
Shisha: Online scheduling of CNN pipelines on
heterogeneous architectures

Pirah Noor Soomro1, Mustafa Abduljabbar2,
Jeronimo Castrillon3, and Miquel Pericàs1

1 Dept Computer Science and Engineering, Chalmers University of Technology
{pirah,miquelp}@chalmers.se

2 Ohio State University abduljabbar.1@osu.edu
3 Chair for Compiler Construction, Technische Universität Dresden

jeronimo.castrillon@tu-dresden.de

Abstract. Many modern multicore processors integrate asymmetric
core clusters. With the trend towards Multi-Chip-Modules (MCMs) and
interposer-based packaging technologies, platforms will feature hetero-
geneity at the level of cores, memory subsystem and the interconnect.
Due to their potential high memory throughput and energy efficient core
modules, these platforms are prominent targets for emerging machine
learning applications, such as Convolutional Neural Networks (CNNs).
To exploit and adapt to the diversity of modern heterogeneous chips,
CNNs need to be quickly optimized in terms of scheduling and work-
load distribution among computing resources. To address this we pro-
pose Shisha, an online approach to generate and schedule parallel CNN
pipelines on heterogeneous MCM-based architectures. Shisha targets
heterogeneity in compute performance and memory bandwidth and tunes
the pipeline schedule through a fast online exploration technique. We
compare Shisha with Simulated Annealing, Hill Climbing and Pipe-
Search. On average, the convergence time is improved by ∼ 35× in
Shisha compared to other exploration algorithms. Despite the quick ex-
ploration, Shisha’s solution is often better than that of other heuristic
exploration algorithms.

Keywords: CNN parallel pipelines · Online tuning · Design space ex-
ploration · Processing on heterogeneous computing units · Processing on
chiplets

1 Introduction
Multicore processors are becoming more and more heterogeneous. Intel’s Meteor
Lake [2] features asymmetric multicore design containing high performance and
power saving cores. Similarly, Apple’s A14 Bionic [1] integrates high performance
cores called Firestorm and power saving cores called Icestorm. The trend to-
wards heterogeneity is complemented with the trend towards Multi-Chip-Module
(MCM) integration, which enables lower cost during design and improves yield
by reducing chip area (chiplets) [13]. When combined with interposer-based pack-
aging technology, it enables lower latency and high bandwidth transmission to
memory devices such as High Bandwidth Memory (HBM) [8]. Chip manufactur-
ers are adopting a mix of these technologies in order to design high performance

ar
X

iv
:2

20
2.

11
57

5v
2 

 [
cs

.P
F]

  4
 D

ec
 2

02
2



2 P. Noor Soomro et al.

processors, resulting in heterogeneity at the level of the cores, memory subsystem
and the Network on Chip (NoC). In order to effectively exploit such architec-
tures, applications must be optimized considering the impact of different levels
of heterogeneity. Furthermore, to address the diversity of hardware platforms,
the optimization process must be fast and preferably online.

Convolutional Neural Networks (CNNs) have high computational, bandwidth
and memory capacity requirements owing to the large amount of weights and
the increasing size of intermediate results that need to be transferred between
layers. Parallel pipelining has the potential to address these requirements by
partitioning the whole network across devices, and requiring only the inputs to
be exchanged among stages. In chiplet architectures, CNNs could be efficiently
pipelined by distributing layers across chiplets so as to reduce the amount of
weights that need to be copied. Furthermore, pipelining makes the task of load
balancing manageable among heterogeneous computing units.

In order to partition and schedule pipelines, current approaches rely on de-
signing cost models to steer design space exploration [3, 5]. For instance, the
auto-scheduler in [3] explores over ten thousand schedules for a single CNN-
layer pipeline using Halide [22]. The effectiveness of these approaches depends
on the accuracy of the cost model and the scalability of the exploration algo-
rithm. Sophisticated cost models, some of them using ML-models themselves,
have been proposed and used in [3, 4, 14, 18, 32–34]. These models, however, re-
quire extensive training for near-optimal solutions [5], are sensitive to changes in
the execution environment (e.g., DVFS) and architectural parameters, need in-
depth architectural knowledge for model updates, and do not consider the impact
of heterogeneous multicore or chiplet architectures. As heterogeneity at different
levels of processing (e.g. core performance, memory bandwidth and/or MCM
organization) is expected to increase in future HPC platforms, static pipeline
partitioning and scheduling become inflexible. Online auto-tuning of the pipeline
schedule would help to ensure performance portability to future architectures.
However, to make it practical, it is critical that online pipeline partitioning and
scheduling finds an acceptable configuration with low overhead.

