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Abstract
Dataflow execution models are used to build highly scalable
parallel systems. A programming model that targets parallel
dataflow executionmust answer the following question: How
can parallelism between two dependent nodes in a dataflow
graph be exploited? This is difficult when the dataflow lan-
guage or programming model is implemented by a monad,
as is common in the functional community, since express-
ing dependence between nodes by a monadic bind suggests
sequential execution. Even in monadic constructs that explic-
itly separate state from computation, problems arise due to
the need to reason about opaquely defined state. Specifically,
when abstractions of the chosen programming model do not
enable adequate reasoning about state, it is difficult to detect
parallelism between composed stateful computations.
In this paper, we propose a programming model that en-

ables the composition of stateful computations and still ex-
poses opportunities for parallelization. We also introduce
smap, a higher-order function that can exploit parallelism in
stateful computations. We present an implementation of our
programmingmodel and smap in Haskell and show that basic
concepts from functional reactive programming can be built
on top of our programming model with little effort. We com-
pare these implementations to a state-of-the-art approach
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using monad-par and LVars to expose parallelism explicitly
and reach the same level of performance, showing that our
programming model successfully extracts parallelism that
is present in an algorithm. Further evaluation shows that
smap is expressive enough to implement parallel reductions
and our programming model resolves short-comings of the
stream-based programming model for current state-of-the-
art big data processing systems.

CCS Concepts • Software and its engineering→ Func-
tional languages.

Keywords parallel programming, functional languages, par-
titioned state
ACM Reference Format:
Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens,
and Jeronimo Castrillon. 2019. STCLang: State Thread Composition
as a Foundation for Monadic Dataflow Parallelism. In Proceedings
of the 12th ACM SIGPLAN International Haskell Symposium (Haskell
’19), August 22–23, 2019, Berlin, Germany.ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3331545.3342600

1 Introduction
Dataflow graphs are an abstraction for scalable concurrent
computations [12]. Although the concept has a strong func-
tional foundation, it has received little attention in the func-
tional programming commmunity. Specifically, to the best of
our knowledge, no proposal exists that combines the explicit
concurrency of a dataflow graph with the simple and elegant
monad type class. In fact, the sequential evaluation semantics
of monadic actions seem to prevent this combination.

Dataflow is the de-facto standard for systems that achieve
scalability by exploiting parallelism. It is the foundation on
which data management systems implement highly parallel
execution engines. So-called Extract-Transform-Load (ETL)
tools bring data into a data warehouse [10]. Query execution
over that data is dataflow-based [18], and the engines that in-
tegrate data that continuously arrives in the form of streams
build a dataflow graph pipeline [6, 44]. Similar streaming
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(>>=) :: Monad m => m a -> (a -> m b) -> m b

(a) Monadic Composition

f g
dn rn−1

(b) Dataflow Composition

Figure 1. The sequential nature of the monadic composition
and the concurrency in a pipeline of a dataflow graph.

pipelines and dataflow graphs underpin signal processing
and programs for embedded systems [27, 36]. They are also
used to build scalable server architectures [15, 42], for fine-
grained parallelism in big data systems [13], for optimizing
I/O in micro services [16], and concurrent UIs [3, 9].
Studying dataflow in the monadic context is interesting

both from a theoretical and a practical perspective. On the
one hand, the dataflow abstraction is so close to functional
programming that many optimizations for functional lan-
guages may directly apply to dataflow [1]. For example, fu-
sion is studied in the context of both functional languages
and dataflow systems [17, 20]. On the other hand, a monadic
composition of the dataflow graph offers improvement over
its manual construction. Manually constructing a dataflow
graph does not scale well to larger applications, which is why
many established dataflow approaches provide a GUI rather
than a language [22]. Implementing dataflow as a monad has
the benefit of integrating nicely with the rest of the program,
for example with the monad transformers framework.

Monadic composition and concurrency seem to be at odds
with each other. Consider the monadic composition, i.e.,
bind, as defined in Figure 1a. An implementation has to apply
the function passed in as a second parameter to the result of
the first parameter. In Figure 1b, we show the corresponding
composition of the two nodes in a dataflow graph. An arc
facilitates the data dependency and denotes data flowing
from node f to node g. In this pipeline, applications f dn
and g rn−1 are independent and, as such, concurrent.
Hughes noticed this problem as well and suggested that

stream processors be implemented using arrows, a gener-
alization of monads [21]. Arrows became the dominating
abstraction for composing dataflow computations in the con-
text of functional reactive programming (FRP) [8]. However,
we believe monads to be simpler and better suited to com-
posing functionality than arrows in most cases.

In this paper, we propose STCLang (State Thread Composi-
tion Language), a monad for dataflow computations that en-
ables a parallel execution at runtime, without targeting FRP
specifically. To this end, Section 2 motivates our approach on
the foundation of unbounded lists/generators [2] and state
threads [25, 40] rather than on the notion of streams, signals
and signal functions. This allows us to study STCLang not

signals

smap_

ewma αhigh

ewma αlow

/ > threshold if’

alarm

()

Figure 2. Dataflow Graph of the earthquake detection pro-
gram.

only on data retrieved via I/O operations but also for data
that resides in memory, e.g., a normal list. The main contri-
bution of STCLang in Section 3 is a higher-order function
called smap that is similar to the well-knownmap function. It
supports stateful computations, but unlike the state monad’s
mapM, smap introduces concurrency into the computation of
the result. Our smap construction introduces pipeline paral-
lelism for stateful computations and exploits data parallelism
for stateless nodes in the graph. Afterwards, we show that
STCLang can support the FRP abstractions (Section 4).
In Section 5, we evaluate our STCLang implementation

against other Haskell libraries for parallelism, in particu-
lar monad-par and its extension to LVars. We show that
STCLang does not incur additional overheads and that its per-
formance on standard benchmarks is on par with monad-par
and LVars. We show that STCLang programs are just as easy
to write as monad-par programs but enhance the program-
ming model with implicit parallelism, pipeline parallelism
and state. In combination with state threads, our smap func-
tion is even expressive enough to implement parallel reduc-
tions. In our evaluation, we also show that the transforma-
tions in the GHC harmonize with our programming model
and even find data parallelism inside state threads. As a fi-
nal contribution, we ported a state-of-the-art benchmark
for big data processing engines to Haskell/STCLang. The re-
sulting STCLang code removes short-comings of the current
stream-based programming model used in these systems. We
also report preliminary results that identify weaknesses of
monad-par’s scheduler and open up new research opportu-
nities for the functional community. In Section 6 we review
related work, and we conclude in Section 7.

