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Abstract—Traditional memory hierarchy designs, primarily
based on SRAM and DRAM, become increasingly unsuitable to
meet the performance, energy, bandwidth and area requirements
of modern embedded and high-performance computer systems.
Racetrack Memory (RTM), an emerging non-volatile memory
technology, promises to meet these conflicting demands by
offering simultaneously high speed, higher density, and non-
volatility. RTM provides these efficiency gains by not providing
immediate access to all storage locations, but by instead storing
data sequentially in the equivalent to nanoscale tapes called
tracks. Before any data can be accessed, explicit shift operations
must be issued that cost energy and increase access latency.
The result is a fundamental change in memory performance
behavior: the address distance between subsequent memory
accesses now has a linear effect on memory performance. While
there are first techniques to optimize programs for linear-latency
memories such as RTM, existing automatic solutions treat only
scalar memory accesses. This work presents the first automatic
compilation framework that optimizes static loop programs over
arrays for linear-latency memories. We extend the polyhedral
compilation framework Polly to generate code that maximizes
accesses to the same or consecutive locations, thereby minimizing
the number of shifts. Our experimental results show that the
optimized code incurs up to 85% fewer shifts (average 41%),
improving both performance and energy consumption by an
average of 17.9% and 39.8%, respectively. Our results show
that automatic techniques make it possible to effectively program
linear-latency memory architectures such as RTM.

Index Terms—Compiler optimization, polyhedral compilation,
loop transformation, tensor contraction, layout transformation,
racetrack memory, domain wall memory, shifts optimization

I. INTRODUCTION

THE memory system is an essential component of any
computer system. The rapid increase in the number of

cores per processor in the last decade puts tremendous pressure
on memory system designers to increase memory capacity
and improve memory system performance at a rate propor-
tional to the increase in core count. This, however, is highly
constrained by the technological scaling, high leakage, and
refresh powers of conventional SRAM and DRAM technolo-
gies. In the embedded domain where area and power budgets
are restricted, the efficient design of the memory system
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becomes particularly challenging. To fill this void and catch
up with the development in compute capabilities, various new
memory technologies have been proposed of late, including
ferroelectric RAM (FeRAM), phase change memory (PCM),
spin transfer torque (STT-RAM), resistive RAM (ReRAM)
and racetrack memory (RTM) also known as domain wall
memory [1]–[5]. While all these new technologies, being
non-volatile, are highly energy efficient, most of them have
large cell sizes, limited durability, and high write latencies,
restricting their applicability in embedded devices. RTM, on
the other hand, presents a favorable option that not only offers
SRAM comparable access latency but also promises to pass
the density barrier (satisfying the area constraint), and avoid
the memory power wall [6]. A direct comparison of the RTM
device features to other prominent memory technologies is
presented in [7].

The fundamental benefit of RTM over other technologies
comes from its ability to store multiple data bits – up to 100
– per cell [5], [7]. A cell in RTM is a magnetic nanowire
(track) that densely packs data-bits in the form of magnetic
domains separated by domain walls and is associated with one
or more access ports. Accessing a data bit from the nanowire
requires shifting and aligning it to a port position. These shift
operations in RTM not only induce energy overhead but also
make the access latency location-dependent (up to 26-fold
latency penalty [8]). Various architectural optimizations and
data placement solutions have been proposed to mitigate the
number of RTM shifts. However, there exists no compilation
framework that automatically generates efficient code for
RTM-based systems. Traditional spatial locality optimizations
thoroughly studied for mainstream (random access) technolo-
gies, do not suffice for these linear-latency memories. We
identify a new kind of spatial locality called minimal-offset
locality which is offset sensitive, and optimize it so that the
offset distance in subsequent memory accesses is minimized.

In this paper, we present extensions to LLVM’s polyhedral
loop optimization framework Polly [9] to cater for RTMs.
We introduce optimization passes that improve the minimal-
offset locality by enabling back and forth accesses to memory
locations, thus minimizing the number of shifts. The RTM
passes can be enabled together with the default Polly opti-
mizations for data locality and parallelism or in stand-alone
mode. We demonstrate the efficacy of our framework on the
PolyBench [10] and COSMO [11] kernels, which represent a
good mix of compute and memory intensive kernels. Our pro-
posed framework uses existing and newly developed memory
passes to analyze the memory access pattern of a program and
automatically transforms both the loop structure and the data
layout to minimize the RTM shifts.
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Our contributions are:
1) We introduce an RTM-specific memory analysis that

examines the memory access pattern of a program and
identifies potential loop candidates for transformations.
The analysis looks for memory accesses that can poten-
tially be optimized by changing their access order and
passes on the information to the schedule optimizer.

2) We present optimizations that transform a program’s
loop structure and data layout to reduce large address
jumps between subsequent memory accesses.

3) We integrate our analysis and transformation passes in
LLVM Polly to make an end-to-end automatic compila-
tion framework for RTM-based systems.

4) We evaluate our framework on a rich set of benchmarks
and perform a detailed performance/energy consumption
analysis of the transformed programs.

Our experimental results show that our framework can
reduce the number of shifts by up to 85% in 62.5% of the
cases which on average improves the RTM performance and
energy consumption by 17.9% and 39.8%, respectively.

II. BACKGROUND

This section explains the RTM principle, cell structure, and
overall architecture. Further, it provides background on the
elements of the polyhedral model relevant to this work.

A. Racetrack Memory

The nanowires in RTM can be organized horizontally or
vertically on the surface of a silicon wafer as depicted in Fig. 1.
Each wire in RTM stores K bits and is associated with an
access port usually made up of a magnetic tunnel junction
(MTJ) transistor. While there may be more than one access
port per track, they are always less than the number of domains
due to the larger footprint of the access transistor. In our case,
we consider the highest density RTM architecture and thus
assume one port per track. The access latency of RTM also
depends on the velocity with which domains move inside the
nanowire, which in turn depends on the shift current density
as well as the number of domains per nanowire.