Pipe-Search [29] adopts an online exploration approach for finding a pipeline
configuration. It generates a database of pipeline configurations which is space-
intensive and prohibitively slow for larger systems and deeper CNNs. In this
paper, we propose a quick method to determine a meaningful starting point,
or seed, for the exploration coupled with a simple navigation heuristic for ef-
ficient runtime auto-tuning. In Shisha, we leverage statically available infor-
mation from the CNN and from the target platform to reduce the number of
exploration points and find a near-optimal solution within reasonable time. A
configuration explored by Shisha suggests grouping CNN layers into pipeline
stages and mapping of pipeline stages onto available sets of processing units
referred to as Execution Places (EPs). When generating initial configurations,
Shisha aims at balancing the load among pipeline stages while considering the
allocation of stages to EPs. Shisha improves upon related work in two ways:



Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 3

– Shisha achieves faster convergence by introducing two novel schemes: (i)
the seed generation and (ii) the online tuning. We demonstrate that Shisha
is able to converge faster than existing algorithms (Simulated Annealing,
Hill Climbing and Pipe-Search) and that it is able to find a solution within
practical time limits.

– We show that Shisha scales better with deeper CNNs and with larger
amount of EPs per processing unit which is one of the limitations of prior
online tuning approaches such as Pipe-Search [29].

Shisha maps pipeline stages to EPs, which could be of any type and number
of processing units, such as multicores or manycores. To measure the quality of
schedules explored by Shisha we compare our results to conventional search ex-
ploration algorithms such as Simulated Annealing (also used by TVM [34]), Hill
Climbing, Exhaustive Search and Random Walk (executed for a longer period of
time), and to Pipe-search, an earlier online tuning approach. We test Shisha on
state of the art CNNs such as ResNet50 [11] and YOLOv3 [24]. The results show
that, despite exploring only a tiny portion of the design space (∼ 0.1% of design
space for ResNet50 and YOLOv3), Shisha finds a solution that is equivalent
to exhaustive search. Moreover, due to the guided exploration, the convergence
time is improved by ∼ 35× in Shisha compared to the other representative
exploration algorithms.

2 Motivation and problem definition

In a computing platform with different types of memories, the assignment of
workload and data objects becomes crucial for better performance. To investigate
the impact of different thread and data assignment strategies, we tested the
STREAM Triad benchmark [16] with two data sizes, 19 GB and 31 GB on Intel’s
Knights Landing (KNL) [28]. KNL has two types of memories, 16 GB of high
bandwidth memory(HBM), also called MCDRAM, and 90 GB of DDR4 DRAM.
The bandwidth of HBM is 4× higher than that of DRAM [26]. This suggests
that most of the application data should be placed in HBM. It also means that
HBM should be able to handle more parallelism until the bandwidth is saturated.
For each data size, 15 GB of data are placed in MCDRAM and the remainder
of the data are placed in DRAM. In Figure 1, we show three cases, namely, 1)
when all data are placed in DRAM (DDR only), 2) when MCDRAM is used as
a cache (cache mode), and 3) when data is distributed across the two memories.
As can be seen, with a sensible thread assignment, the case 3 yields the best
performance. This shows that a clever data partitioning and thread assignment
are key to achieve high performance in the presence of memory heterogeneity.
Further analyzing case 3, Figure 2 shows the heatmap of the execution time of
STREAM Triad with different thread assignments to MCDRAM [16, 32, 64, 128]
and DRAM [2, 4, 8, 16]. The optimal number of threads is determined by a) the
memory bandwidth of each memory type, b) the additional bandwidth consumed
by each extra thread, and c) the amount of data to be processed. Results from
the experiment show that for each data partitioning between HBM and DRAM
there is a different optimal thread partitioning. An important observation from



4 P. Noor Soomro et al.

[1
6+

2]
[3

2+
2]

[6
4+

2]
[1

28
+2

]
[1

6+
4]

[3
2+

4]
[6

4+
4]

[1
28

+4
]

[1
6+

8]
[3

2+
8]

[6
4+

8]
[1

28
+8

]
[1

6+
16

]
[3

2+
16

]
[6

4+
16

]
[1

28
+1

6]

Thread Assignment

0

1
Ti

m
e 

[s
]

DDR only Cachemode [15-4]

(a) [19GB]

[1
6+

2]
[3

2+
2]

[6
4+

2]
[1

28
+2

]
[1

6+
4]

[3
2+

4]
[6

4+
4]

[1
28

+4
]

[1
6+

8]
[3

2+
8]

[6
4+

8]
[1

28
+8

]
[1

6+
16

]
[3

2+
16

]
[6

4+
16

]
[1

28
+1

6]

Thread Assignment

0

1

Ti
m

e 
[s

]

DDR only Cachemode [15-16]

(b) [31GB]

Fig. 1: Comparison of cases 1,2 and 3. X-axis [X+Y] shows X = threads assigned
to MCDRAM and Y = threads assigned to DRAM

Figures 2 is that better performance can be achieved by assigning fewer number
of threads per memory type, rather than opting for assigning maximum number
of threads.