2 Intuition and Motivation
We now motivate and introduce our programming model.

2.1 Use Case: Earthquake Detection
Tomotivate STCLang, we study an application for earthquake
detection that served as a motivation for Flask, a language
for programming sensor networks [29]. Figure 2 shows the
STCLang dataflow graph. The application receives signals
to which it applies low-pass and high-pass filters before
computing a ratio. If this ratio exceeds a threshold, then an
earthquake detection event is triggered. The corresponding
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1 detectEarthQuake :: Double
2 -> STCLang' (Source Double) ()
3 detectEarthQuake threshold = do
4 -- prepare state threads
5 ewmaHighST <- liftST initStateHigh $ ewma αhigh
6 ewmaLowST <- liftST initStateLow $ ewma αlow
7 alarmST <- liftST initCnnState alarm
8

9 let
10 -- state thread composition
11 detect :: STCLang' Double ()
12 detect signal = do
13 (low,high) <- (,) <$> ewmaHighST signal
14 <*> ewmaLowST signal
15 let ratio = high/low
16 let expected? = ratio > threshold
17 if' expected? alarmST $ return ()
18

19 -- apply the computation to the signal stream
20 return $ \signals -> smap_ detect signals

Figure 3. The STCLang program for earthquake detection.

program in STCLang is implemented in Figure 3. The function
detectEarthQuake1 defines an STCLang computation that
returns (), i.e., its sole purpose are the side-effects. The code
maps over the infinite list of signals and applies detect to
each of them. Since the ewma–nodes in the dataflow graph
are stateful, they use smap/smap_ which have types:
1 smap :: STCLang m => (a -> m b) -> [a] -> m [b]
2 smap_ :: STCLang m => (a -> m b) -> [a] -> m ()

That is, smap and smap_ are semantically equivalent to mapM
and mapM_ for Haskell’s state monad. The generator signals
receives input values via the network (I/O) and yields them
one at a time. The detect function expresses the indepen-
dent computations for the high and low values via the ap-
plicative functor of STCLang. The ewma function is stateful
and is defined as follows:
1 ewma :: Double -> Double -> State Double Double
2 ewma alpha current = do
3 prev <- get
4 let new = alpha * current + (1-alpha) * prev
5 put new
6 return new

The function ewma is lifted into the STCLang monad with
liftST along with a function that creates an initial state.
The computation in ewma updates its state. STCLang carries
this new state over to the computation for the next signal
and thereby provides the same semantics as a stateful node
in a dataflow graph. This monadic state can be composed
with other effects, e.g., IO, using monad transformers:
1 alarm :: StateT CnnState IO ()
2 alarm = do
3 address <- get

1We define STCLang’ in Section 3.3 and Source in Section 4. For now, think
of STCLang’ as a function STCLang m => Dobule -> m () wrapped in a
state monad and of Source as a generator.

4 liftIO $ sendAlarmMessage address
5 return ()

Without loss of generality, we remove the IO aspect and
focus solely on the composition of state threads, as well
as the parallelism that smap provides. For this, our smap
computations map over bounded lists that reside in memory.
In Section 4, we add IO back in and show how our concepts
can express behaviors and discrete events of FRP frameworks.

2.2 The Problem with State Thread Composition
Monads in functional programming are a particularly ele-
gant way of separating state from computation. In Haskell,
there are two well-established ways of doing so, using state
transformers2. A state transformer is a function that operates
either on immutable [40] or mutable [25] state. Wadler de-
fines state transformers in the context of programming with
monads as an abstraction for pure functions [40]. Launch-
bury and Peyton-Jones [25] use state transformers to operate
on mutable references called STRefs. We list the definitions
of both in Figure 4. These two approaches effectively en-
capsulate state inside the monad and separate it from the
computational functionality. However, by encapsulating the
state opaquely, they also remove the structure of the state.
Consider, for example, the composition of two functions with
one of the above monads via the monadic bind:

(>>=) :: StateThread s a
-> (a -> StateThread s b) -> StateThread s b

This composition of two State threads assumes that they
operate on the same type of state. In order to compose two
State threads

f :: (StateThread StateTypeA a)
g :: a -> (StateThread StateTypeB b)

that operate on different state types, the developer needs a
compound type

CompoundState StateTypeA StateTypeB

The Statemonad does not target the scenario where threads
operate on their own local state. In other words, it is unaware
of the internal structure of the state and thus cannot derive
a parallel execution. This is also true for ST threads. It is
well-known from compilers for imperative languages that it
is hard to analyze potentially aliasing references to find inde-
pendent parts of common state. Both types of state threads
provide a proper abstraction for encapsulation of stateful
(effectful) computations but allow only a sequential execu-
tion. As a direct consequence, higher-order functions which
expose parallelism naturally for pure functions, such as map,
become sequential for state threads (mapM).

2.3 State Thread Composition in STCLang

To outline the intuition behind our programming model,
consider the following example functions:
2In the Haskell community, this term is often used to refer to the type
StateT s m, the monad transformer version of the State monad.
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State threads ST threads

type StateThread s b = State s b
-- state transformers

put :: s -> State s ()
get :: State s s
-- evaluation
runState :: State s b -> s -> (b,s)

type StateThread s b = ST s b
-- state transformers
newSTRef :: a -> ST s (STRef s a)
writeSTRef :: (STRef s a) -> a -> ST s ()
readSTRef :: (STRef s a) -> ST s a
-- evaluation
runST :: (forall s.ST s b) -> b

Figure 4. The two notions of state threads in Haskell. State threads operate on immutable state wile ST threads support
mutable state. Both describe a pure function (a, s) → (b, s).

1 f :: a -> StateThread sf b
2 g :: b -> StateThread sg c
3 h :: c -> StateThread sh d

These functions represent actions that could be applied to a
large data set. Each function uses a local state. A key-value
store is an example application that fits into this pattern, with
functions load, decrypt, and decompress, each of which
uses a local cache, i.e. local state, to optimize its execution.
To compose these functions, our programming model

takes over the management of the states for the individ-
ual state threads. In order to do so, we store all states of the
state threads participating in an STCLang computation in a
single compound state list. Our model is monadic as well,
such that a state thread becomes an STCLang computation
when it is associated with a reference (index) to its private
state in this global state list:

liftWithIndex :: STCLang m =>
Int -> (a -> StateThread s b) -> a -> m b

Note at this point, we assume that there is a 1-1 correspon-
dence of state threads and slots in the global state list and the
state in the list matches the declared state type. We use the
global state list and the index reference in order to clearly
introduce our concept of handling the state. Later in the
paper, we give a version of liftWithIndex that enforces
type-safety for the state types and the 1-1 correspondence
between states and state threads. STCLang computations ab-
stract over the local states and composition works again, as
for normal functions. The developer does not have to bother
with the composition of the state threads with respect to their
local states, our formal model of the next section provides a
solid foundation. An STCLang computation may be seen as
a state thread that is aware of its internal structure, i.e., that
has clearly defined semantics for which state thread accesses
which state cell in its compound state list. The composition
of state threads f, g and h is then as follows:

1 composition :: STCLang m => a -> m d
2 composition input = do
3 bval <- liftWithIndex 0 f input
4 cval <- liftWithIndex 1 g bval
5 dval <- liftWithIndex 2 h cval
6 return dval

f g h

input1
bval1

input2
bval2

cval1

cval2

dval1

dval2

inputn
bvaln cvaln dvaln

[

,

…

],

sf0

sf1

sgn-1

sg0

sg1

shn-1

sh1

sh0

[

,

…

, ]

sfn sgn shn ],,[

[ ],,

sfn-1

Figure 5. Flows of state and data during execution of
(smap (f >=> g >=> h) inputs) with state threads f, g, h and
the list inputs of input data.