I

Domain wall Access port

Horizontal racetrack

Vertical racetrack

I

I I

Figure 1. RTM cell structure

The RTM nanowires are grouped together to form domain
wall block clusters (DBCs) which are basic building blocks of
an RTM array [7], [12], [13]. The hierarchical organization of
RTM, similar to other technologies, consists of ranks, banks,
and subarrays as illustrated in Fig. 2a. As for the data storage,
each DBC comprising T nanowires stores data bits in an
interleaved fashion which facilitates parallel access of all bits

belonging to the same data word. Access ports of all nanowires
in a DBC point to the same location and domains can be
moved together in a lock-step fashion as shown in the figure.
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Figure 2. An overview of the RTM architecture. A DBC consists of T
(e.g., 32) nanowires and stores K (e.g., 64) T -bit words in a bit-interleaved
fashion. The figure on the right shows parallel accesses to DBCs for improved
bandwidth utilization and hiding shift latency.

B. Polyhedral Compilation

The polyhedral model is a mathematical framework for
describing programs consisting of affine loop nests and affine
accesses. It can express potentially complex loop transforma-
tions as a single affine function and can optimize all programs
that satisfy the following properties. The program has code
regions with static control, also referred to as static control
parts (SCoPs) [14], [15], loop bounds are affine expressions
of the surrounding loop variables, each loop has exactly one
induction variable, and the SCoP statements operate on multi-
dimensional arrays with indices being affine functions of the
loop variables and parameters.

The polyhedral model has three major components: iteration
domain, access relation, and schedule. To explain them we
consider the SCoP in Listing 1 as a running example.

for (int i = 0; i < I; i++) {

for (int j = 0; j < J; j++)

R: C[i][j] *= beta;

for (int k = 0; k < K; k++)

for (int j = 0; j < J; j++)

S: C[i][j] += alpha * A[i][k] * B[k][j]; }

Listing 1: GEMM kernel from PolyBench [10]

1) Iteration Domain: The iteration domain (D) of a state-
ment is the set of its dynamic instances during execution. This
corresponds to a vector space having dimensionality equal to
the depth of the loop nest and where each point in the space
represents a statement instance with coordinates reflecting the
values of the iteration variables. For the example in Listing 1,
the iteration domain of statement S is:

DS = {S(i, k, j) | 0 ≤ i < I ∧ 0 ≤ k < K ∧ 0 ≤ j < J}

where i, k, and j represent iteration variables while I,K, J
are global (structure) parameters.

2) Access Relation: The memory access relation links state-
ment instances to the array elements on which they operate.
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The relation corresponds either to a read or a write, represented
by two sets (R, W). The relations for S in the example are:

RS = { S(i, k, j)→ A(i, k) } ∪ { S(i, k, j)→ B(k, j) }
∪ { S(i, k, j)→ C(i, j) }

WS = { S(i, k, j)→ C(i, j) }

3) Schedule: A schedule assigns a logical time-stamp in
the form of a tuple to each statement instance. Statements are
then scheduled in the lexicographical order of the tuples. The
original schedule for the running example is:

{ S(i, k, j)→ (i, 1, k, j) } ∪ { R(i, j)→ (i, 0, j, 0) },

which specifies that for any given combination of values of
i, k, j statement R will be executed before statement S.

4) Schedule Trees: Schedules in polyhedral compilers are
represented in different ways depending on how they are
computed. Most scheduling algorithms compute schedules in
a recursive way with each level computing a partial schedule.
A partial schedule is a (piecewise) quasi-affine function. The
overall schedule is then obtained by concatenating all partial
schedules. Considering this, Verdoolaege et al. [16] argued that
representing schedules with explicit tree-like structures is not
only more natural but also more practical and proposed sched-
ule trees (current schedule representation in Polly). Nodes in
the schedule tree can be one of the following types.

• Domain is typically the root of the tree and represents
the iteration domain.

• Band holds partial schedules.
• Filter puts restriction on the iteration domain, i.e., selects

a subset of statement instances from the outer domain.
• Sequence enforces order on children nodes. Only Filter

nodes can be children of a sequence node.
• Set is similar to Sequence node but children nodes may

be executed in any order.
• Mark allows the user to mark subtrees in the schedule.
5) The Polyhedral Affine Scheduler: The default affine

scheduling algorithm in Polly – named as isl scheduler –
is inspired by Pluto [15] and is implemented in the isl
library [17]. It transforms an input program for different opti-
mization objectives while considering the architectural features
of modern processors. Similar to Pluto, it aims at maximizing
temporal locality and parallelism while preserving program
semantics. However, it offers different groups of relations
such as validity relations, proximity relations, and coincidence
relations that make it more powerful and enables more (target-
specific) optimizations. The isl scheduler provides support for
various loop transformations such as loop fusion, distribu-
tion, and (multi-level) parallelism by operating on the data-
dependence graph and using different groups of relations. It
provides a thorough analysis of the memory accesses and their
dependencies and offers a unified model to maximize temporal
and spatial locality while avoiding false-sharing. Using its rich
set of features, it can generate efficient schedules for modern
multi-core CPU and GPU targets.

C. Motivation

The memory performance of an application primarily de-
pends on how well temporal and spatial locality is exploited.
For kernels such as gemm (cf. Listing 1) and stencils (cf.
Sec. III) that generally exhibit high spatial locality, techniques
such as tiling can be used to improve their temporal locality
by splitting large size arrays into blocks that fit in the on-chip
memories (cache, scratchpad). If all tiles for the gemm kernel
are loaded in a mainstream on-chip memory, the latency of
the next access depends upon whether the data is in the same
cache block (irrespective of the exact position/offset inside
the block) or not. In case the next access references a new
cache block, its location inside the memory does not affect the
access latency. The gemm kernel within a tile can be computed
in many different orders without affecting the performance.
Specifically, long strides do not hurt performance.