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

0.7 0.61 0.61 0.45

0.55 0.4 0.33 0.22

0.45 0.31 0.23 0.12

0.43 0.31 0.24 0.15 0.2

0.3

0.4

0.5

0.6

0.7

(a) [15-4]

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

1.5 1.1 0.88 0.47

1.4 1.1 0.85 0.47

1.1 1 0.84 0.47

1 1 0.85 0.5 0.6

0.8

1.0

1.2

1.4

(b) [15-16]

Fig. 2: (a) & (b) Execution time [s] of
STREAM Triad with data distribution
[X-Y], where X = GBs placed in MC-
DRAM and Y = GBs placed in DRAM

FEP

Stage
P+1 Stage Q.......Stage 1 ....... Stage P

CNN
Descriptors

SHISHA

Memory type X1 Memory type X2

Memory type Y1

Interposer

Memory type Y2

Cores

SEP

Fig. 3: System targeted in this paper.
Memory type X and Y represent differ-
ent memory bandwidths.

Problem definition and general approach of the solution:
This work considers a computing platform which is composed of a set of nodes
consisting of high performance cores attached to a high-bandwidth memory (re-
ferred to as Fast Execution Place – FEP) and clusters of relatively slower cores
attached to a low-bandwidth memory (referred to as Slow Execution Place –
SEP). This MCM based scenario is expected for chiplet architectures with het-
erogeneous integration and is shown in Figure 3. Our goal is to run throughput
maximizing CNN inference pipelines on such an architecture.

3 Background and related work
There are various schemes for parallelizing CNNs. In data parallelism the work
of a minibatch (a set of inputs) is partitioned among multiple computational
resources. In model parallelism the work is divided according to neurons in
each layer which corresponds to the tensor dimensions in each layer. In layer
pipelining [6] the work is partitioned by distributing network layers among com-
putational resources. Model parallelism within the layer is combined with layer
pipelining by arranging computational resources into multiple teams of workers.



Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 5

This hybrid parallelism has following benefits: 1) there is no need to replicate
weight and input tensors on all devices, 2) the communication volume and points
are reduced, and 3) the weights can remain cached, thus decreasing memory
round-trips. In the rest of the paper we will refer to CNN pipelines in which
network layers are grouped into pipeline stages. Each pipeline stage is assigned
a unique set of computational resources, referred to as EPs.

Finding out the right schedule and mapping of CNN pipelines on mentioned
architectures is a design space exploration problem, where we are interested
in the configuration that achieves the highest throughput. The configuration
consists of the number of pipeline stages, CNN layers per pipeline stage and a
mapping of pipeline stages to EPs. In the literature, various meta heuristic and
machine learning algorithms have been used such as Simulated Annealing [34],
evolutionary algorithms [3, 29], reinforcement learning [4, 21] and deep neural
network techniques [5]. The design space under consideration is large and com-
plex, requiring tens of thousands of trials in order to reach a near optimum with
current search schemes.Exploring in such a complex space is NP-hard. Parallel
pipelines for CNN training have been applied in practice [9,12,19,20]. Recently,
Chimera [14] generates a schedule for bi-directional pipelines by using complex
cost models that represent the execution time of one network pass and calculate
the depth and parallelism per pipeline stage. In Halide, [3] the pipeline scheduling
approach uses a cost model that considers 66 platform and application specific
features. For the cost model, 26 out of 66 feature values are predicted by a neural
network trained on random representative programs. According to the specifica-
tions, one training point takes at most 320 minutes to train the neural network
using different schedule configurations. To predict a schedule for Halide pipelines
of a single CNN layer, the scheduler considers 10k configurations. In comparison,
we show that for a large YOLOv3 network of 52 layer, Shisha considers only 18
configurations.

4 Shisha exploration approach

A pipeline configuration consists of two components: 1) the number of CNN
layers assigned to each pipeline stage, and 2) the assignment of each pipeline
stage to an EP. An EP can be a single or multiple cores attached to a memory
module. Therefore, we classify the EPs according to the type of memory. For
example, in Figure 3 EPs are colored in green or red. We use this classification
in Shisha to provide hints about the characteristics of the computing platforms
with heterogeneous modules.

Shisha is a two-step approach. The first step is the “seed generation”, in
which we use a simplified cost-model to come up with an initial solution. This
initial solution is used in the second step, “online tuning” for faster convergence.

4.1 Seed generation
The goal of the seed generation is to determine a sensible starting configuration
using only static information.

