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Abstract
Tensor contraction is a fundamental operation in many algo-
rithms with a plethora of applications ranging from quan-
tum chemistry over fluid dynamics and image processing
to machine learning. The performance of tensor computa-
tions critically depends on the efficient utilization of on-chip
memories. In the context of low-power embedded devices,
efficient management of the memory space becomes even
more crucial, in order to meet energy constraints. This work
aims at investigating strategies for performance- and energy-
efficient tensor contractions on embedded systems, using
racetrack memory (RTM)-based scratch-pad memory (SPM).
Compiler optimizations such as the loop access order and
data layout transformations paired with architectural opti-
mizations such as prefetching and preshifting are employed
to reduce the shifting overhead in RTMs. Experimental re-
sults demonstrate that the proposed optimizations improve
the SPM performance and energy consumption by 24% and
74% respectively compared to an iso-capacity SRAM.

CCS Concepts • Computer systems organization →
Embedded systems; Tensor contractions; Energy consump-
tion; • Compilers→ Data transformation; Layout transfor-
mation; • Racetrack memory → Shifts minimization.

Keywords Compiler optimization, data transformation, ten-
sors, tensor contraction, matrix multiplication, racetrack
memory, preshifting, prefetching, embedded systems
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1 Introduction
Tensors are multi-dimensional data structures that general-
ize matrices. Consequently, tensor contraction generalizes
the operation of matrix multiplication. The abstractions of-
fered by tensors and their operations are central to many
algorithms in modern application domains such as signal and
media processing, computer vision, and machine learning.
Recent years have seen a surge in the emergence of new pro-
gramming languages and frameworks specifically designed
for the handling of tensor-based computations in these ap-
plication domains [1, 6, 26, 51], also targeting heterogeneous
platforms, e.g. [8, 19, 25]. In the age of the Internet of Things,
media processing, computer vision and machine learning
are key application domains for embedded devices, which
enable ubiquitous computing in environments that call for ex-
tremely low energy footprint and tiny form factors. Examples
of such environments are wearables and autonomous vehi-
cles or aircraft, where tensor processing on the device allows
for efficient inference in intelligent applications, cf. Figure 1.
The typical constraints on size, power and energy con-

sumption in the embedded domain make the design of sys-
tems for processing large multi-dimensional tensors espe-
cially challenging. Particular pressure is put on the design
of the memory subsystem, which must accommodate large
tensorial data structures within the given constraints. This
pushes traditional approaches and technologies to their lim-
its. For example, as was already observed in the mid-2000s,
traditional SRAM-based memory is power hungry and suf-
fers from severe leakage power consumption that is respon-
sible for up to 33.7% of the total memory energy consump-
tion [20, 21].
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Figure 1. Applications domains for embedded systems in
the Internet of Things.

A radically new approach to the design of on-chip mem-
ories and the memory hierarchy is offered by non-volatile
memories (NVM). One particularly promising NVM technol-
ogy is the spin-orbitronics-based racetrack memory (RTM),
which is more reliable and has lower read/write latency than
alternative NVM technologies [43, 44]. Moreover, RTM is
very energy-efficient and has ultra-high capacity, which is
why it is particularly interesting for deployment in embed-
ded devices that process large tensors.
In this paper we propose and analyze data layouts and

architecture support for optimizing the important tensor
contraction operation for RTM-based scratch-pad memory
(SPM). Unlike conventional memories, a single memory cell
in RTM stores data in a tape-like magnetic nanowire called
track. Each track is equipped with a read/write port, and
accessing data on a track requires shifting and aligning it
to the port position. If the programmer or compiler does
not manage data layout judiciously, additional shifts become
necessary. The data layout we propose in this paper asymp-
totically halves the number of shifts required for tensor con-
tractions. As our analysis shows, this halving of the number
of shifts is in fact necessary to give RTM a competitive edge
over SRAM-based SPM.

Specifically, this paper makes the following contributions.
1. For tensors that fit entirely into the SPM, we derive a

data layout that reduces the number of shifts necessary
for a tensor contraction to the absolute minimum.

2. We discuss how contractions of large tensors are han-
dled by processing tiles of the tensors in SPM.We show
how, in the presence of tiling, the number of shifts can
also be reduced to the bare minimum by switching the
data layout when brining new tiles into the SPM.

3. Our simulations show that the proposed data layout
for tensors in the SPM, paired with suitable architec-
ture support, is required to outperform SRAM in terms
of latency. This also reduces the SPM energy consump-
tion by 74%.

We also discuss how languages and compilers can support
the generation of efficient code and suitable data layouts for
tensor contractions with RTM-based SPM.