The performance and energy consumption of RTM depends
on an application’s minimal-offset locality since the offset
distance in subsequent accesses determines the number of
shifts required to access the data. Since a single shift operation
is almost as expensive as a read operation (cf. Table I), long
jumps within DBCs (consecutive accesses to locations that
are far from each other) can lead to significant performance
degradation. In the worst case, shifting can make RTMs up
to (K − 1)× slower while in the best-case scenario, they can
outperform SRAM by more than 12% [8]. In this work, we
specifically focus on optimizing within DBC accesses to avoid
long jumps and maximize the minimal-offset accesses.

As an example, let us assume that all rows of A, B, and C
are stored in separate DBCs and the access ports in all DBCs
initially point to location 0. For larger row sizes, conventional
tiling can be used to split them into blocks that fit in DBCs.
For i = k = 0, the innermost j loop will incur J−1 shifts each
in DBCs storing row-0 of both matrices A and C. However,
for the next iteration of loop k, the access ports in both these
DBCs need to be reset to location 0, incurring another J − 1
shifts without doing any useful work. These overhead shifts
amount to 50% of the overall shifts in the gemm kernel which
can be prevented if we change the memory access order. For
instance, the order of memory accesses generated by the code
in Listing 2 cuts the number of shifts to roughly half compared
to the code in Listing 1. Further optimizations such as parallel
accesses to DBCs and preshifting can be applied on top of
our optimizations to overlap the access and shift latencies in
different DBCs, improving the performance and bandwidth
efficiency (cf. Fig. 2b). Similarly, with prefetching, the access
latency can be overlapped with the operation latency [18].

III. PROGRAM TRANSFORMATIONS FOR RTMS

This section presents a high-level overview of the over-
all compilation flow and describes our proposed loop and
layout transformations to generate efficient code for RTMs.
Polyhedral codes operate on array accesses and can be trans-
formed to improve spatial locality. However, array regions
are often accessed more than once (e.g., in stencils) which
requires undoing shifts as illustrated in Sec. II-C. We explain
our mechanism of identifying such patterns in a program
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Figure 3. A high-level overview of the overall compilation flow

for (int i = 0; i < I; i++)

for (int j = 0; j < J; j++)

C[i][j] *= beta;

for (int k = 0; k < K ; k++)

if ((i % 2) + (k % 2) != 1)

for (int j = 0; j < J; j++) // forward

C[i][j] += alpha * A[i][k] * B[k][j]

else
for (int j = J - 1; j >= 0; j--) // backward

C[i][j] += alpha * A[i][k] * B[k][j]

Listing 2: Optimized code for the GEMM kernel in Listing 1

and subsequently elucidate on our loop transformations. The
section closes with an analysis of the correctness of the
transformations and their current limitations.

A. Overall Compilation Flow

Fig. 3 presents a high-level overview of the compilation
flow. Our transformations are independent passes that do not
affect the front-end and back-end optimizations of LLVM.
Polly takes the LLVM IR, preprocesses it, builds SCoPs
(if any), performs dependence analysis, and computes the
schedule tree. This original schedule can be further optimized
using the default isl scheduler [19] in Polly. We place the
isl scheduler before our transformations because we expect
standard optimizations (cf. Section II-B5) to improve the reach
of our transformations. Also, note that the isl scheduler applies
transformations from scratch and could thus not start from a
partially optimized schedule (e.g., after our RTM Scheduler).
The RTM scheduler (cf. Section III-B), similar to the isl
scheduler, takes the dependence analysis and the schedule tree
and returns a modified schedule tree representing a shifts-
optimized schedule. After the RTM scheduler, we perform
layout transformations (cf. Section III-C) that further reduce
shifts, in particular for loops with dependencies. The Polly
backend then translates the modified schedule tree into an AST
and ultimately to LLVM IR.

B. Schedule Transformations for RTMs

Let us consider the simple kernel in Listing 3 from the
horizontal diffusion stencil in the COSMO model – an at-
mospheric model used for climate research and operational
applications by various meteorological services [11]. Let us
assume that each DBC stores exactly one row of an array
and access ports in all DBCs point to location 0. To compute
the resulting array lap, each row in array in needs to be

accessed 3 times (i − 1, i, i + 1). In general, since several
statement instances access the same memory location, the loop
nest exhibits potential for data-reuse (locality). However, from
the RTM perspective, the longer delays required for resetting
access ports may adversely affect both the performance and
the energy consumption, offsetting the locality benefits.

for(int i = 1; i < I - 1; i++)
for(int j = 1; j < J - 1; j++)

R1: lap[i][j] = in[i][j] + in[i+1][j] +
in[i-1][j] + in[i][j+1] + in[i][j-1];↪→

Listing 3: Simplified stencil for horizontal diffusion from the
COSMO model

The long delays in RTM could be circumvented by enabling
two-way accesses to array in as shown in Fig. 4. The bi-
directional accesses in in are generated from the optimized
code shown in Listing 4 which reduces the number of RTM
shifts by around 40% (the original code incurs approximately
(3 × J + 2 × J) × I while the transformed code needs only
(3×J)×I shifts). To be able to generate this optimized code,
we first need to identify potential targets, i.e., array in and
loop j in this case, by analyzing the memory access pattern
and subsequently change the order of memory accesses so that
long shifts are avoided. For the example, this means that the
execution order of all statement instances in the j loop needs
to be reversed for every second iteration of the outer loop i.
Since the alternation decision is based on the value of i, we
name it alternation base (AB) in the rest of this paper while
loop j is referred to as the alternation candidate (AC). Note
that there can be more than one AC(s) and AB(s) in any given
n-deep loop nest where n > 2.