2.4 Stateful parallel computations with smap

With composition in place, we define a new higher-order
function smap, akin to the well-known map. It applies a state-
ful function, i.e., an STCLang computation, to each input
value in a list. Throughout these applications, the state of
the individual state threads may evolve such that the next
application sees the state changes of the previous one. To
provide a deterministic implementation, smap defines that
the values are computed in the order of the input list. This
is the most intuitive semantics and aligns with mapM.
In order to see this evolution of the state, consider the

diagram depicted in Figure 5. It has two dimensions. In the
horizontal dimension, we depict the composed state threads
(in blue) and in the vertical dimension, we show the evolution
of their states (in red). Every dot marks an invocation which
requires a data input and a state and produces a data output,
i.e., a result, and a new state. The result is used as input to the
next state thread while the new state is passed on to the next
invocation of the same state thread. A possible sequential
execution proceeds either left to right and top to bottom
or vice versa. But other execution orders exist. For example,
when bval1 was computed, the next stepmay either compute
cval1 or bval2. That is, these steps can execute in parallel
because they are independent of each other. This is generally
known as pipeline parallelism.
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From this discussion we gain insight into the reason for
the limitations of Wadler’s State threads and ST threads. In
a sense, both can be considered as pure functions (a, s) →
(b, s). In the case of State threads this is clear, as they declare
the type of the state in their type signature and require
an initial state to evaluate the computation and produce a
result and a new state. ST threads, on the other hand, do not
expose the state type in their type signature nor require an
initial state or produce a new one. It is the rank-2 type in the
signature of the evaluation function runST that achieves full
state encapsulation via the type system. This encapsulation
assures that the surrounding program remains pure and
observes ST threads as pure functions a → b. In other words,
ST threads execute the same pure function (a, s) → (b, s)
internally but do not expose s , i.e., the mutable state. This is
part of what makes it difficult to reason about the state for
exposing parallelism.

3 An STCLang Implementation in Haskell
This section is about implementing STCLang. The challenge
is to implement state thread composition and smap in a monad
so that the inherent parallelism of the dataflow graph is
automatically exploited. Figure 6 shows the three types of
parallelism that are explicit in the structure of the dataflow
graph. We already explained how pipeline parallelism arises
between nodes f and g in a dataflow graph. Two nodes that
apply the same function f to different data items expose an
opportunity for data parallelism. When the nodes that apply
f and g are data-independent of each other, then we refer to
this structure as task-level parallelism.
Figure 5 suggests that there exist (at least) two ways to

implement the execution of the dataflow graph pipeline.
An smap implementation based on data-dependency (DD)
enforces the proper evaluation order of calls to the state
threads via the (blue) data (input, bval, cval), and an im-
plementation based on state-dependency (SD) enforces the
evaluation order via the (red) states (sf, sg, sh). To over-
come the limitation of the monadic bind, we used a free
monad to implement the DD version. This implementation
is entirely mechanical. For the rest of the paper, we fo-
cus on the implementation of the SD version for two rea-
sons: We are unaware of any construction that follows this
direction and it is considerably more concise and elegant
than the DD version. The full code is publicly available at
https://github.com/ohua-dev/stc-lang.

3.1 Preliminaries
Our implementation contains a core type, STCLang, which
holds the key construction for state thread composition.
We define STCLang with the following type class that re-

quires state thread composition to be implemented in terms
of the monadic bind operation:

1 class Monad m => STCLang m where
2 liftWithIndex :: Int
3 -> (a -> StateThread s b) -> a -> m b
4 runSTCLang :: m b -> [S] -> b
5 smap :: (a -> m b) -> [a] -> m [b]
6 smap_ :: (a -> m b) -> [a] -> m ()
7 if' :: Bool -> m b -> m b -> m b

The liftWithIndex function turns a state thread into an
STCLang computation, i.e., it associates a state thread with
a particular item in the global state list.3 runSTCLang takes
an STCLang computation and the global state list as inputs
and executes the STCLang computation. Note that we sup-
port heterogeneous types in the state list via S, a wrapper
around the Dynamic type interface which provides a con-
version from a concrete value into a dynamic one (toS) and
the inverse (fromS). Since the state and the according state
thread are only connected via the integer reference, i.e., the
index, into the global state list, STCLang is not type-safe.
STCLang’ provides the interface presented in the previous
section that adds this type-safety and follows at the end of
this section. The functions smap, smap_ and if’ add control
to STCLang. In our implementation, we abstract over the
notion of a state thread:

1 type StateThread s b = State s b
2

3 runStateThread :: StateThread s b -> s -> (b,s)
4 runStateThread = runState

3.2 The state dependency-based (SD)
implementation

Our SD construction is essentially a version of the classic
state monad that threads a (global) state list sN through a
computation composed of (fundamental) state threads. Each
fundamental state thread (a, sn) → (b, sn) accesses only one
state sn in the list sN . In the SD construction, it is much more
challenging to extract pipeline parallelism from smap than
in the DD implementation that can decompose state threads.
This is impossible in the state monad because its bind re-
ally has to apply the state threads and cannot gather the
computation, as the free monad does. It is also impossible to
impose parallelism via bind because of its strictly sequential
definition. We can only introduce (pipeline) parallelism in
the implementation of smap, similar to the classic map func-
tion. To provide the desired semantics, we enable the smap
implementation to define the order in which state evolves.

3.2.1 Monadic Structure
For a lifted state thread a -> SD b, we define SD as follows:

data SD result = SD { runSD :: GlobalState -> Par result }

3We restrict our presentation to one-argument functions. Supporting multi-
ple arguments is straightforward.

https://github.com/ohua-dev/stc-lang
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f g

(a) Pipeline Parallelism

f

f

(b) Data Parallelism

g

f

(c) Task-level Parallelism

Figure 6. The types of parallelism in a dataflow graph.