Firstly, Equation 1 is used to calculate the weights of the CNN layers [15,
17, 31, 32]. For each layer, H,W,C denote the height, width and depth of the



6 P. Noor Soomro et al.

Algorithm 1 Seed Generation

Require: Wl, He, N, L,C
1: seed[N ]
2: E[N ]
3: for passes in [0..|L−N |] do
4: minw ← min(Wl)
5: n← min(minw − 1,minw + 1)
6: Wl ← merge(minw, n)
7: seed← merge layers(minw, n)
8: end for
9: Rank ← rank(seed,Wl, C)

10: for i in [0...N ] do
11: E[Ranki]← assign(Ranki, Hei)
12: end for
13: return seed,E

Algorithm 2 Online Tuning

Require: seed,E,He, α
1: conf ← seed
2: throughput = execute(conf)
3: γ ← 0
4: while γ <α do
5: stage← slowest stage(conf)
6: t stage← nearestFEP (E)
7: conf ← move(conf, t stage)
8: Tp = execute(conf)
9: if Tp ≤ throughput then

10: γ + +
11: else
12: γ ← 0
13: throughput← Tp
14: end if
15: end while
16: return conf

input tensor. R,S represent the height and width of the underlying convolutional
kernel and K is the number of filters of the convolutional kernel. Note that, we
are considering conventional CNNs in this paper, other type of layers can be
incorporated in the context of this work by replacing Equation 1 with a model
for the estimation of computational intensity of the layers.

W = H ×W × C ×R× S ×K (1)
Secondly, we capture the heterogeneity of the system to support the seed gener-
ation. This is used to guide the mapping of pipeline stages to EPs together with
the total weight of each pipeline stage. We rank the EPs in a decreasing order
of performance, for example, from Figure 3 green EPs have rank 1 (FEP) and
red ones have rank 2 (SEP). This is a hint to Shisha to balance the workload
considering static knowledge about the heterogeneity of the system.

The seed generation process is described in Algorithm 1.Wl = [wl1, wl2, ....wlL]
is the weight list, where a layer weight wli is calculated using Equation 1.
He = [e1, e2, ...eN ] is a list of EPs sorted in descending order w.r.t. performance.
For example, for Figure 3 He = [G1, G2, ..Gp, R1, R2, ..Rq] represents the p EPs
that belong to memory types X (green) and q Y (red) EPs. L is the total number
of layers in a given CNN. N is the total number of pipeline stages in final pipeline
(N ≤ L) and C is assignment choice which is discussed later in this section.The
output of Algorithm 1 is a pipeline configuration Seed = [PS1, PS2, ...PSN ],
where PSi represents the number of CNN layers assigned to ith pipeline stage.
Output E = [e1, e2, ...eN ] is a list of EPs from He and the corresponding assign-
ment to pipeline stages. Algorithm 1 comprises two phases. In phase 1 (Lines
from 3-8) we generate pipeline stages by combining CNN layers. The goal of
this phase is to merge layers into groups in order to balance out the cumulative
weight of groups. These groups eventually become pipeline stages. The idea is to
look for the layer with lowest weight (Line 4) and merge it with the immediate



Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 7

neighbour with the smallest weight (Line 5,6). Typically, the weight distribution
in CNN layers does not follow any order, i.e. a light weight layer can be found
between two layers with heavy weights. The second phase of Algorithm 1 (Lines
9-11) assigns the pipeline stages output by phase 1 to EPs. In principle, heavy
pipeline stages should be assigned to high performance EPs, however, the as-
signment is not trivial in practice and requires to examine the impact of a few
heuristics. Eventually, this will help in balancing execution time per pipeline
stage, thus achieving a balanced pipeline.

Stage-to-EP assignment heuristics: Once CNN layers are grouped into
pipeline stages, we then assign an EP to each pipeline stage. Since we have
information about performance heterogeneity among EPs, we can make different
choices, such as; 1) Rank pipeline stages w.r.t. number of layers assigned to
each pipeline stage (Rankl). While merging layers into stages, it is sometimes
inevitable to have pipeline stages which are heavy in terms of aggregated weight
with many light weight layers as opposed to a pipeline stage with one heavy
layer. The highest rank corresponds to the pipeline stage with highest number
of layers. We assign higher ranks to SEPs. This facilitates the online tuning phase
later to greedily move the layers among pipeline stages to reach a solution. 2)
Rank pipeline stages w.r.t. aggregated weight of each pipeline stage (Rankw)
Here, we assign the pipeline stages with heavy weights to fast EPs to balance
the load. Line 9 controls this choice in Algorithm 1.