for (int i = 1; i < I - 1; i++)

if (i % 2 == 1) // forward

for (int j = 1; j < J - 1; j++)

lap[i][j] = in[i][j] + in[i+1][j] + in[i-1][j] +

in[i][j+1] + in[i][j-1];↪→

else // backward

for (int j = J - 2; j > 0; j--)

lap[i][j] = in[i][j] + in[i+1][j] + in[i-1][j] +

in[i][j+1] + in[i][j-1];↪→

Listing 4: Transformed code for the kernel in Listing 3

The schedule optimizer is shown in Algorithm 1. It takes a
SCoP S and dependencies D of a program as input. Assuming
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Figure 4. Shifts within a DBC. The figure demonstrates the shifting operation
by highlighting one row/DBC (R2/DBC-2) and shows how the access port in
the DBC (represented by the arrow) needs to be reset after each iteration
of i for the example code in Listing 3. The transformed code in Listing 4
eliminates the overhead shifts by enabling bi-directional accesses.

that S is not empty, the algorithm extracts the schedule tree
from the schedule map and normalizes it (cf. lines 2–3 in Al-
gorithm 1). The normalization step traverses the schedule tree
to make sure that each band node (cf. Sec. II-B3) represents
exactly one dimension. This eases subsequent operations to
annotate band nodes in the tree as AC and AB.

Analysis for optimization targets: The proposed transforma-
tions for bi-directional accesses are only effective in mitigating
RTM shifts if an input program has memory regions that are
accessed by multiple statement instances. To identify this, we
iterate through the access maps of all arrays that are referenced
by stmt, and for each map l, check the injectivity (cf. line 7).

In the example, the access map of lap is injective be-
cause each of its location is referenced by exactly one
statement instance (i.e., R1(i,j) → lap(i,j)) while
in is not because each in[i][j] is referenced by
statement instances (R1(i,j), R1(i-1,j), R1(i+1,j),
R1(i,j-1), R1(i,j+1)). If the access function is injec-
tive, there is no need for optimization because array locations
are accessed only once and the order of accesses may not have
a significant impact on the number of shifts.

For non-injective access maps, the algorithm first splits
the access map l and groups memory accesses by their
loop access order (cf. line 8). Memory accesses in[i][j],
in[i][j+1], in[i+1][j] etc. are all of the same loop
access order because the order of loop variables in the
index expressions does not change while memory accesses
in[i][j], in[j][i], in[0][j] for example have dif-
ferent loop order. Each referenced array in the SCoP body can
have one or more groups, depending on the loop access order
in the accesses. For each group, the algorithm searches for
ABs and ACs and annotates them (cf. line 11).

Locating and annotating ACs and ABs: The algorithm
identifies the innermost access dimension by dropping all
but the last dimension of the access map (dimension j in
the example). We name it the innermost index for the rest
of the discussion. Note that there can be more than one
innermost index in an access map, e.g., in tmp[i][i+j].

Algorithm 1: RTM schedule optimizer
Input: SCoP as S, Dependencies D
Output: S with RTM optimized schedule

1 Global: bool ACF,ABF ; Band AC,AB
2 T ← Get schedule tree from S
3 T ← Normalize T
4 foreach stmt ∈ S do
5 L← List of arrays accessed by stmt
6 foreach l ∈ L do
7 if l is not injective then
8 G← split l by access order
9 N ← Find stmt leaf in T

10 foreach g ∈ G do
11 T ← AnnotateBands(T, N, g)
12 if ACF = true ∧ ABF = true then
13 if coincidence flag of AC is true then
14 Alternate the AC loop based on AB (cf.

Listings 2, 4)
15 Return S
16
17 Function AnnotateBands(T, N, g):
18 ACF ← false,ABF ← false
19 SD ← Set of statement dimensions that affects the innermost

dimension of g
20 if |SD| 6= 1 then
21 return T
22 while N is not a Filter node do
23 N ← Parent of N in T
24 if N is a Band node then
25 if schedule dimension of N is in SD then
26 AC ← N
27 ACF ← true
28 break
29 DS ← compute distance set of statement instances from g−1

30 PAB ← find potential alternation base loops for g in DS
31 while N is not a Domain node do
32 N ← Parent of N in T
33 if N is a Band node then
34 if schedule dimension of N is in PAB then
35 AB ← N
36 ABF ← true
37 break
38 return T

To find the AC, we locate the innermost access index in the
statement dimensions (cf. line 19). If the innermost index
involves more than one dimension, i.e., we get more than one
statement dimensions as AC, the algorithm does nothing and
moves to the next group (cf. lines 20–21). These kinds of
accesses are irregular and alternation for one dimension may
negatively impact the number of shifts. In order to mark AC
in the schedule tree, we take the schedule tree and traverse it
(bottom-up) up to the first band node that has dimension in
SD and mark it (cf. lines 22-28).

For the identified AC (j in our example), we search
through the remaining statement dimensions (i in this case)
to find a base for alternation. For this, the algorithm first
inverses the access map and sorts the statement instances
lexicographically to find the first statement instance. Sub-
sequently, it finds the distance set of all statement in-
stances from the first instance (cf. line 29). In our exam-
ple, each statement instance R1(i, j) accesses (in(i,j),
in(i+1,j), in(i-1,j), in(i,j+1), in(i,j-1)) (cf.
Listing 3). The computed inversed map gives the infor-
mation that each memory location in(i,j) is accessed
by five instances (R1(i,j), R1(i-1,j), R1(i+1,j),
R1(i,j-1), R1(i,j+1)) where R1(i-1,j) is lexico-
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graphically minimal. However, since we are only interested
in dimensions other than AC, we fix j to 0 and find
potential alternation bases from the computed distance set
(1, 0), (0, 0), (2, 0) which, in this case, indicates that loop i
is to be used as a potential base for alternation (cf. line 30).
This is determined by fixing dimensions to zero, one by one,
and checking that the resulting set is a non-empty strict subset
of the original distance set. In our example, we have only
one remaining dimension i, fixing this to 0 makes it a non-
empty strict subset of the original distance set. The algorithm,
therefore, selects i as a potential AB.

