
Leveraging Data Compression for Performance-Efficient and
Long-Lasting NVM-based Last-Level Caches

C. Escuin∗, A.A. Khan†, P. Ibáñez∗, T. Monreal‡, D. Navarro∗, J.M. Llaberı́a‡, J. Castrillon†, V. Viñals∗
∗Universidad de Zaragoza (Zaragoza, Spain), †TU Dresden (Dresden, Germany), ‡Universitat Politècnica de Catalunya (Barcelona, Spain)

I. INTRODUCTION

The goal of the last-level cache (LLC) in the memory hierarchy of
a multiprocessor system is to filter main memory requests and deliver
them faster to the private levels. The number of integrated cores on
a chip is increasing and so it is the LLC size. Most of LLCs are
built using SRAM technology that does not scale well in terms of
density and static power. Given this limitation, NVMs are interesting
alternatives to replace or augment on-chip SRAM LLC due to their
higher density and lower static power [2], [6], [8]. However, NVM
write operations are costly in terms of latency and energy, and
gradually wear out the bitcells until they become defective. Compared
to SRAM, NVM endurance is limited and usually modeled by a
normal distribution of mean 10k write operations, k depending on
the technology, manufacturer and target market [6], [7].

Several works address the write endurance problem in complemen-
tary ways such as evenly distributing writes across the whole memory
structure (wear-leveling [6]), reducing the number of writes to the
NVM [2], [8], or using redundant storage [7]. In order to cope with
hard faults, memory structures must be provided with error correction
codes, ECCs. In addition, when a hard fault occurs (a bitcell fault), it
is required to deactivate the corresponding memory region to ensure
the correct system operation. Traditionally, the whole cache frame is
disabled when a bitcell fails [1].

In order to push the state-of-the-art in NVM-LLCs, it is needed
to 1) reduce the number of writes, 2) maintain uniform wear on
all bit cells, and 3) continue to operate even if some of the rated
capacity is out of service. Our first contribution is L2C2 [5]: a
novel fault-tolerant NVM-LLC that combines byte-level disabling,
data compression, and an intra-frame wear-leveling mechanism. Data
compression, apart from reducing the bytes written (to increase NVM
lifetime), enables partially degraded frames to allocate compressed
blocks (to increase hit rate). To this end, L2C2 maintains a fault
map that points at the faulty bytes and a novel circuitry that evenly
distributes the bytes of the incoming compressed block among the
non-faulty bytes of the target frame.

NVM-SRAM hybrid LLCs combine the best of both worlds, i.e.
high capacity and long lifetime. The NVM part provides capacity,
thanks to its high density, while the SRAM part provides endurance,
absorbing write-intensive flows. Naively filling blocks either in the
NVM or SRAM part leads to an early wear out of the NVM bitcells.
Thus, the lifetime improvement of state-of-the-art proposals [2] is
achieved by conservatively inserting read-intensive blocks in the
NVM part, which in turn limits the hybrid LLC performance. Besides,
previous works do not consider compressing the blocks or using
partially defective frames. Our second contribution [4] leverages
L2C2 microarchitecture to propose new hybrid LLC insertions poli-
cies that optimize for both performance and lifetime. These policies
consider the compression size, the read-reuse, and the write-reuse of
the incoming blocks when deciding where to place them. Besides,
we achieve runtime adaptivity through a threshold-based mechanism
that is able to further balance the performance-lifetime tradeoff.

Previous works indirectly evaluate lifetime improvement by means
of the relative reduction in the number of writes [8], or by using
approximate aging models in the context of NVM main memory [7].
To the best of our knowledge, there is no model able to forecast the
performance over time of these NVM-LLCs whose capacity drops
over time due to write operations. Therefore, our third contribu-
tion [5] is such a forecasting procedure, suitable for multicore NVM-
LLCs. It combines simulation-prediction epochs. Within each epoch,
a cycle-accurate simulation and successive byte-failure predictions
are performed.

II. L2C2: BYTE-LEVEL FAULT-TOLERANT NVM-LLC

We assume a SECDED mechanism (note that ECCs are already
present in commercial SRAM LLCs), able to detect, correct, and
identify the byte the hard fault is suffered by. We propose using a
fault map that records the health of each byte, distinguishing between
operational and failed, incurring 1/8 overhead with respect to the
capacity of the NVM data array. We design a logic circuit that, based
on this information and, leveraging data compression, can evenly
distribute the bytes of the compressed block among the non-faulty
bytes of a partially degraded frame. The circuits of both reading and
writing a block are analogous. Below, we explain the flow of writing
a block while the reading one is detailed in the original paper [5].