4.2 Online tuning

For the exploration phase, we strive to reduce the exploration time so that it
is still practical to carry out an online exploration without causing a significant
overhead on execution time. This is particularly challenging given the size of
the multidimensional pipeline configuration space, which often includes an over-
whelming majority of slow configurations. We avoid visiting such configurations
by starting from the seed configuration and incrementally adjusting load distri-
bution by moving layers from one pipeline stage to an adjacent lighter stage.
In Algorithm 2, we describe the auto-tuning scheme of Shisha . The required
input is a pipeline configuration generated as a seed. A list of EPs E which rep-
resent a mapping of pipeline stages to the computing platform. The α parameter
controls how many configurations are attempted after a configuration that out-
performs the seed and recently found solution has been detected. The rationale
behind Algorithm 2 is to gradually reduce the load of the slowest pipeline stage
in order to improve the overall throughput of the pipeline. Hence, Shisha finds
the slowest stage (Line 5) and remaps one layer at a time to the nearest faster
EPs (Line 6-7). The layer could be popped from front or back end of the stage
depending on the location of new EP. Once a better configuration is found than
any previous one, we try α more times to search for a better configuration. In
Line 6 we balance the workload by moving layers to a nearest fast EP (nFEP )
in pipeline i.e a closer stage which is running on an FEP. However, this is not
the only choice that can be made. The nearest lightest fast EP (nlFEP ) is also a
good target to move layers as well. Therefore we keep both options open for the



8 P. Noor Soomro et al.

user to select. The complexity of Shisha is negligible therefore it does not cause
much work to test different choices for a given CNN and computing platform.

5 Experimental setup

Shisha targets systems that are heterogeneous in core performance and memory
bandwidth. As discussed in Section 2, the system under consideration consists
of different types of cores attached to different memory modules. Chiplets such
as Nvidia’s Simba [27] and Intel Meteor Lake [2] resemble such types of archi-
tectures. We used the gem5 simulator [7] to simulate heterogeneous cores and
memory bandwidth. The simulator provides flexibility in modeling different ar-
chitectures. To simulate different core performances, we used ARM’s bigLittle
cores [10] models in gem5 and to simulate different memory types, we tried dif-
ferent memory bandwidth values using a simple memory model connected to
core cluster in gem5. Inter-EP latency is set to 20ns [27]. However, the execu-
tion time of pipeline stages is orders of magnitude higher than inter-EP latency,
thus it does not impact the performance of pipeline.

A GEMM-based implementation [23] consists of two operators; 1) Im2Col
and 2) GEneralized Matrix Multiplication (GEMM). We include both operators
to simulate execution time for CNN layers of ResNet50, YOLOv3 and AlexNet.

6 Evaluation

As highlighted previously, Shisha includes a seed generation component and an
online tuning heuristic. In this section, we evaluate the quality of the seed and
the final solution generated by Shisha and analyze the convergence of the online
auto-tuning phase.

Pipe-Search [29] is an online approach that uses a database of pipeline con-
figurations sorted w.r.t. the distribution of workload among pipeline stages. It
tests pipeline configurations of various depths and converges to a solution when
no better solution is found by a time limit set by the user. This approach incurs
a high overhead when generating the database of pipeline configurations which
also limits its scalability. We compare Shisha’s auto-tuning module with a set
of exploration algorithms commonly used in literature, such as Hill Climbing
(HC) with proximity equal to the number of layers in the network, Simulated
Annealing (SA) with cooling factor values ranging from 0.9−5 − 0.01, Random
walk (RW) and in selected cases, Exhaustive Search (ES). For a fair comparison
we test SA and HC with seeds produced by Shisha referred to as SAs and HCs.
For randomized algorithms, we run 200 times and picked the solution which is
closer to near optimal value

We use three CNNs in our experiments. ResNet50 [11] and YOLOv3 [24] are
widely used image classification CNNs. There are 50 compute intensive layers in
ResNet50 and 52 compute intensive layers in YOLOv3. The generation of sorted
configurations, as required by Pipe-Search and ES, incurs an impractical time
overhead when running ResNet50 and YOLOv3 for more than 4-stage pipelines.
Therefore, we extend our benchmark set with a synthetic network (SynthNet)
consisting of 18 convolutional layers. These layers are taken from the AlexNet



Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 9

101 102 103 104 105

Time [s]

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

Shisha SA SAs HC HCs RW PS ES Best

Fig. 4: Convergence of exploration
algorithms for SynthNet on 8 EPs.
Xaxis is time in log scale

ResNet50 YOLOv3 SynthNet
Networks

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

Shisha PS SAs SA HCs HC RW

Fig. 5: Throughput of search
schemes normalized to ES

architecture as AlexNet has only five convolutional layers and our testing plat-
form consists of 8 EPs. This is to analyze CNNs that can be run on a higher
number of EPs (i.e. EP > 8) and have a compute complexity matching widely
used CNNs.