Similar to the AC, we locate and mark the AB band in
the schedule tree (cf. lines 31-37). Note that the traversal of
the schedule tree for AB starts from the node above AC to
make sure that the AB band is up in the hierarchy in the
tree (outer loop of AC). At this point, the algorithm leaves
the AnnotateBand function and returns the marked schedule
tree (cf. line 38).

Transformation: In the returned schedule tree, if the AC and
AB nodes are marked successfully and the AC band does not
carry dependencies i.e., its associated coincidence flag is set
to true, all correctness checks are passed and the schedule of
the AC band can be safely modified (cf. lines 12-13). The
optimizer replaces the schedule of the AC band by creating
two partial schedules with distinct domains representing the
schedules for forward and backward accesses respectively (cf.
lines 14).

For the example codes in Listings 1 and 3, the transformed
codes are presented in Listings 2 and 4, respectively. The
schedule optimizer eliminates the longer shifts in all array
accesses by alternating the inner-most loop j in both kernels.

C. Data Layout Transformations

The schedule transformation mitigates the number of RTM
shifts by modifying the execution order of statement instances.
Generally, such transformations are beneficial and effective in
kernels such as the ones in Listings 1 and 3. However, in other
cases such as Listing 5, data dependencies in SCoP statements
strictly prohibit statement reordering. In this case, Algorithm 1
would make no changes and return the identity schedule. To
eliminate the longer RTM shifts in such kernels we propose a
layout transformation, similar to those proposed for optimizing
stencil computations on SIMD architectures [20].

for (int i = 1; i < I - 1; i++)

for (int j = 1; j < J - 1; j++)

a[i][j] = a[i-1][j] + a[i+1][j] + a[i][j-1] +

a[i][j] + a[i][j+1];↪→

Listing 5: SCoP example for data layout transformation. The
SCoP statement bears data dependencies.

For stencil kernels such as Listing 3, we first find the number
of distinct rows (dr) that are accessed in each iteration of i,
3 in the example, and then change the data layout by storing
dr-consecutive rows of the original layout in one column in
the transformed layout. This means that J (equal to 3 in this

example) elements of each row are now distributed across J-
DBCs and dr rows across dr × J DBCs in total (cf. Fig. 5).
In case the number of available DBCs in RTM is less than
dr × J , techniques such as tiling could be used [20].
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Figure 5. Data layout transformation. Each column in the transformed layout
stores 3 rows (clarified with color-coding). In general, each column stores dr
rows where dr is determined by the pseudocode in Algorithm 2.

For the first complete iteration of the inner loop j, no shifts
are required because all elements of the first 3 rows are stored
at location 0 in each DBC. For the next iteration, the outer
loop increments by one which means all elements in the first
J-DBCs storing the elements of the 4th row need to be shifted
by one, pointing to location 1 now. Note that these elements
are stored in the same DBCs which store the elements of row
0. However, since the first row will not be accessed again, there
is no need for shifting backward. Further, DBCs storing rows
1 and 2 can reuse elements without any additional shifting.
Access ports in those DBCs are realigned to new elements
only when there is no further reuse of the data elements in
them. This interleaving of rows and elements across DBCs
eliminates long shifts. Every new iteration of the outer loop
requires at most one shift in J DBCs out of the total 3 × J
DBCs while the inner loop iterations require no shifting.

Algorithm 2 analyzes the memory access pattern to deter-
mine dr. Similar to Algorithm 1 and the description in the
previous section, we first group memory accesses by array
names (cf. line 1). The example code in Listing 5 has only
array a. The algorithm then checks injectivity (cf. Sec III-B)
and fixes the innermost index to 0 for each non-injective array.
This is due to the fact that data is stored in row-major layout in
DBCs and the innermost index (in this example j) corresponds
to within DBC accesses. For the remaining dimensions (i
in this case), we compute the distance set (cf. Sec III-B)
which determines the number of distinct rows in the stencil
i.e., 3 in our example. The algorithm then applies the layout
transformation illustrated in Fig. 5.

D. Correctness and Limitations

A program transformation is only valid if it respects all
dependencies. For our alternation transformation in specific,
we use the same constraints that are used for loop paralleliza-
tion. The isl scheduler already provides information for this
which is reused in the RTM scheduler (placed after the isl
scheduler, cf. Fig. 3). Since our scheduler can also be run as
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Algorithm 2: Layout transformation
Input: SCoP as S, dbcs

1 L← List of referenced arrays
2 foreach l ∈ L do
3 if l has more than one access orders then
4 return
5 if l is not injective then
6 Set the innermost index to 0
7 Find the distance set
8 Compute stencil size i.e., dr
9 Apply layout transformation

a standalone pass, it also includes a dependency checker to
make sure program semantics are preserved.

For a dependence relation D of the form (stmt → stmt)
and a schedule map M of the form (stmt → ldate) where
ldate is a logical-date representing a schedule tuple, we
construct a new relation R = {(ldate1, ldate2); ldate1 =
M(stmt1), ldate2 = M(stmt2) ∀(stmt1, stmt2) ∈ D} i.e.,
each element in R represents a pair of logical-dates of depen-
dent statement instances. By taking the difference of all tuples
in R, we end up having a set L of logical-dates. If the value
for a specific loop is zero for all ldate ∈ L, it can be safely
alternated otherwise the scheduler moves to the next memory
access group.

Note that our transformation operates on SCoP statements
and does not optimize across loop nests. For an array accessed
in multiple loop nests of the same program, our scheduler
optimizes accesses in each loop nest separately. The reason
is that the penalty of not optimizing across loop nests is
negligible. It boils down to a one-time long shift to align the
access port(s).

