Chang, Ching-Hao Chuang, Chia-Chen Kuo,
Chien-Fu Chen, Geng-Hau Yang, Hsiang-Jen Tsai, Tien-Fu Chen, Shyh-
Shyuan Sheu, Keng-Li Su, et al. Reram-based 4t2r nonvolatile tcam
with 7x nvm-stress reduction, and 4x improvement in speed-wordlength-
capacity for normally-off instant-on filter-based search engines used in
big-data processing. In 2014 Symposium on VLSI Circuits Digest of
Technical Papers, pages 1–2. IEEE, 2014.

176

https://www.kaggle.com/datasets
https://dzl.de/en/core-datasets/pneumonia/
https://dzl.de/en/core-datasets/pneumonia/
https://github.com/iree-org/iree/
https://github.com/iree-org/iree/
https://github.com/onnx/onnx-mlir
https://github.com/llvm/torch-mlir

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Farzaneh et al.

[18] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and
Jonathan Ragan-Kelley. Exocompilation for productive programming of
hardware accelerators. In 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2022,
page 703–718, New York, NY, USA, 2022.

[19] Mohsen Imani, Yeseong Kim, and Tajana Rosing. Nngine: Ultra-efficient
nearest neighbor accelerator based on in-memory computing. In 2017
IEEE International Conference on Rebooting Computing (ICRC), pages
1–8. IEEE, 2017.

[20] Mohsen Imani et al. Searchd: A memory-centric hyperdimensional
computing with stochastic training. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 39(10):2422–2433, 2019.

[21] Hai Jin, Bo Lei, Haikun Liu, Xiaofei Liao, Zhuohui Duan, Chencheng
Ye, and Yu Zhang. A compilation tool for computation offloading in
reram-based cim architectures. ACM Transactions Archit. Code Optim.,
20(4), oct 2023.

[22] Roman Kaplan, Leonid Yavits, and Ran Ginosar. Rassa: resistive
prealignment accelerator for approximate dna long read mapping. IEEE
Micro, 39(4):44–54, 2018.

[23] Arman Kazemi et al. Achieving software-equivalent accuracy for hyper-
dimensional computing with ferroelectric-based in-memory computing.
Scientific reports, 12(1):19201, 2022.

[24] Arman Kazemi, Mohammad Mehdi Sharifi, Ann Franchesca Laguna,
Franz Müller, Ramin Rajaei, Ricardo Olivo, Thomas Kämpfe, Michael
Niemier, and X Sharon Hu. In-memory nearest neighbor search with fefet
multi-bit content-addressable memories. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1084–1089.
IEEE, 2021.

[25] Asif Ali Khan, João Paulo C De Lima, Hamid Farzaneh, and Jeronimo
Castrillon. The landscape of compute-near-memory and compute-
in-memory: A research and commercial overview. arXiv preprint
arXiv:2401.14428, 2024.

[26] Asif Ali Khan, Hamid Farzaneh, Karl F. A. Friebel, Clément Fournier,
Lorenzo Chelini, and Jeronimo Castrillon. Cinm (cinnamon): A compila-
tion infrastructure for heterogeneous compute in-memory and compute
near-memory paradigms. arXiv preprint arXiv:2301.07486, 2023.

[27] S Karen Khatamifard, Zamshed Chowdhury, Nakul Pande, Meisam
Razaviyayn, Chris Kim, and Ulya R Karpuzcu. Genvom: Read mapping
near non-volatile memory. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 19(6):3482–3496, 2021.

[28] Ann Franchesca Laguna et al. Ferroelectric fet based in-memory
computing for few-shot learning. In 2019 on Great Lakes Symposium
on VLSI, pages 373–378, 2019.

[29] Ann Franchesca Laguna, Hasindu Gamaarachchi, Xunzhao Yin, Michael
Niemier, Sri Parameswaran, and X Sharon Hu. Seed-and-vote based
in-memory accelerator for dna read mapping. In 39th International
Conference on Computer-Aided Design, pages 1–9, 2020.

[30] Chris Lattner et al. Mlir: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 2–14, 2021.

[31] Mengyuan Li et al. Associative memory based experience replay
for deep reinforcement learning. In 41st IEEE/ACM International
Conference on Computer-Aided Design, pages 1–9, 2022.

[32] Mengyuan Li et al. imars: an in-memory-computing architecture for
recommendation systems. In 59th ACM/IEEE Design Automation
Conference, pages 463–468, 2022.