6.1 Comparison of Shisha with exploration algorithms
Figure 4 shows the convergence behavior of all exploration algorithms. The so-
lution found by Shisha is equal to the best solution found by ES. For a fair
comparison we run SA and HC using the same seed (SAs, HCs) generated by
Shisha as a starting configuration. HC tries configurations in close proximity;
both versions of HC and SA managed to find a better solution (throughput
= 0.80) compared to the best solution (throughput = 0.94). However, the time
of convergence of representative exploration approaches is high, this is because
of using many configurations out of which some are very slow. ES and PS, on
the other hand, incur the overhead of generating a database of configuration.
As shown in Figure 4, it took 1200s, after that ES and PS started exploring.
Shisha explores 0.12% of the total design space as compared to Pipe-search
which explores 2.03% of the design space. this is because Shisha attempts con-
figurations which leads towards the solution faster On average, the convergence
time is improved by ∼ 35× in Shisha compared to other search algorithms. In
our approach, the stopping condition is controlled by α as mentioned in Section
4.2. We used α = 10 in our experiments.

6.2 Analysis of optimality
To quantify the confidence on Shisha solutions, we compared against ES using
larger CNNs. In this experiment we configured a system of four EPs as it takes
a lot of time for ResNet50 and YOLOv3 to run ES for higher number of EPs.
Figure 5 shows the throughput (= 1/(ExecutionT ime of slowest stage)) of the
solution found by Shisha and other algorithms normalized to best solution found
by ES. In case of ResNet50 and YOLOv3, Shisha found the best solution by
exploring 0.1% of the design space. In case of SynthNet, Shisha explored 2.5%
of the design space to find the best solution. This is due to the fact that design
space of SynthNet (18 layers) is smaller than ResNet50 (50 layers) and Shisha

on average tries 25 − 35 exploration points with α = 10.

6.3 Importance of seed in the auto-tuning phase of Shisha
The seed generated by Shisha contains the mapping of pipeline stages to EPs.
Figure 6 represents the throughput and convergence time of Shisha when initi-
ated with the seed generated by Algorithm 1, represented as Shisha mark(red),



10 P. Noor Soomro et al.

As Asol Bs Bsol

2

4

6

8

10

No
rm

al
ize

d 
Th

ro
ug

hp
ut Shisha

(a) Throughput

A B
1.0

1.5

2.0

2.5

No
rm

al
ize

d 
tim

e

Shisha

(b) Convergence

Fig. 6: Comparison of Shisha seed
against a set of 100 random seeds. s
= seed, sol = solution, A = YOLOv3
and B = ResNet50.

C1 C2 C3 C4 C5 C6
EP_Configuration

H
1

H
2

H
3

H
4

H
5

H
6

S
hi

sh
a_

H
eu

ris
tic

1 1 1 0.74 1 0.94

1 1 1 0.74 1 1

0.88 1 0.93 0.85 0.92 0.94

0.93 1 0.93 0.85 0.8 1

0.88 0.92 0.93 1 0.93 0.94

0.93 0.92 0.93 0.98 0.8 1
0.75

0.80

0.85

0.90

0.95

1.00

(a) ResNet50

C1 C2 C3 C4 C5 C6
EP_Configuration

H
1

H
2

H
3

H
4

H
5

H
6

S
hi

sh
a_

H
eu

ris
tic

0.91 1 1 0.8 0.95 1

0.91 1 0.92 0.69 0.85 0.85

1 0.97 1 1 1 1

1 0.96 1 1 0.98 0.85

0.91 0.97 0.92 0.98 0.98 1

0.91 0.97 0.92 0.98 0.98 0.85
0.7

0.8

0.9

1.0

(b) YOLOv3

Fig. 7: Throughput using different
heuristics 1 and configurations of
EPs 2

compared to a set of 100 random seeds and solutions obtained with random
seeds. In case of ResNet50, the solution quality in both cases is similar but con-
vergence time is increased by 35% when started with a random seed. In case of
YOLOv3, the throughput of the solution found using Shisha seed is 16% better
and the convergence time is always better than a solution found using a set of
100 random seeds.

6.4 Assignment and balancing schemes in Shisha

Section 4.1 and 4.2 discuss various choices that Shisha makes while assigning
EPs and balancing workload among pipeline stages. We investigate the impact of
each of these choices, with results shown in Figure 7. Table 1 lists the heuristics to
be configured in Shisha. Assignment of EPs in H5 and H6 is random, in order to
study the impact on convergence when no heuristic is used. Table 2 lists various
configurations of the computing platform used to run this sensitivity analysis.
The balancing scheme lightest FEP is effective in all cases as Shisha tries to move
workload to an FEP which takes least time to execute assigned pipeline stage.
This helps in balancing the pipeline as well as maximizing the throughput of the
pipeline. In 80% of the cases, H1 and H3 yield better results. We investigated the
convergence time of both schemes in order to determine the effectiveness of H1
and H3. Figure 8 Shows that the convergence time of H3 is less than H1 in 90%
of the cases. This is due to the fact that in H3 assignment is done w.r.t. weights
which means the configurations tested during exploration take reasonably less
time than in H1. We recommend to use H3 because it converges faster and yields
a near optimal solution.