For our transformations, we assume that the memory sub-
system allows us to reason about access locality. In modern
computing systems where security is a prime design consider-
ation and the memory subsystem, in particular, is vulnerable to
attacks such as bus snooping and memory extraction, memory
encryption becomes necessary to protect memory contents. If
encryption is performed in software similar to [21], our trans-
formations are unaffected. However, if a memory device uses
dedicated hardware for encryption similar to intel SGX [22] or
the AMD variant [23], it may not allow reasoning about access
locality at the current abstraction layer. For such systems,
techniques need to be developed that allow optimization such
as ours to be applied at a point where access locality can be
reasoned about.

IV. RESULTS AND DISCUSSION

This section presents our experimental setup and a descrip-
tion of the evaluated benchmarks followed by an analysis and
evaluation of our proposed transformations for RTMs. We first
look into the shifts reduction and then analyze the kernels’
latency and energy consumption.

A. Experimental Setup and Benchmarks

Our transformations are integrated in the LLVM/Polly
pipeline (9.0.1). The compilation host is an Intel core i7
(3.8GHz) processor and 32GB of memory running Linux
Ubuntu (16.04). As target system we use an RTM-based

Table I
RTM PARAMETERS (256MB RTM, 32nm, 32 TRACKS / DBC)

Number of DBCs 1024 × 1024
Domains per DBC 64

Leakage power [mW] 753.9
Write energy [pJ] 576.2
Read energy [pJ] 447.3
Shift energy [pJ] 420.5
Read latency [ns] 12.82
Write latency [ns] 17.57
Shift latency [ns] 11.14

Area [mm2] 78.84

scratchpad memory backed by off-chip DRAM. We use the
RTM simulator RTSim [24] in trace-drive mode, with memory
traces extracted from Polly. The memory parameters of RTSim
are listed in Table I. The latency and energy numbers are ex-
tracted from the circuit-level memory simulator Density [25].
The per-access and per-shift latency and energy numbers also
include the latency/energy of the peripheral circuitry.

For evaluation, we use two well-known benchmark suites,
namely, the standard polyhedral polybench suite and kernels
from an atmospheric model COSMO, which is widely used
in climate research and operational applications. Polybench
consists of 29 applications from different domains including
linear algebra, data mining, and stencil kernels [10]. The Con-
sortium for Small-Scale Modelling (COSMO) is a numerical
atmospheric model for weather forecasting and large-scale
climate modeling used by numerous national meteorological
services and academic communities [26]. A central part of
the COSMO implementation applies over 150 stencils and
operates on 13 arrays on average. However, most of these
stencils are not compute-bound. As such, the performance
of the model largely depends upon the efficient use of the
memory system. We use 3 representative benchmarks of the
COSMO model (horizontal diffusion, vertical advection, and
fast waves) for evaluating our transformations.

For evaluation purposes, we enable/disable different trans-
formation passes in the compilation flow (cf. Fig 3) and
compare the generated code. Concretely, we evaluate the
following configurations:

• identity: Program with the original identity schedule
(baseline), i.e., with transformations disabled.

• isl: Program with only the isl optimized scheduler [19],
i.e., RTM-specific transformations disabled. This config-
uration helps us understand the impact of a state-of-the-
art optimizer, without modifications, on an RTM-based
system.

• rtmst: Program with the RTM schedule transformations
(cf. Sec. III-B) applied directly to the original schedule,
i.e., isl scheduler and layout transformations disabled.

• isl-rtmst: Program with the isl and RTM schedule trans-
formations enabled.

• rtm-slt: Program with the RTM schedule and layout
transformations enabled (cf. Sec. III-C).

• isl-rtm-slt: Transformed code with the entire compilation
pipeline enabled (isl scheduler, RTM scheduler, and lay-
out transformation).
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Figure 6. Comparison of RTM shifts reduction in different configurations. All results are normalized to the baseline identity configuration.
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Figure 7. Comparison of RTM shifts reduction in different configurations.
All results are normalized to the baseline identity configuration. The figure
presents only those benchmark kernels where our transformations reduce RTM
shits. For all other kernels, our transformations does not change the original
schedule.

B. RTM Shift Analysis

Fig. 6 presents a summary of the RTM shifts of all con-
figurations across all benchmarks compared to the baseline
(identity). On average (geometric mean), the (rtmst, rtm-slt, isl,
isl-rtmst, isl-rtm-slt) configurations reduce the RTM shifts by
(9%, 21.8%, 6.2%, 13%, 30.9%) respectively. Note however
that these averages include results of those benchmarks where
no configuration alters the RTM shifts e.g., gesummv, jacobi-
1d, ludcmp, mvt.

To highlight the reduction in RTM shifts by our trans-
formations alone, Figure 7 presents only those benchmarks
where rtmst or rtm-slt always reduce shifts. On average for
these benchmarks, the rtm-slt and isl-rtm-slt configurations
reduce RTM shifts by 41.6% and 53.3% respectively. The
rtmst reduces the number of shifts in 9 cases by an average
of 26% (maximum up to 49% in the gemm kernel). In the
remaining kernels, the optimizer either marginally improves
or worsens the number of shifts i.e., ≤ ±2% (doitgen and
advection) or returns the identity schedule (no change). This
is in line with the description of the schedule optimizer in
Sec. III-B where we explain how we only transform potentially
beneficial programs and leave others unaffected. The only
kernel where rtmst increases the number of shifts by a mere
2% is advection. Our analysis of the code suggests that this
is due to the conflicting optimization demands of the memory
accesses in the SCoP statement which could be resolved by
either enabling layout transformations or running isl before
rtmst (to split the loop nest and enable optimization).

By enabling the data layout transformation, the schedule
optimizer (rtm-slt) further reduces the number of RTM shifts
by 12% (maximum up to 83% in seidel-2d). While the
additional shifts reduction in rtm-slt mostly stems from the
data layout transformation, in some specific cases layout trans-
formation also enables schedule transformations for efficient
shifts reduction (e.g., in fdtd-2d and advection).