Monad Par provides IVars and tasks to build dataflow graphs
at runtime [30].4 We are interested in a compile-time defini-
tion of the dataflow graph in the context of STCLang. Despite
the runtime graph construction, basing our implementation
on monad Par has two advantages. First, the execution bene-
fits from Par’s work-stealing scheduler, and second, STCLang
computations are guaranteed to be deterministic because
every Par is. This has the nice property that it immediately
detects deadlocks and in such a case aborts the execution.
ParIO is an extension that allows tasks to perform IO opera-
tions. This enables implementations such as the alarm state
thread in our earthquake detection program. However, we
focus on the state aspect and define the functor and monad
instances as follows:
1 instance Functor SD where
2 fmap f = SD . fmap f . runSD

1 instance Monad SD where
2 return v = SD $ \sN -> return (v, sN )
3 f >>= g = SD $ \sN -> do
4 x <- runSD f sN
5 runSD (g x) sN

These instances are almost the same as for the state monad
that we stated in the introduction. The only real difference is
in the implementation of bind (>>=) which passes the same
global state sN to both of the state threads f and g. This is in-
tuitive in our programming model because both state threads
operate on different parts of the global state. The evolution
of the individual states is then captured in GlobalState:
1 data GlobalState = GlobalState { initials :: [IVar S]
2 , results :: [IVar S] }

The global state consists of two lists of IVars (where S is again
the generic state type). The first list carries the (initial) input
states [s1, . . . , sn] and the second list stores the resulting
states [s ′1, . . . , s

′
n].

We instantiate our STCLang type class and lift state threads
into STCLang:
1 liftWithIndex idx f a = SD (comp $ f a)
2 where
3 comp st (GlobalState initials results) = do
4 let ivarState = initials !! idx
5 ivarState' = results !! idx
6 localState <- fromS <$> Par.get ivarState
7 (r, localState') <- runStateThread st localState
8 _ <- Par.put ivarState' $ toS localState'
9 return r

4In this paper, we omit the NFData type constraints that monad Par requires
to force the evaluation of its tasks.

In liftWithIndex, we use the assigned index (idx) to re-
trieve the IVars for this state thread from the global state
(Lines 4–5). Afterwards, we get the local input state for the
state thread computation from the IVar (Line 6). This call
blocks until the IVar has state data. Once the call returns,
fromS casts the private state from the generic state type S to
the actual state type in the definition of the state thread. We
apply the state thread to the local state to compute a result
r and an updated local state (Line 7). To propagate the new
local state, the code at Line 8 casts it back to the generic state
type S and puts it into the result IVar (ivarState’). This
put call is non-blocking and activates other computations
that requested the content of this IVar. The last statement
lifts the result into the SD monad.

3.2.2 Parallelism
So far, our construction of SD does not introduce concurrency
but we prepared the setup for it on the foundation of IVars.

Pipeline Parallelism Our smap implementation orches-
trates the global state to extract pipeline parallelism:
1 smap :: (a -> SD b) -> [a] -> SD [b]
2 smap h xs = SD $ \(GlobalState initials results) -> do
3 ysIVars <- compute h xs initials results
4 forM ysIVars Par.get

This implementation looks very similar to a version that
implements the classic map to execute in parallel using IVars
and tasks. At Line 3, the compute function spawns a task
that computes each item in the input list and returns the
respective IVars. At Line 4, we iterate over these IVars to get
the results of the computations and return them. The vital
aspect that enforces the semantics of smap is the construction
of the GlobalState for the individual computations:
1 compute _ [] _ _ = return []
2 compute h (xi:xs) currentStates lastStates = do
3 nextStates <-
4 if null xs -- is this the last coputation?
5 then return lastStates
6 else replicateM (length currentStates) Par.new
7 yIVari <- Par.spawn
8 $ runSD (h xi)
9 $ GlobalState currentStates nextStates
10 ysIVars <- compute xs nextStates lastStates
11 return (yIVari : ysIVars)

At Line 4, we spawn a new task to compute yi . Tasks exe-
cute concurrently, so we get an IVar that eventually con-
tains the result. More importantly, we use nextStates as
the list that captures the resulting states for computing yi .
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Next, we pass it on to the recursive call but as a parameter
for the currentStates state list for computing yi+1. Due
to our implementation of liftWithIndex, a state thread h
participating in the computation of yi+1 needs to wait until
the same state thread participating in the computation of
yi has propagated the new state. At Line 3, we select the
nextStates state list that we share across two consecutive
computations. It is either an entirely new list of IVars or the
lastStates list that was input to the whole smap computa-
tion (Lines 10–12). This construction preserves the order of
state evolution shown in Figure 5 although computations for
yi and yi+1 run concurrently. Pipeline parallelism arises be-
cause lifted state threads immediately report their new local
state when they complete their part of the computation. Like
this, the computation for yi+1 can already proceed although
the one for yi has not finished yet.

Data Parallelism In order to introduce data parallelism,
we provide a version of liftWithIndex for a Reader as a
special type of state thread:
1 liftWithIndex :: Int -> (a -> Reader s b) -> a -> SD b
2 liftWithIndex idx f a = SD (comp $ f a)
3 where comp st (GlobalState initials results) = do
4 let ivarState = initials !! idx
5 ivarState' = results !! idx
6 localState <- Par.get ivarState
7 _ <- Par.put ivarState' localState
8 runReader st $ fromS localState

Note that we pass the localState to the results at Lines 6–
7 even before running the state thread (Line 8). Thus, our
smap implementation executes such state threads in a data-
parallel fashion. In fact, our evaluation shows that the GHC
transforms state threads that either have no state or use it
only for reading into exactly this form. That is, data paral-
lelism comes for free!

Task-level Parallelism There are two cases that expose
the structure of the dataflow graph presented in Figure 6c
for task-level parallelism. When the previous node splits
up the input data and when the previous node splits up
control, i.e., the previous node represents an if’ such as in
our earthquake detection program.
The basic form to express independent computations in

Haskell is (f, g) for pure functions f and g. When f and g
are state threads, we can express the same computation as
(,) <$> f <*> g using the applicative functor of SD [31]:
1 instance Applicative SD where
2 pure = return
3 f <*> g = SD $ \sN -> do
4 gResultVar <- Par.spawn $ runSD g sN
5 fp <- runSD f sN
6 fp <$> Par.get gResultVar

First it places the computation of the argument g on a new
task. Then it extracts the pure function fp concurrently by
evaluating the left side of the <*> expression, e.g. (,) <$> f.

Afterwards, it waits for the result of the argument computa-
tion and applies to it the extracted pure function.
In a conditional expression not all state threads execute,

only the ones of the selected expression. To allow condition-
als in conjunction with smap, we need to transfer the states
for the state threads that did not execute this time in order to
avoid deadlocks. In order to do so, we extend our definition
of SD with an id function:
1 data SD result = SD {
2 runSD :: GlobalState -> Par result,
3 id :: GlobalState -> Par () }

The implementation of id for any lifted state thread returns
unit and does not alter the local state:
liftWithIndex idx f a = SD (comp $ f a) (comp $ return ())

The comp function remains unchanged and propagates the
final state to the result IVar. The corresponding code in >>=
applies id instead of runSD and discards the returned unit
values. The implementation of if’ calls runSD on the branch
to be executed and id on the other:
1 if' :: Bool -> SD b -> SD b -> SD b
2 if' cond trueBranch falseBranch = SD comp idIf
3 where
4 (toExecute, toTransfer) = if cond
5 then (trueBranch, falseBranch)
6 else (falseBranch, trueBranch)
7 comp sN = do
8 _ <- id toTransfer sN
9 runSD toExecute sN
10 idIf sN = id trueBranch >> id falseBranch

Both calls propagate the states and fulfill the assumption
of smap. To enable task-level parallelism when if’ is used
in conjunction with smap, the comp function propagates the
state for the branch that is not executed first. This unblocks
the local states such that a consecutive smap computation
executing this branch can proceed.