Figure 1a depicts the flow of filling a block into L2C2. First, the
compressor generates the compressed block (CB). Next, based on CB
the ECC bits are computed conforming ECB and, in parallel to this,
the insertion/replacement mechanism selects the target frame among
the frames whose capacity (regarding the fault map) is large enough
to host ECB. Finally, the intra-frame wear-leveling mechanism by
means of a global counter (common to all frames) points at the initial
write position of ECB within the frame. Regarding this counter and
the fault map of the target frame, the ECB bytes are scattered (RECB)
among the non-faulty bytes of the frame. Figure 1b illustrates how
the output-controlled crossbar redirects the ECB bytes by generating
an index vector that controls the crossbar. For instance, I[3]=0 means
that byte 0 of ECB is placed in byte 3 of RECB, which is the first byte
pointed at by the wear-leveling counter. Using VLSI synthesis, the
block rearrangement circuitry showed to be feasible for both reading
and writing in terms of latency, area and power consumption [5].

III. HYBRID LLCS INSERTION POLICIES

In this work, we focus on bridging the performance-lifetime dispar-
ities from state-of-the-art hybrid LLCs leveraging L2C2 microarchi-
tecture to extend the NVM part, see Section II. To do so, we classify
the incoming blocks to the hybrid LLC into three categories based on
their reuse properties: read-reuse, write-reuse, and non-reuse. Read-
reuse blocks are the clean blocks that have been previously hit in the
LLC, while write-reuse blocks are the dirty ones. Read-reuse ones are
candidates to stay long time in the LLC so will be placed in the NVM
part while write-reuse ones will produce consecutive write operations
and will thereby steered towards the SRAM part. Non-reuse blocks,

1

+

-

B8Δ1

B4Δ1

B8Δ2

B8Δ7

CE 4bits

NVM Frames
capacities

LRU
information

Insertion
Engine

Replacement
Engine

1 BDI Compression

2.2 Insertion/Replacement

2.1 ECC

Wear-leveling
Counter

Write Mask

CrossbarECB 66B

RECB 66B

Victim
Fault map

3 Block rearrangement

Index

SECDED
generation

Index
generation

CB 0-64B

(a) Block writing flow.

8 B

CB
SEC
DED

ECB

RECB

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1

1

0

1

1

0

1

1

I[0] = 4
I[1] = x
I[2] = x
I[3] = 0
I[4] = 1
I[5] = x
I[6] = 2
I[7] = 3

Fault Map (0 = Faulty)

Index
Vector

Counter = 3

Wear-leveling

CE

1 1 0 1 1 0 0 1
Write
mask

4

5

6

0

1

2

2

3

0

1

2

3

4

5

6

7

Start: I[3] = 0

Index generation

Output-controlled
crossbar

(b) Example of a 5-byte block rearrangement for writing.

Fig. 1. Writing a block flow (a) and 5-byte block rearrangement example (b).

which are the ones that have not shown any reuse yet, are further
classified in small and big blocks if their compressed size is lower
or greater than the compression threshold (CPth), respectively [4].

This CPth controls the write traffic to both NVM and SRAM
parts: the higher the CPth the greater the number of non-reuse
blocks that are mapped to NVM. Not using the optimal CPth drives
to performance drop due to an unbalanced number of references to
both parts. CPth showed to need runtime adaptivity since the optimal
performance was achieved by different CPth depending on the hybrid
LLC effective capacities, the execution phase, and the workload.
To do so, we propose CP SD, an insertion policy that address this
runtime adaptivity with Set Dueling. During execution epochs of 2
Mcycles, different groups of cache-sets employ different fixed CPth

and the remaining sets follow the group of sets whose CPth brought
the maximum number of hits in the last epoch. Moreover, we also
propose a rule-based mechanism to further tune the write-traffic to the
NVM part allowing us to trade performance in exchange of lifetime.

IV. FORECASTING PROCEDURE

From the methodology perspective, in order to forecast the per-
formance of these NVM-LLCs over time, we could first initialize
the remaining number writes (RW) every byte can support regarding
an endurance model of the NVM technology [6], [7]. A naive, but
exact, approach would simulate in detail the progressive degradation
of the NVM-LLC reflecting in RW every time a write operation is
performed. When a byte reaches its maximum number of writes, it
is disabled and the simulation continues with the system a little bit
more degraded. However, to get realistic results, the simulation must
be cycle-accurate and driven by a realistic workload, but in doing so
we could only forecast time lapses of few milliseconds.