The impact of the isl affine scheduler [19], alone, on the
RTM shifts, is arbitrary. To demonstrate this, Fig. 8 presents
only those benchmarks where the isl scheduler always affects
RTM shifts, either positively or negatively. It may reduce the
number of RTM shifts by as much as 85% (e.g., in diffusion)
or exacerbate them by more than 100% (e.g., in gramschmidt).
This is expected because the scheduling algorithm tries to
maximize parallelism and locality with no regard to RTM
shifts (cf. Section II-B5). For the experimental results in Fig. 6-
8, we run the scheduler with all possible options and select
the best configuration (the isl implemented Pluto [15] variant +
schedule whole component) [27], in terms of the RTM shifts.
Close analysis of the kernels where the isl scheduler mini-
mized the RTM shifts reveals that the reduction in shifts either
comes from loop-fusion (as in the case of diffusion) or loop-
reordering (e.g., in gemver). In both cases, the transformed
code maximizes memory accesses to the same DBC location,
i.e., all n accesses to a DBC-location are performed before
moving to the next location in some or all arrays, thus reduces
the number of RTM-shifts.

In kernels bicg, gramschmidt and syr2k, isl exacerbates the
number of RTM shifts. The RTM scheduler, if enabled after isl
in the pipeline, improves the isl results in the majority of the
cases but still in some kernels the number of shifts is higher
compared to the baseline.

On average, isl-rtmst reduces the RTM shifts by 13.7%
which is 11.4% less compared to isl. Some interesting kernels
to analyze are the gemver, threemm, trmm, twomm where
the isl scheduler moves the data flow dependencies from
inner to outer loops and enables the RTM scheduler to split
and alternate the inner loops. In some cases, such as symm
and twomm, both rtmst and isl when applied separately do
not mitigate the RTM shifts. However, together they reduce
the number of shifts by 14% and 26% respectively. The isl
optimized code does not improve the number of RTM shifts
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Figure 8. Normalized results of RTM shifts reduction in different configurations. All results are normalized to the baseline identity configuration. The figure
presents only those kernels where the isl scheduler affects the RTM shifts.

but it splits the outer-loop, in the case of symm for example,
which allows the rtmst to alternate the inner loop.

The isl-rtm-slt configuration combines the impact of the
individual gains of each configuration. More importantly, the
optimized schedule of this configuration complements the
locality and parallelism benefits of the isl scheduler with RTM
shifts optimizations. On average, the shifts reduction compared
to the baseline translates to 29.5% which is (3.5%, -8.5%,
27.3%, and 15.8%) better compared to (rtmst, rtm-slt, isl,
and isl-rtmst) respectively. More importantly, it significantly
increases the optimization coverage, that is, the ratio of the
number of kernels where shifts are minimized to the total
number of kernels. The isl-rtm-slt mitigates shifts in 62.5%
of the cases which is (25%, 12.5%, 31.3%, and 15.6%) better
compared to (rtmst, rtm-slt, isl, and isl-rtmst) respectively.

C. RTM Performance Analysis

Fig. 9 presents the impact of shifts reduction on the RTM
latency (smaller is better). On average, the improvement
(geometric mean across all reported benchmarks) in latency
for all configurations (rtmst, rtm-slt, isl, isl-rtmst and isl-rtm-
slt) is (5.9%, 13.1%, 3.8%, 7.1% and 17.9%) respectively.

Rtmst alone reduces the RTM latency by up to 22% (in
the heat-3d and gemm kernels). Interestingly, the absolute
shift savings in different applications not necessarily directly
correlate with the RTM latency reduction. For instance in
rtmst, the shifts reduction in the gemm kernel (with respect
to the baseline) is higher compared to that of the heat-
3d kernel. However, for the same configuration, the RTM
latency improvements are comparable (22% in both cases).
Our analysis of results suggests that this is due to the higher
number of per-access shifts in the heat-3d kernel compared
to that of the gemm kernel in their identity schedules. Rtm-slt
further reduces the latency of the heat-3d kernel by 24%.

The latency results of isl generally show a similar trend
to the shifts reduction in Fig. 8. The kernel gramschmidt
displays an interesting behavior with only 17% increase in
the RTM latency compared to a more than 100% increase
in the RTM shifts. This kernel mostly references similar or
consecutive locations in memory (bearing on average 1 shift
per 4 accesses). As a result, although isl exacerbates the
number of shifts significantly, the impact on the RTM latency
is not as severe. The isl-rtm-slt configuration clearly shows that
except in isolated cases, it outperforms all other configurations

and can improve the RTM access latency by as much as
52.6% in heat-3d, and 48.2% in diffusion. As for the COSMO
kernels alone, the significant reduction in RTM shifts (61.3%
on average) improves the RTM latency by an average 35.4%
(in the best configuration i.e., isl-rtm-slt).

D. RTM Energy Consumption Analysis

Fig. 10 reports the normalized RTM energy consumption
(smaller is better) of all configurations compared to the
baseline. On average (geometric mean), the gain in energy
consumption for (rtmst, rtm-slt, isl, isl-rtmst and isl-rtm-slt) is
(12.1%, 28.6%, 8.6%, 17.4% and 39.8%) respectively. The
reduction in the RTM energy consumption is due to the
simultaneous improvements in both the leakage energy and
the dynamic energy. While the improvement in the dynamic
energy comes from the reduction in the RTM shifting opera-
tions, the gain in the leakage energy consumption stems from a
shorter execution time. For rtmst, the average leakage energy
reduction is 5.9% while for isl-rtm-slt it is 17.9%. Similar
to our results analysis in Sec. IV-B, isl-rtm-slt combines the
benefits of all other configurations and reduces more energy
compared to others. For instance, in the heat-3d kernel, the
isl configuration itself does not affect the number of RTM
shifts and hence its energy consumption, however, it enables
transformations that lead to 85.3% reduction in the RTM
energy consumption compared to 35.6% alone by the rtmst
configuration. For the COSMO kernels, the RTM energy
consumption is reduced by a significant 67.1% (geometric
mean). For the diffusion kernel alone, the significant reduction
in the RTM shifting operations (81%) reduces its runtime by
48.2% (cf. Fig. 9) and its energy consumption by 81.3%.