The rest of the paper is organised as follows. Section 2
gives a brief overview of the RTM technology, the SPM layout
and the tensor contraction operation. Section 3 discusses how
various data layouts impact the overall shifting overhead
and presents the best data layout for tensor contraction.
Section 4 provides a qualitative and quantitative comparison
of both the naive and the proposed data layouts with SRAM.
Section 5 discusses the state of the art and Section 6 concludes
the paper.

2 Background
This section briefly explains the working principle and ar-
chitecture of racetrack memories. In addition, it provides
background on the tensor contraction operation, layout of
scratch-pad memories and their placement in embedded sys-
tems.

2.1 Racetrack Memory
Racetrack memories have evolved significantly over the last
decade. Since their conception in 2008, RTMs have made
fundamental breakthroughs in device physics. In RTM ver-
sion 4.0, several major impediments have been eliminated
and improvements in device speed and resilience have been
demonstrated [44].

Unlike in conventional memories, a single cell in RTM is a
magnetic nano-wire (track) that can have up to 100 magnetic
domains where each domain represents a bit. Domains in a
nano-wire are separated by magnetic domain walls (DWs).
The track can be placed vertically (3D) or horizontally (2D)
on the surface of a silicon wafer as shown in Figure 2. While
the vertical placement of tracks achieves the storage den-
sity of today's magnetic disk drives, it faces several design
challenges. In the horizontal configuration, the cell size can
be much smaller than the smallest memory cell today. With
state-of-the-art materials, the RTM cell size can be 1.5 F2 com-
pared to 120–200 F2 in SRAM and 4–8 F2 in DRAM [37, 52].

Ish

Domain wall
Access port

Ish

Horizontal racetrack

V
ertical racetrack

IshIsh

Figure 2. RTM horizontal and vertical placement

The access latency of RTMs depends on how quickly
DWs inside a wire can be moved when a shift current is
applied. In the RTM 1.0, the maximum DW velocity reported
was 100m s−1 [43]. With the development of new structures
where a magnetic film is grown on top of a heavy metal, the
velocity of DW increased to up to 300m s−1 [36]. However,
a major drawback of these designs is that the magnetic film
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is very sensitive to external magnetic fields. They also ex-
hibit fringing fields, restricting closer packing of DWs in the
nano-wire. RTM 4.0 eliminates these impediments by adding
an extra magnetic layer on top, which fully compensates
the magnetic moment of the bottom layer. Consequently,
the magnetic layer does not exhibit fringing fields and is
insensitive to external magnetic fields. Moreover, due to the
exchange coupling of the two magnetic layers, the DWs
velocity can reach up to 1000m s−1 [44, 62].

2.2 Scratch-Pad Memory
Scratch-pad memory is a faster on-chip memory, usually
based on SRAM. Compared to hardware-managed on-chip
caches, the SPMs, which are managed by software (i.e. by
the programmer or compiler), offer a number of advantages.
SPMs have relatively simple architecture and do not require
the complex peripheral circuitry of caches; saving both area
and energy. SPMs do not need any tag comparison, making
access to the on-chip memory faster. Particularly in the em-
bedded domain, SPMs perform better than caches because
embedded applications often have regular memory access
patterns. With SPMs, it is very easy to efficiently choreo-
graph the data movement between the on-chip and off-chip
memories. This also enables better predictability of the ap-
plication timings, a key feature of embedded systems.
Figure 3 shows a typical embedded system architecture

with the address space partitioned between the off-chip mem-
ory and the SPM. Typically, the off-chip memory is accessed
via cache. However, in this work we are only interested in
the data layout in SPM and the data movement between the
off-chip memory and SPM. Therefore we drop the on-chip
cache from our design consideration. We assume that scalar
variables can be stored in registers and only focus on the
tensor layouts in SPM. SPMs have been successfully used
already in the design of accelerators for machine learning,
e.g., in [7].

CPU core

Off-chip memory 

       interface

Off-chip memory (DRAM)

Address space

Data
Control signals

Instruction memory

  Scratch-pad
memory (RTM)

Figure 3. System architecture

Figure 4 shows the detailed SPM architecture. Since the
typical SRAM-based SPMs have small capacity [7], we con-
sider a comparable 48 KiB SPM which is divided into three
banks. Each bank stores one tensor and is made up of 64
domain wall block clusters (DBCs). A DBC is a group of w
tracks with each track storing n domains. Similar to [56],
we assume that eachw−bit value is stored in an interleaved

fashion across the w tracks of a DBC and that the tracks
in DBC can be moved together in a lock-step fashion. For
this work, we considerw equals 32 and n to be 64. This im-
plies that each bank in the SPM can store a 64 × 64 tensor.
Larger tensors can be partitioned into tiles, as explained in
Section 3.4.
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Figure 4. Architecture of the proposed RTM-based SPM