This completes the construction of our implementation of
the core of STCLang based on the state-dependency execution
order. We now extend this core to implement type-safety
for state threads and later to show how STCLang supports
FRP-style computations.

3.3 Type-safety for state threads
Wewish to make state threads type-safe, i.e., the type system
should verify that the state used in a state thread has the
proper type. In order to do so, we create a single function
that takes the state and the state thread as its argument and
lifts it into a STCLang computation:
1 liftST :: Typeable s
2 => s -> (a -> StateThread s b) -> STCLang' a b

This function provides type-safety for state threads by en-
capsulating the state type s. It can be implemented easily
using a state monad that collects the local states, builds the
global state list and the STCLang computation:
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1 data CollSt = CollSt { stStates :: [S] }
2 type STCLang' a b =
3 forall m. STCLang m => State CollSt (a -> m b)

The rest of the implementation is a straightforward usage of
the state and STCLang monad functions:
1 liftST localState stateThread = do
2 l <- state $ \s -> ( length $ stStates s
3 , stStates s ++ [toS localState])
4 pure $ liftWithIndex l stateThread
5

6 runSTCLang' :: STCLang' a b -> a -> (b, [S])
7 runSTCLang' langComp a = do
8 (comp,gs) <- runState langComp []
9 runSTCLang (comp a) $ stStates gs
10

11 smap' :: STCLang' a b -> STCLang' [a] [b]
12 smap' comp = smap <$> comp

3.4 Formal Foundations
To compose state threads formally, we rely on the category-
theoretic notions of objects, products and morphisms. The
state objects sn , where n denotes an index in a fixed index set
N , are objects in a suitable category. Then, the global state
list is taken to be the product sN =

∏
n∈N sn . Other state

objects can be formed for any subset I ⊆ N , i.e. sI =
∏

n∈I sn .
The state threads are morphisms, and associated with each
state thread is a state object sI with I ⊆ N . Assume that f
and д are state threads with associated state objects sI and s J ,
respectively. While composing f and д in Haskell’s State
monad requires that the state objects sI and s J be the same
(i.e. I = J ), STCLang can compose state threads for which
I , J . The basic idea that enables this is to lift state threads f
and д to morphisms that formally operate on the global state
sN . However, only the state object sI is truly modified by f ,
while the identity is applied to sN \I , and analogously for д
and s J . This equips our model with well-defined composition
for state threads. The definition of smap can also be made
precise in category-theoretic terms as a functor smap. This
is done in the supplementary material [14], alongside an
explanation of how different types of parallelism can be
formally extracted.

4 FRP-style programming with STCLang
We motivated STCLang with applications that are currently
written in a functional reactive programming (FRP) style.
This section investigates how hard it is to implement FRP
concepts such as signals and filters in STCLang.

Signals/IO FRP applications are centered around IO. As
such, we add IO to our implementation from Section 3:
1 type StateThread s b = StateT s IO b
2

3 runStateThread :: StateThread s b -> s -> IO (b,s)
4 runStateThread = runStateT
5

6 type STCLang' a b =
7 forall m . STCLang m => StateT CollSt IO (a -> m b)

FRP programs often implement a dataflow graph that is struc-
turally similar to the one in Figure 7a. The three sources s0,
s1, s2 receive data via IO operations. Original FRP classified
these sources into behaviors and discrete events [41]. These
types were eventually collapsed into the abstraction of a
signal and an associated stream thereof [33]. The signals
flowing along the edges of the graph eventually get merged
and the result is often emitted via an IO operation, such as for
example the alarm message in our earthquake application.
Figure 7b shows the equivalent STCLang dataflow graph.

We model infinite lists, i.e., streams, with generators [2].
Our generator implementation is relatively standard and
therefore omitted. So is the extension of smap to take such a
generator instead of a list:
1 smapGen :: STCLang m
2 => (a -> m b) -> Generator IO a -> m [b]
3 smapGen_ :: STCLang m
4 => (a -> m b) -> Generator IO a -> m ()

In FRP, a signal function has type Signal a -> Signal b, or
simply SF a b, cf. [33]. It essentially denotes a node in the
dataflow graph where Signal a = Time -> a states that this
function gets re-executed over time. In STCLang, we do not
need this abstraction. Our smap function provides these se-
mantics. All we need is a type for the set of events that may
occur:
1 data Event events

We use an open union in order to provide an extensible but
type-safe abstraction [28]. Individual sources are initializable
generators:
1 type Source a = IO (Generator IO a)
2 s0≤i≤2 :: Source ai

We now build some machinery to make the usage of these
abstractions more convenient. In the end, the programmer
can write the following code to implement the dataflow
graph from Figure 7b:
1 frp = do
2 s0' <- liftSource s0 init0
3 s1' <- liftSource s1 init1
4 s2' <- liftSource s2 init2
5 return runSources $ \event -> do
6 x <- s0' event
7 y <- s1' event
8 z <- s2' event
9 ... -- computation in the graph
10 return ()

The essential aspect is that we separate the IO operations
from the state aspect in the sources. liftSource creates a
state thread for the source that keeps the last event value as
its state:
1 liftSource :: (Typeable a, a ∈ events)
2 => Source a -> IO a -> STCLang' (Event events) a
3 liftSource s0 init = do
4 idx <- state $ \s ->
5 ( length $ sources s
6 , s {sources = sources s ++ [toS <$> s0]})
7 liftST init $ \(i, s) ->
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(a) A typical FRP dataflow graph.
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(b) The corresponding STCLang dataflow graph.

Figure 7. An FRP dataflow graph and its counterpart in STCLang. The STCLang graph decouples IO from state. A generator
performs the IO operations for all sources while the original source nodes s0, s1 and s2 only store the previous state. If s0
receives an Event0 from its IO source, then it updates its state accordingly and outputs its new state. Otherwise, it emits its
current state, i.e., the last event it stored.

8 -- state thread for the source
9 if i == idx
10 then do let my = fromS s
11 put my
12 pure my
13 else get

Every event is input to all of these state threads. For Event0,
state thread s0 stores the value of the event and emits it. The
other source state threads s1 and s2 observe that the event
was not from their source and emit the value from their state.
runSources bundles all IO operations of the sources into a
concurrent generator:
1 runSources :: STCLang' (Event events) a -> IO ([a], [S])
2 runSources comp = do
3 (comp', s) <- runStateT comp mempty
4 signalGen <- boundleSources $ sources s
5 runSTCLang (smapGen comp' signalGen) $ states s

In order to do so, STCLang’ collects the sources in addition
to the states:
1 data CollSt events = CollSt {
2 stStates :: [S]
3 , sources :: [Source' events] }

The Source' open union type allows us to store different types
of sources in a single list.