Compared to other memory technologies, there are plenty
of works that demonstrate that RTMs are significantly more
energy-efficient than SRAM, STT-MRAM, and DRAM and
can improve the energy consumption by more than 3× [8],
[12], [18], [28], [29].

E. Impact on Code Size and Compilation Time

The code size of the rtmst increases by an average of 25%
across all benchmarks which is 16% higher than the code size
of the isl configuration. For the polybench kernels alone, the
code size compared to the baseline increases by 8.2% which
is 2.8% less than the code size of the isl. For the COSMO
kernels, the rtmst increases the code size by 1.9× compared
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Figure 9. Impact of the schedule and layout transformations on the overall latency/runtime. All results are normalized to the baseline identity configuration.
The ideal random access (accesses require no shifts) RTM gives a lower bound on the latency.
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Figure 10. RTM energy consumption in various configurations. All results are normalized to the baseline identity configuration. The ideal random access
(accesses require no shifts) RTM configuration gives a lower bound on the energy consumption.

to the identity schedule while the isl reduces the code size
by 9.5%. The reason is that the isl scheduler fuses multiple
loop nests while the RTM scheduler alternates every loop nest
separately, increasing code size.

As for the compilation time, overall, there is no measurable
difference in isl-rtmst and isl as shown in Fig. 11. The
rtmst configuration slightly increases the compilation time.
However, except in isolated cases such as diffusion and heat-
3d, this increase in compilation time is negligible. Our analysis
of the source code suggests that the compilation time for
rtmst increases because it treats loop nests separately while
the isl and isl-rtmst configurations operate on fused loops,
when possible, making them slightly faster.

V. RELATED WORK

Racetrack memory has been evaluated across the memory
hierarchy for different application domains and different sys-
tem setups. Owing to its unprecedented density, Park et al. [30]
evaluated RTM as an SSD replacement in a graph processing
application and observed not only a significant boost in perfor-
mance but also up to 90% reduction in energy consumption.
As main memory, RTM has reportedly outperformed iso-
capacity DRAM in terms of performance (49%) and energy
consumption (75%) [28], [29]. When explored at the last-
level cache, RTM demonstrated significant improvements in
performance (25%), energy (1.4×), and area (6.4×) [12], [31].
Similar trends have been shown at lower cache levels [32], at
gpu-register files [33], [34], and for RTM-based scratchpad

memories [18], [35]. Exploiting its physical properties, recent
works have also proposed RTM based logic devices [36] and
in-memory acceleration of neural networks [37].

The shift operations in RTM can lead to errors that can
be eliminated using correction techniques such as [38], [39].
In addition, the significant performance and energy gain in
RTM-based systems is strictly dependent on the number of
RTM shifts. If not handled properly, these shift operations can
degrade the RTM performance by up to 26× compared to an
iso-capacity SRAM [8] and can consume more than 50% of
the energy [40]. Various hardware and software solutions have
been proposed in the past for efficient handling of the RTM
shift operations. Among them, memory request-reordering,
data swapping, preshifting and intelligent data and instruction
placement have shown good promise [13], [29], [31], [34],
[35], [41]–[44]. Since the architectural optimizations add to the
design complexity of RTM controllers, software optimizations
such as data placement and high-level transformations are
highly desirable but, unfortunately, less explored. To the best
of our knowledge, Khan et al. [18], [45] is the only work where
the authors explore manual loop and layout transformations to
mitigate the number of RTM shifts for the tensor contraction
operations and give suggestions for code generation. However,
no real efforts have been made to develop more general and
automatic compilation frameworks for RTM-based systems.

The polyhedral model is vastly used for automatic opti-
mization/parallelization of programs [15], [46]–[49] and is
used in various source-to-source and IR-to-IR compilers, e.g.,
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Figure 11. Average compilation time (in seconds) of different configurations for all benchmarks

Pluto [15], CHiLL [50], Polly [9], [51], GRAPHITE [52],
URUK [14], and the polyhedral extension of the IBM’s XL
compiler suite [53], and as underlying model for higher-level
domain-specific languages, e.g., in TeML [54] and Tensor
Comprehensions [55]. While most of these tools focus on
improving parallelism and temporal/spatial locality for multi-
core architectures, some of them attempt to optimize for more
specific platforms including to GPUs [56], [57], FPGAs [58],
memory hierarchy [14], [59], systolic arrays [60], or applica-
tion domains such as stencils [61] and tensors [62]. In this
work, we extend the polyhedral optimizer Polly, to generate
efficient codes for RTMs by maximizing successive accesses
to the same or nearby locations.

VI. CONCLUSIONS

We introduce RTM-specific program transformations in the
polyhedral compilation framework Polly to reduce the amount
of RTM shifts required by a program execution. The shift
optimization comes from reordering the memory accesses
and/or transforming the data layout in the RTM. We explain
how the schedule optimizer identifies potential optimization
targets and modifies the schedule in a way that eliminates
longer (overhead) shifts. In kernels where data dependencies
prohibit schedule transformations, we show how data layout
transformation can effectively reduce RTM shifts. We empir-
ically demonstrate that our optimizations effectively reduce
RTM shifts both with and without the Polly default affine
scheduler. However, when applied together, our optimizer not
only preserves the optimizations of the affine scheduler but
also exploits the optimizations it enables for RTMs. The jointly
optimized solution improves the RTM shifts by up to 85%
(average 41%), which improves the performance, and energy
consumption by an average of 17.9% and 39.8% respectively.
We believe our framework will pave the way for RTMs to
go mainstream and attract the architectural community to
investigate hardware-software co-optimization for RTMs. Our
work contributes and fits within larger efforts to architect
hardware and software abstractions for emerging computing
systems [63].
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