Heuristic # Assignment of EPs Balancing

H1 Rankl nlFEP
H2 Rankl nFEP
H3 Rankw nlFEP
H4 Rankw nFEP
H5 random nlFEP
H6 random nFEP

Table 1: Heuristics of Shisha

Conf. FEPs SEPs

C1 1 8-core 1 8-core
C2 2 8-core 2 8-core
C3 4 4-core 2 8-core
C4 2 8-core 4 4-core
C5 4 4-core 4 4-core
C6 8 4-core NULL

Table 2: EPs

6.5 Sensitivity analysis of α
The extent of exploration of Shisha is controlled by α. The value of α should
be chosen such that it allows tuning according to the performance heterogeneity



Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 11

among FEPs and SEPs while keeping a sensible convergence time. A higher value
of α also means a longer tuning phase. Figure 9 shows the quality of solution
(normalized to throughput obtained when α = 100) for the YOLOv3 pipeline
tested on three platform configurations with the SEPs [3×, 6×, 12×] slower than
the FEPs. In our experiments, the performance difference between ARM’s Big
and Little cores is three folds on average, which is the first case in the figure.
It is shown that with the higher heterogeneity between EPs, higher α yields a
better solution. We use the same starting seed for the same CNN in all cases,
therefore, for lower values of α, throughput behavior is similar, irrespective to
the performance difference between EPs, but in the case of a higher performance
difference, throughput is improved with a higher value of α.

C1 C2 C3 C4 C5 C60

1

2

3

4

Co
nv

er
ge

nc
e

ResNet50 H1
H3

C1 C2 C3 C4 C5 C6 0

1

2

3

Co
nv

er
ge

nc
e

YOLOv3

Fig. 8: Convergence time nor-
malized to minimum value in
each group for H1 and H3.

1 2 3 4 5 6 7 8 9 10 11 12 13 100

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

SEPt  12x FEPt

SEPt  6x FEPt

SEPt  3x FEPt

. . .

Fig. 9: Impact of α on the quality of solution
in presence of heterogeneity

7 Conclusion
In this work we demonstrate a fast approach to scheduling CNN pipelines on het-
erogeneous computing platforms consisting of fast and slow cores. The proposed
approach is generic and can be used on platforms featuring GPUs or FPGAs, in
addition to asymmetric multicores and chiplets. We utilize compile time infor-
mation in combination with a brief and guided online search for auto-tuning the
CNN layers into parallel pipelines. Our experimental evaluation shows that the
solution found by Shisha is as good as one produced by an exhaustive search
of the design space. The results also show that Shisha scales well with larger
networks and computing platforms. In future work, we will look at more generic
tensor expressions [25] and the effect on seed parameters of high-level algebraic
transformations [30].

Acknowledgment

This work has received funding from the EU Horizon 2020 Programme un-
der grant agreement No 957269 (EVEREST), from the AI competence center
ScaDS.AI Dresden/Leipzig (01IS18026A-D), PRIDE from Swedish Foundation
for Strategic Research with reference number CHI19-0048 and eProcessor from
the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 956702. Some of the computations were enabled by resources pro-
vided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers



12 P. Noor Soomro et al.

Centre for Computational Science and Engineering (C3SE) partially funded by
Swedish Research Council https://www.vr.se/ under grant agreement No 2018-
05973.

References

1. Apple a14 bionic: Specs and benchmarks, https://nanoreview.net/en/soc/

apple-a14-bionic

2. Intel technology roadmaps and milestones (Feb 2022), https://www.intel.com/
content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.

html#gs.z47liy

3. Adams, et al.: Learning to optimize halide with tree search and random programs.
ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)

4. Ahn, B.H., et al.: Chameleon: Adaptive code optimization for expedited deep neu-
ral network compilation. 8th International Conference on Learning Representa-
tions, ICLR 2020 (2020)

5. Anderson, et al.: Efficient automatic scheduling of imaging and vision pipelines for
the gpu. Proceedings of the ACM on Programming Languages 5(OOPSLA) (2021)

6. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR) 52(4) (2019)

7. Binkert, et al.: The gem5 simulator. ACM SIGARCH computer architecture news
39(2) (2011)

8. Cho, et al.: Design optimization of high bandwidth memory (hbm) interposer con-
sidering signal integrity. In: 2015 IEEE EDAPS. pp. 15–18 (2015)

9. Fan, et al.: Dapple: A pipelined data parallel approach for training large models.
In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. pp. 431–445 (2021)