[33] Mengyuan Li, Shiyi Liu, Mohammad Mehdi Sharifi, and X. Sharon
Hu. Camasim: A comprehensive simulation framework for content-
addressable memory based accelerators, 2024.

[34] Liu Liu et al. A reconfigurable fefet content addressable memory for
multi-state hamming distance. IEEE Transactions on Circuits and
Systems I: Regular Papers, 2023.

[35] Song Liu, Yi Wang, and Fei Wang. A fast read alignment method based
on seed-and-vote for next generation sequencing. BMC bioinformatics,

17:193–203, 2016.
[36] Liu Liu et al. Eva-cam: a circuit/architecture-level evaluation tool for

general content addressable memories. In 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1173–1176.
IEEE, 2022.

[37] Siri Narla et al. Modeling and design for magnetoelectric ternary
content addressable memory (tcam). IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, 8(1):44–52, 2022.

[38] National Center for Biotechnology Information. Genome Reference
Consortium Human Data. https://www.ncbi.nlm.nih.gov/grc/human/
data, 2023. Accessed on: 28/11/2023.

[39] Kai Ni et al. Ferroelectric ternary content-addressable memory for
one-shot learning. Nature Electronics, 2(11):521–529, 2019.

[40] Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable mem-
ory (cam) circuits and architectures: A tutorial and survey. IEEE journal
of solid-state circuits, 41(3):712–727, 2006.

[41] Giacomo Pedretti et al. X-time: An in-memory engine for acceler-
ating machine learning on tabular data with cams. arXiv preprint
arXiv:2304.01285, 2023.

[42] Minh Pham, Yicheng Tu, and Xiaoyi Lv. Accelerating bwa-mem read
mapping on gpus. In 37th International Conference on Supercomputing,
pages 155–166, 2023.

[43] Songyun Qu, Shixin Zhao, Bing Li, Yintao He, Xuyi Cai, Lei Zhang, and
Ying Wang. Cim-mlc: A multi-level compilation stack for computing-
in-memory accelerators. arXiv preprint arXiv:2401.12428, 2024.

[44] Mariam Rakka et al. Dt2cam: A decision tree to content address-
able memory framework. IEEE Transactions on Emerging Topics in
Computing, 2023.

[45] Indranil Roy and Srinivas Aluru. Discovering motifs in biological se-
quences using the micron automata processor. IEEE/ACM Transactions
on computational biology and bioinformatics, 13(1):99–111, 2015.

[46] Adam Siemieniuk et al. Occ: An automated end-to-end machine learning
optimizing compiler for computing-in-memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2021.

[47] Mathias Soeken et al. An mig-based compiler for programmable
logic-in-memory architectures. In 53rd Annual Design Automation
Conference, pages 1–6, 2016.

[48] Jacob R Stevens, Ashish Ranjan, Dipankar Das, Bharat Kaul, and Anand
Raghunathan. Manna: An accelerator for memory-augmented neural
networks. In 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 794–806, 2019.

[49] Fang Wang et al. Speeding up querying and mining operations on data
with modern hardware. 2022.

[50] Xunzhao Yin, , et al. Deep random forest with ferroelectric analog
content addressable memory. arXiv preprint arXiv:2110.02495, 2021.

[51] Xunzhao Yin et al. Fecam: A universal compact digital and analog
content addressable memory using ferroelectric. IEEE Transactions on
Electron Devices, 67(7):2785–2792, 2020.

[52] Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher M De Sa. Under-
standing hyperdimensional computing for parallel single-pass learning.
Advances in Neural Info. Processing Sys., 35:1157–1169, 2022.

[53] Xiaodong Yu et al. Robotomata: A framework for approximate pat-
tern matching of big data on an automata processor. In 2017 IEEE
International Conference on Big Data (Big Data), pages 283–292, 2017.

[54] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi
Imani, Elaheh Sadredini, Rosario Cammarota, and Mohsen Imani.
Biohd: an efficient genome sequence search platform using hyperdi-
mensional memorization. In 49th Annual International Symposium on
Computer Architecture, ISCA ’22, page 656–669, New York, NY, USA,
2022. Association for Computing Machinery.

[55] Charles A Zukowski and Shao-Yi Wang. Use of selective precharge for
low-power content-addressable memories. In 1997 IEEE International
Symposium on Circuits and Systems (ISCAS), volume 3, pages 1788–
1791. IEEE, 1997.

177

https://www.ncbi.nlm.nih.gov/grc/human/data
https://www.ncbi.nlm.nih.gov/grc/human/data