In order to reduce this simulation time, we propose an approximate
forecasting procedure that combines simulation-prediction epochs [5].
In every epoch, a cycle-accurate simulation receives the NVM-LLC
state (regarding the worn out regions) and returns the write rate to
NVM frames. The prediction phase makes K consecutive predictions
(the next K bytes that become faulty) from a single simulation. To
do so, we first compute the average write rate of the frames that are
similar. This means aging with the same average write rate to all
the frames that fulfill two conditions: 1) frames that have a similar
effective capacity and thereby have the same capability to allocate

compressed blocks, and 2) frames that belong to sets with the same
health state (capability to allocate compressed blocks that has each
frame within a set).

V. EVALUATION: PERFORMANCE VS. LIFETIME

Our system features a 4-core multiprocessor with the latency
parameters of a 16MB LLC. We use gem5 and HyCSim, which is a
tool for design space exploration for hybrid LLCs [3]. The workload
consists of application mixes taken from SPEC CPU 2006 and 2017.
The original papers offer further configuration details [4], [5].

Figure 2a shows the performance evolution until the NVM-LLC
effective capacity drops 50% of its nominal one. 0% EC represents
a fully impaired NVM-LLC. L2C2 is compared against two baseline
systems: frame disabling (FD) that does not employ data compression
and thereby disables the whole frame when a byte becomes faulty [1]
and FD+6 that extend FD functionality providing every frame with
6 ECPs [7]. Compared to FD, FD+6 and L2C2 improves lifetime
by 1.5× and 6.2×, respectively. L2C2 gracefully loses capacity
postponing the gradual performance loss.

0 4 8 12 16

Time (years)

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

IP
C

FD FD+6 L2C2 0% EC

(a) Monolithic NVM

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(b) Hybrid LLC

Fig. 2. Performance evolution until the NVM effective capacity drops 50%.

Figure 2b shows the performance evolution of a hybrid LLC over
time, until the capacity of the NVM part drops to 50%. Twelve and
four ways have been devoted to NVM and SRAM parts, respec-
tively. Bounds of SRAM-only LLCs are also plotted. The baseline
configuration (BH) employs frame disabling and the insertion policy
fills the block to the LRU way, regardless of its technology. Naively
writing blocks to the NVM part leads to 50% of its capacity being
exhausted in less than three months. Compared to BH, LHybrid [2]
extended with frame disabling improves LLC lifetime by more than
19× at the cost of significant performance drop (11%), due to its
conservative insertion policy. CP SD outperforms LHybrid by 9%
while achieving a comparative lifetime. The rule-based mechanism
shows that by compromising, for instance, 1.1% (CP SD Th4) and
1.9% (CP SD Th8) performance, the NVM lifetime can be further
increased by 28% and 44%, respectively.

REFERENCES

[1] J. Chang et al., “The 65-nm 16-mb shared on-die l3 cache for the dual-
core intel xeon processor 7100 series,” JSSC, 2007.

[2] H.-Y. Cheng et al., “Lap: Loop-block aware inclusion properties for
energy-efficient asymmetric last level caches,” in ISCA, 2016.

[3] C. Escuin et al., “Hycsim: A rapid design space exploration tool for
emerging hybrid last-level caches,” in RAPIDO’22, 2022.

[4] C. Escuin et al., “Compression-aware and performance-efficient insertion
policies for long-lasting hybrid llcs,” in HPCA, 2023. [Online]. Available:
https://www.dropbox.com/s/vvz916qvgj2jrv3/hpca2023-publicada.pdf

[5] C. Escuin et al., “L2c2: Last-level compressed-contents non-volatile
cache and a procedure to forecast performance and lifetime,” PLOS ONE,
2023. [Online]. Available: https://doi.org/10.1371/journal.pone.0278346

[6] H. Farbeh et al., “Floating-ecc: Dynamic repositioning of error correcting
code bits for extending the lifetime of stt-ram caches,” TonC, 2016.

[7] S. Schechter et al., “Use ecp, not ecc, for hard failures in resistive
memories,” ACM SIGARCH Computer Architecture News, 2010.

[8] S. Seyedzadeh et al., “Enabling fine-grain restricted coset coding through
word-level compression for pcm,” in HPCA, 2018.

2

https://www.dropbox.com/s/vvz916qvgj2jrv3/hpca2023-publicada.pdf
https://doi.org/10.1371/journal.pone.0278346

	Introduction
	L2C2: Byte-level Fault-tolerant NVM-LLC
	Hybrid LLCs Insertion Policies
	Forecasting procedure
	Evaluation: Performance vs. Lifetime
	References