10. Greenhalgh, P.: Big. little processing with arm cortex-a15 & cortex-a7. ARM White
paper 17 (2011)

11. He, et al.: Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

12. Huang, et al.: Gpipe: Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing systems 32, 103–112 (2019)

13. Kannan, et al.: Enabling interposer-based disintegration of multi-core processors.
In: 2015 48th Annual IEEE/ACM MICRO. pp. 546–558. IEEE (2015)

14. Li, S., Hoefler, T.: Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 1–14 (2021)

15. Lu, et al.: Modeling the resource requirements of convolutional neural networks
on mobile devices. In: Proceedings of the 25th ACM international conference on
Multimedia. pp. 1663–1671 (2017)

16. McCalpin, J.D.: Stream benchmark. Link: www. cs. virginia. edu/stream/ref
17. Minakova, et al.: Combining task-and data-level parallelism for high-throughput

cnn inference on embedded cpus-gpus mpsocs. In: SAMOS. Springer (2020)
18. Mullapudi, et al.: Automatically scheduling halide image processing pipelines.

ACM Transactions on Graphics (TOG) 35(4), 1–11 (2016)
19. Narayanan, et al.: Pipedream: generalized pipeline parallelism for dnn training. In:

Proceedings of the 27th ACM SOSP. pp. 1–15 (2019)
20. Narayanan, et al.: Memory-efficient pipeline-parallel dnn training. In: International

Conference on Machine Learning. pp. 7937–7947. PMLR (2021)

https://nanoreview.net/en/soc/apple-a14-bionic
https://nanoreview.net/en/soc/apple-a14-bionic
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy


Shisha: Online scheduling of CNN pipelines on heterogeneous architectures 13

21. Oren, et al.: Solo: Search online, learn offline for combinatorial optimization prob-
lems. In: Proceedings of the International Symposium on Combinatorial Search.
vol. 12, pp. 97–105 (2021)

22. Ragan-Kelley, et al.: Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. Acm Sigplan Notices
48(6), 519–530 (2013)

23. Redmon, J.: Darknet: Open source neural networks in c. http://pjreddie.com/
darknet/ (2013–2016)

24. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

25. Rink, N.A., Castrillon, J.: TeIL: a type-safe imperative Tensor Intermedi-
ate Language. In: Proceedings of the 6th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming
(ARRAY). pp. 57–68. ARRAY 2019, ACM, New York, NY, USA (Jun
2019). https://doi.org/10.1145/3315454.3329959, http://doi.acm.org/10.1145/

3315454.3329959

26. Salehian, S., Yan, Y.: Evaluation of knight landing high bandwidth memory for
hpc workloads. In: Proceedings of the Seventh Workshop on Irregular Applications:
Architectures and Algorithms. pp. 1–4 (2017)

27. Shao, et al.: Simba: Scaling deep-learning inference with multi-chip-module-based
architecture. In: Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture. pp. 14–27 (2019)

28. Sodani, A.: Knights landing (knl): 2nd generation intel® xeon phi processor. In:
2015 IEEE HCS’27. pp. 1–24. IEEE (2015)

29. Soomro, et al.: An online guided tuning approach to run cnn pipelines on edge
devices. In: Proceedings of the 18th ACM International Conference on Computing
Frontiers. pp. 45–53 (2021)

30. Susungi, A., Rink, N.A., Cohen, A., Castrillon, J., Tadonki, C.: Meta-programming
for cross-domain tensor optimizations. In: Proceedings of 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experi-
ences (GPCE’18). pp. 79–92. GPCE 2018, ACM, New York, NY, USA (Nov
2018). https://doi.org/10.1145/3278122.3278131, http://doi.acm.org/10.1145/

3278122.3278131

31. Tang, et al.: Scheduling computation graphs of deep learning models on manycore
cpus. arXiv preprint arXiv:1807.09667 (2018)

32. Wan, et al.: High-throughput cnn inference on embedded arm big. little multi-core
processors. IEEE TCAD (2019)

33. Wu, et al.: A pipeline-based scheduler for optimizing latency of convolution neu-
ral network inference over heterogeneous multicore systems. In: 2020 2nd IEEE
International Conference on AICAS. pp. 46–49. IEEE (2020)

34. Zheng, et al.: Ansor: Generating high-performance tensor programs for deep learn-
ing. In: 14th {USENIX} Symposium on {OSDI} 20. pp. 863–879 (2020)

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1145/3315454.3329959
http://doi.acm.org/10.1145/3315454.3329959
http://doi.acm.org/10.1145/3315454.3329959
https://doi.org/10.1145/3278122.3278131
http://doi.acm.org/10.1145/3278122.3278131
http://doi.acm.org/10.1145/3278122.3278131

	Shisha: Online scheduling of CNN pipelines on heterogeneous architectures