Filters Filters conditionally forward data. STCLang incor-
porates conditionals (if’), which allows us to define a filter
function with the following type:
1 filter init cond comp = do
2 g <- liftST init
3 -- state thread for conditional emission
4 $ maybe S.get (\i -> S.put i >> pure i)
5 -- the filter computation
6 return $ \item -> do
7 success? <- cond item
8 i <- if' success?
9 (pure Nothing)
10 $ Just <$> comp item
11 g i

The function creates a new STCLang computation (Lines 6–
11) that applies comp when the check succeeds. When the
check fails, it emits the last seen value. This is semantically
equivalent to stopping the evaluation.

We implemented basic FRP concepts on top of STCLang
with only a few simple extensions. The resulting program-
ming framework lets us write concise code and enables paral-
lel execution. Our FRP framework can be seen as push-based
and avoids glitches naturally. An investigation of how this
FRP implementation can be optimized is left for future work.

5 Evaluation
In this section, we evaluate STCLang and the simple FRP
framework described in the previous section. For this, we
compare against monad-par and LVars [24], an extension
to monad-par that enables pipeline parallelism, in addition
to a suite of parallel data-structures. We evaluate on mi-
crobenchmarks for the dataflow graphs from Figure 6, orig-
inal monad-par benchmarks and study how GHC handles
different types of state threads by adding state into a bench-
mark. Finally, we evaluate our FRP framework in the context
of data streaming systems.

We ran all experiments on an Intel Xeon i7 (2.6 GHz) with
2 sockets, 6 cores per socket and support for hyperthreading
enabled. Our Haskell code was compiled with GHC version
8.6.5. If not stated otherwise, we executed the benchmarks
using Haskell’s microbenchmarking library criterion5 and
report speedup over sequential versions.

5.1 Microbenchmarks
To study the performance overhead introduced by STCLang,
we constructed three simple programs for (monadic) compo-
sition, applicative and conditionals. Figure 8 lists the versions
for STCLang and monad-par underneath the associated re-
sults. The state threads in the STCLang versions are pure,
i.e., they do not use state to compute a result. The code
for the computations (w) is from the original work that in-
troduced LVars [24]. The results show no significant over-
head for STCLang compared to monad-par. For (monadic)
composition in Figure 8a, STCLang even yields slightly bet-
ter results for high thread/core counts. We attribute this
to the additional pipeline parallelism that our construction
adds. The aspect becomes only visible on top of the exist-
ing data parallelism. In the case of applicative (Figure 8b),

5http://www.serpentine.com/criterion/
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Figure 8.Microbenchmark results comparing STCLang with monad-par.

the graph shows a super-linear speedup for monad-par, e.g.,
with 13 threads the performance increases by a factor of
20. This is because the computation in w is actually pure,
in the case of monad-par implemented as a simple (pure
. f). GHC inlines this definition and is able to apply com-
mon subexpression elimination to the resulting (f x) val-
ues. In the case of STCLang we use a syntactically more
complex liftWithIndex idx f, which GHC cannot triv-
ially optimise. To verify this analysis, we annotate w with
NOINLINE to prevent this optimisation. The none-inlined
version has the same performance as STCLang. STCLang
trades such optimizations in favor of the enhanced paral-
lelism of liftWithIndex. Allowing such optimizations for
state threads without side-effects is certainly an interesting
future research direction. The performance on conditionals
(Figure 8c) shows again similar speedup results for both ver-
sions. The associated code snippets show that smap is just
as simple to use as the parMap combinator from monad-par
in a stateless scenario. Adding state into the computation is
simple in the case of STCLang but not so in monad-par.

5.2 Benchmarks
STCLang essentially introduces only a single new combina-
tor: smap. We demonstrate its expressiveness both for map-
ping and folding in a set of benchmarks that we converted
from monad-par versions [30].

The first two are matrix multiplication and an implemen-
tation of the Black-Scholes algorithm that models financial
contracts. Both are straightforward applications of data par-
allelism, i.e., parMap and smap, as shown in the previous
experiments. As such, the speedup is nearly the same, as can
be seen in Figure 9. Note that for matrix multiplication there
is in fact a slowdown. This comes as no surprise. We com-
pare against an essentially sequential version which is highly
optimized by GHC and thus also exploits SIMD parallelism.
We demonstrate the expressiveness of smap using the

next two benchmarks: the computation of the Mandelbrot

set and the sum of the values of Euler’s function up to a
given bound. Such computations are typically implemented
using a divide-and-conquer strategy. At first, the input data
is split into even-sized chunks such that intermediate results
can be computed in a data parallel fashion. Afterwards, the
intermediate results are folded into a single one. The essence
of this is captured in the MapReduce programming model
that was very successfully applied to program parallel appli-
cations to crunch big data on a cluster [11]. The monad-par
implementations of Mandelbrot and SumEuler are based on
the combinator with the same semantics6:
1 mapReduceThresh threshold (InclusiveRange min' max')
2 fn binop init
3 = loop min' max'
4 where
5 mapAndCombine min max = -- mapper and combiner
6 let mapred a b = do x <- fn b;
7 result <- a `binop` x
8 return result
9 in foldM mapred init [min..max]
10 loop min max
11 | max - min <= threshold = mapAndCombine min max
12 | otherwise = do
13 let mid = min + ((max - min) `quot` 2)
14 rght <- spawn $ loop (mid+1) max
15 l <- loop min mid
16 r <- get rght
17 l `binop` r -- reducer

The code for mapAndCombine is almost a literal translation
of the execution model for the mapper and the combiner
in the MapReduce programming model. The reduction is
then defined at Line 10. The mapper-combiner pair and the
reductions are performed in parallel because the code spawns
parallel tasks until a threshold is reached. It is immediately
clear how smap supports the mapper-combiner part and, as
it turns out, the reduction is just as straightforward:

6https://github.com/simonmar/monad-par/blob/master/monad-par-
extras/Control/Monad/Par/Combinator.hs
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1 mapReduceThreshSTC threshold (InclusiveRange min' max')
2 fn binop init
3 = do
4 (_, [reduceState]) <- runSTCLang mapReduce
5 $ chunkGenerator min'
6 return $ fromS reduceState
7 where
8 mapReduce = do
9 reduceST <- liftST init reduce
10 return $ smapGen
11 ((pure . mapAndCombine) >=> reduceST)
12 reduce v = S.get >>= (S.put . (`binop` v))
13 chunkGenerator min
14 | max' - min <= threshold = yield (max, min)
15 finish
16 | otherwise = yield (newMin, min)
17 (chunkGenerator newMin)
18 where newMin = min + threshold

Here mapAndCombine is a pure version of the code in the
monad-par version. We essentially implement the fold with
a state thread that folds over its inputs. Its state is the final
result of the computation. Note that we effectively com-
bine pipeline with data parallelism. The chunkGenerator
pipelines chunks to mapAndCombine, which executes in a
data parallel fashion because it does not use state. Its inter-
mediate results are again pipelined to the reduce function.

The STCLang version of Mandelbrot produces speedups on
par with the monad-par version in Figure 9c. In fact, we see
a slight benefit again for STCLangwhen core counts are high
due to the pipelined execution. For the SumEuler computa-
tion in Figure 10, monad-par applies parMap and then sums
the results sequentially. We compare two different STCLang
versions. The first version (stc) uses the mapReduce pattern
to perform the addition in pipelined fashion. The second
one (sum <$> stc) mimics the monad-par implementation.
Here, the mapReduceSTC approach (without a range) does
not provide the best results. The computation in the reduce
phase does not amortize the additional cost incurred by pass-
ing along the reduction state in IVars. Most likely the sum
function is already very highly optimized by the GHC.

5.3 GHC Effects
In this evaluation experiment the test program is the com-
position pipeline from the first microbenchmark executed
with smap:
1 comp :: (Float -> State Float Float)
2 -> [Float] -> [Float]
3 comp stateThread coll =
4 runSTCLang (smap (f >=> g) coll)
5 [toS (4.0 :: Float), toS (3.0 :: Float)]
6 where
7 f = liftWithIndex 0 stateThread
8 g = liftWithIndex 1 stateThread

Both pipeline stages, f and g, execute the same state thread.
The state thread is a parameter to the computation such that
we can compare the three variants listed underneath the
associated plot in Figure 12. The first state thread is in fact

a pure computation. The second one uses its state only for
reading. Both of these state threads actually do not perform
any side-effects and as such would be applicable to a data
parallel execution. The last state thread reads its state, uses it
in its computation and then updates it. Function w is again the
compute-intensive calculation from the LVars benchmark.

The results in Figure 12 plot the speedup over the sequen-
tial version for the three types of state threads. The state
thread that has side-effects to its state has a speedup factor
of 2×, i.e., it exploits the pipeline parallelism. More inter-
estingly, the other two types of state threads experience an
almost linear speedup. The stages of the pipeline execute
in a data-parallel fashion. This is due to the fact that GHC
transformations apply not only to state threads but to the
whole code in liftWithIndex. For reasons of laziness, GHC
transforms this code such that state is handled first and then
the rest of the computation is performed. This has an inter-
esting cascading effect. When the state is put into an IVar,
monad-par schedules the task that waits on this IVar on the
same thread to also benefit from data locality. The contin-
uation of the computation is put as another task into the
scheduling queue. As such, the computation first performs
all the state plumbing and then executes the remaining com-
putations in parallel. That is, the optimizations in the GHC,
the work-stealing scheduler of monad-par and our use of it
in STCLang seem to harmonize very well with each other.

5.4 Pipeline Benchmarks
Out-of-the-box, monad-par does not provide support for
pipeline parallelism. LVars add this capability [24]. In essence,
LVars consist of two parts: a lattice-based data structure and
event handlers that fork a computation on part of the data
structure. STCLang embodies pipelining implicitly via its
smap construction and in terms of generators.7
The use case in the LVars paper was a traversal of a con-

nected component (in a larger social media graph), where a
function is applied once to each component. The STCLang
program is as simple as
1 smapGen work $ generator w connectedComponent

We isolate the pipeline parallelism effect for LVars using a
lock in the (consuming) work function to synchronize the
event handlers. This is not necessary for STCLang. We simply
state that work is a state thread that reads and writes state.
The computation performed is again the w function from the
original work on LVars that we already used in the previous
experiments. To create different loads in the pipeline, we
also let the generator perform the w function.

In Figure 11 we study the scalability of pipeline parallism
in STCLang compared to LVars, as well as the overhead and
the influence of a disbalanced pipeline on the speedup. We
first balance the work performed in the generator and the

7The work on LVars eventually found the same generator abstraction for
pipelining [32].
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Figure 9. Speedup results for selected benchmarks. The first two benchmarks apply data parallelism while the third uses
mapReduceThresh.
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Figure 10. SumEuler with different STCLang versions.

consumer, i.e., the w function and consider the scalability.
We find that STCLang code scales slightly better than the
LVars code. This might also be due to the lock that we had
to use in order to simulate a stateful computation and iso-
late pipelining. It shows that building stateful but parallel
computations with STCLang is easier to program and pro-
vides better performance. This effect is also visible in the
speedup results for the overhead. Both experiments executed
a balanced pipeline, i.e., the generator and the work func-
tion executed the same computation per data item. In the
last experiment, we study the peak performance by varying
the computation in the work function. The corresponding
plot in Figure 11c shows that maximum performance can
only be achieved when the stages of the pipeline perform
the same amount of computation per data item. This is the
grand challenge when exploiting pipeline parallelism and an
interesting area for future work.

5.5 Data Streaming Benchmark
Unfortunately, we could not find a benchmark suite for FRP
programs to examine typical programs that build on the
dataflow abstraction, use state and expose pipeline paral-
lelism. Instead, we investigate the applicability of our FRP

abstraction to a real benchmark [7] for data streaming en-
gines such as Flink [6], Storm [38] and Spark [44]. They repre-
sent the state of the art for big data crunching. This area has
received rather little attention from the functional program-
ming community although it borrows a lot from functional
programming. The common programming abstraction across
these engines is a stream of data with higher-order functions
(map, filter, groupby etc.) applied to it. The associated com-
pilers translate these programs into dataflows and execute
them pipeline and data parallel. Special higher-order func-
tions allow to specify stateful computations. For example,
the Flink program of the benchmark writes as follows:
messageStream.rebalance()

.flatMap(new DeserializeBolt())

.filter(new EventFilterBolt())

.<Tuple2<String, String>>project(2, 5)

.flatMap(new RedisJoinBolt())

.keyBy(0)

.flatMap(new CampaignProcessor());

The most interesting function is the CampaignProcessor
which accumulates the stream values and emits the aggre-
gates to a database (Redis) every 10 seconds. The timer is
actually yet another I/O source. The stream-based program-
ming model does not allow to define more than a single I/O
source. As such, the programmer has to mix the streaming
model with threads and locks to implement such graphs.
With STCLang and our FRP programming model from Sec-
tion 4, we can easily implement these semantics.
1 streamBench = do
2 -- allocate sources and state threads
3 redisJoin <- liftST rjState redisJoinST
4 processCampaign <- liftST pcState processCampaignST
5 timerSig <- liftSource initialTime timer
6 msgSig <- liftSource kafkaState kafkaReader
7 -- compose the graph
8 filteredProcessor <-
9 filterM evFilterFunc
10 (project >=> redisJoin >=> keyBy 0)
11 return $\src ->
12 timerEv <- timerSig src
13 msgEv <- msgSig src
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Figure 11. Experiments of the pipeline benchmark. We compare against LVars, which were initially introduced to support
pipeline parallelism in monad-par. LVars event handlers do not support state and as such we used a lock to isolate the
pipeline-parallel effect.
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Figure 12. Pipeline and data parallelism in a simple 2-stage
pipeline for different types of state threads. Note that the
theoretical maximum speedup for a 2-stage pipeline is 2.

14 procInput <-
15 if' (evCheck timerEv)
16 (Right <$> do
17 msg <- pure $ deserialize msgEv
18 join <$> filteredProcessor msg)
19 (pure $ Left timerEv)
20 processCampaign procInput

This makes the case that our programming model is a good
fit over state-of-the-art programming models in this type of
big data processing systems.
Figure 13 visualizes the results of executing the bench-

mark. The execution does not scale with increasing num-
ber of cores. In fact, performance degrades when adding
cores/parallelism to the execution. We believe that the rea-
son for this is the work-stealing scheduler that underpins
monad-par. It does not have a notion of output-favored
scheduling known from data streaming systems. This was
not a problem in our LVars benchmark because the genera-
tor marked the first stage of the pipeline and only smapGen
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Figure 13. Early results for the data streaming benchmark
from [7] ported from Java to Haskell/STCLang.

spawned tasks for the second stage of the pipeline. As such,
there were only tasks from the state thread passed to the
monad-par scheduler. In the data streaming benchmark, there
are various state threads in the pipeline and some of them
even perform I/O (not only inside the signal sources). We
also noticed that even the sequential version is orders of
magnitude slower than an execution with Storm. These pre-
liminary results open up new research directions for the
functional programming community. On the other hand, it
is also a chance for the big data processing community to
gather new concepts. One of them is certainly the STCLang
programming model from this paper.

6 Related Work
We compare related work on state threads and arrows.

State Threads There are various approaches to introduc-
ing implicit parallel programming [4, 19, 39], but they all
work on pure programs only. We are unaware of an approach
that uses the notion of a state thread as the foundation for
reasoning about parallelism in a program.



Haskell ’19, August 22–23, 2019, Berlin, Germany Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo Castrillon

In their seminal paper [25], Launchbury and Peyton-Jones
already noticed the appeal in using state threads as the foun-
dation for parallelism. They also noted that in order to in-
troduce parallelism, the strictly sequential composition of
state transformers via thenST, i.e., bind in the monad im-
plementation, must be overcome. Therefore they introduced
the combinator interleaveST that splits the state into two
disjoint parts. In their state transformer diagrams, this is
visualized as a fork that creates two branches. Similar to our
dataflow graphs, branches are independent and as such can
be executed in parallel. They concluded: “The only unsatis-
factory feature of all this is that we see absolutely no way to
guarantee that the side effects performed in the two branches of
the fork are indeed independent.” To provide this guarantee,
our approach composes state threads instead of state trans-
formers. STCLang, in particular the formal model defined
in the supplementary material [14], generalizes over State

threads and ST threads. However, the presented STCLang im-
plementation so far only works for immutable State threads
because it passes the state along. This is not possible with ST

threads because they strongly encapsulate their state and do
not expose it. This monadic state encapsulation was proven
to be type-safe [26]. It is also strong enough to provide the
same deterministic guarantees (contextual equivalences and
refinements) as a “pure” language but for a runST-based ef-
fectful language with a global heap and in-place updates
(which the authors [37] refer to as STLang).

In response to Launchbury and Peyton-Jones’ idea of a
parallel combinator, Timany et al. [37] note: “It would be inter-
esting to investigate whether a variation of the parallelization
theorem studied for type-and-effect systems in [23] would hold
for such a language.” The theorem essentially states that two
expressions can only be executed in parallel if they write to
disjoint local regions and consult a shared region only for
reading. Informally, this closely maps to our definition of a
state thread (a, s) → (b, s), where a is located in the shared
and s in the local region.
This relation of runST-based languages and type-and-

effect systems was already noticed in [25]. The later for-
malization of Semmelroth and Sabry [35] shows that a trans-
lation exists from a language with a type-and-effect system
into a runST-based one. A compiler that performs such a
translation can use the formal model presented in the sup-
plementary material of this paper [14] to extract pipeline,
data and task-level parallelism.

Arrows Arrows and STCLang both construct a dataflow
computation. The similarity between the loop [34] function
in the ArrowLoop type class and state threads has recently
been discovered. [43] Arrows are inarguably very elegant
but the arrow functions rely on recursion, which makes it
challenging for a compiler to optimize arrow computations.
Much of the research on arrows essentially addresses this

drawback, leading to more and more sophisticated construc-
tions. STCLang builds on very simple and common concepts
such as state threads and the monadic bind interface. This
allows STCLang to directly take advantage of standard com-
piler optimizations and extract additional (data) parallelism.
Note also that arrow frameworks typically provide two

separate operators for sequential and parallel composition.
Sequential composition is monadic (>>=) while two arrows
can only be composed in parallel with >>>. Here, parallel com-
position ensures that IO can execute concurrently. STCLang
requires only the monadic bind and our STCLang implemen-
tation enables parallel execution beyond concurrent IO on
the foundation of smap.

7 Conclusion and Future Work
In this paper we introduced STCLang, a programming model
for composing state threads that captures enough informa-
tion about the structure of the state to allow for parallelism to
be exploited. This is unlike current approaches with monadic
composition, and enables the implementation of a dataflow-
based execution model in Haskell. Models like these are the
foundation for scalable parallel systems in many domains
such as databases, servers and embedded systems.

We have shown howwe implemented STCLang as amonad
in Haskell. For this, we defined the composition of state
threads and we have demonstrated how the fine-grain struc-
ture of the global state can be used to exploit different forms
of parallelism. The extension to support basic concepts from
functional reactive programming was straightforward. Our
evaluation shows that our programming model is just as
easy to use as state-of-the-art parallel programming mod-
els. STCLang advances over these programming models by
providing parallelism implicitly, exploiting pipeline paral-
lelism and enabling stateful computations. Our evaluation
shows that our implementation is simple enough such that
standard GHC optimizations for lazy evaluation can increase
parallelism out-of-the-box. Finally, we ported a state-of-the-
art benchmark for data streaming systems and showed that
STCLang resolves short-comings of the currently used stream-
based programming model.

Future Work So far, the state thread abstraction in our
implementation cannot support Haskell’s ST threads that
operate on mutable (instead of immutable) data. We argue
that it would be safe to pass mutable state along in the form
of an IORef. Linear state passing might be able to enforce this
safety [5]. Linear types in STCLang is certainly an interesting
topic for future work.
Our preliminary measurements from the data streaming

benchmark indicate that the work-stealing scheduler is not
a good fit for pipeline parallelism. This opens up a new
research direction for big data systems in the context of
functional programming languages and, more specifically to
monad-par, for pipeline-aware schedulers.
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