2.3 Tensor Contraction
Tensors are multi-dimensional data structures. Special cases
of tensors are vectors (1-dimensional tensors) and matrices
(2-dimensional tensors). Matrix-vector and matrix-matrix
multiplication are low-dimensional instances of the more
general operation of tensor contraction. To introduce tensor
contractions, let us consider the example of a 5-dimensional
tensor A and a 3-dimensional tensor B. Five indices are re-
quired to access an entry in A, and the entry at indices
i1, i2, i3, i4, i5 is denoted as Ai1i2i3i4i5 . Analogously, Bi6i7i8 is
an entry in the tensor B, at indices i6, i7, i8. Each index can
take values in a fixed integer domain, say iα ∈ {1, . . . ,Mα }

for α = 1, . . . , 8. The Mα are the dimensions of the tensors
A and B. That is, A has dimensionsM1,M2,M3,M4,M5, and
B has dimensionsM6,M7,M8. An example contraction of A
and B along two dimensions is the following sum-of-products
that yields a tensor C ,

Cj1 j2 j3 j4 =

M5∑
n=1

M2∑
m=1

Aj1mj2 j3n · Bj4mn . (1)

Here the contraction is over the dimensions indexed withm
and n. For this contraction to make sense, certain dimensions
of A and B must match. Specifically,M2 = M7 andM5 = M8
must hold. In other words, the pairs of dimensions that are
indexed withm and n, respectively, must match. The tensor
C that results from the contraction in Equation (1) then is
4-dimensional, with dimensionsM1,M3,M4,M6.

Equation (1) can be rearranged to emphasise that tensor
contraction is indeed a generalized version of matrix multi-
plication. To this end, let Ã, B̃ be tensors that are obtained
from A, B by permuting indices as follows,

Ãi1i3i4i2i5 = Ai1i2i3i4i5 ,

B̃i7i8i6 = Bi6i7i8 .
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The same tensorC as in Equation (1) is obtained by contract-
ing Ã and B̃ as follows,

Cj1 j2 j3 j4 =

M5∑
n=1

M2∑
m=1

Ãj1 j2 j3mn · B̃mnj4 . (2)

If indices are further arranged into groups k1,k3, l such that
k1 = (j1 j2 j3), k3 = (j4), and l = (mn), then C can be written
as

Ck1k3 =

M2 ·M5∑
l=1

Ãk1l · B̃lk3 . (3)

Equation (3) is readily recognized as matrix multiplication.
Reorganizing the tensor contraction from Equation (1)

into the form of matrix multiplication is a standard trick that
is commonly referred to as TTGT, e.g. [49]. The key problem
with TTGT is that the reorganization of the original ten-
sors A, B into Ã, B̃ requires costly transposition operations,
i.e. costly changes of data layout. Moreover, the need for the
new tensors Ã, B̃ in TTGT doubles the memory footprint
of tensor contraction. In the presence of SPM, the copying
of tensors to the SPM is necessary anyway before the con-
traction operation itself can be carried out. This offers an
opportunity for hiding the latency of transposition, provided
transfers between off-chip memory and the SPM have uni-
form latency and can be carried out with a stride1.

3 Data Layout for Minimal Shifting
In this section, we explain the impact that data layout and
access order in RTM-based SPM have on the shifting over-
head. We move from a naive layout to an optimized layout by
successively removing unnecessary shifts that do not do any
useful work. To process large tensors in the SPM, they must
be broken up into tiles. Switching between tiles generally
comes with a latency but also offers further opportunities for
reducing the number of shifts by overlapping data transfers
and computation, and for latency hiding by prefetching.

3.1 Overview
The operation we implement for SPM is tensor contraction
in the form specified by Equation (3). If the dimensions of
tensors Ã, B̃ are very small, these tensors can fit entirely in
the SPM. We focus on this situation in Sections 3.2 and 3.3,
deriving an optimized data layout and access order for a
minimal number of shifts.
However, in the relevant application domains of media

processing and machine learning, tensors are typically large
to begin with. Even if one starts out with moderately sized
tensors, after grouping dimensions as in the derivation of
Equation (3), the resulting matrices Ãk1l , and B̃lk3 will have
large dimensions. To still carry out tensor contraction with

1 One typically speaks of gather and scatter accesses to memory when
referring to reads or writes with a stride.

a fixed-size SPM, the tensors involved must be tiled [39] (or
blocked [2]).
We assume that the SPM can fit three quadratic n × n-

matrices. Then, the tensors Ã, B̃, and C must be divided into
tiles of sizen×n. To ease the discussion of tiling, we introduce
new labels for the dimensions of Ã, B̃, and C in Equation (3):

dimensions of Ã : N1, N2

dimensions of B̃ : N2, N3

dimensions of C : N1, N3

We further assume that n evenly divides these dimensions,
i.e. that there are natural numbers T1,T2,T3 such that N1 =

T1 ·n,N2 = T2 ·n, andN3 = T3 ·n. If this is not the case initially,
one can always pad Ã, B̃, and C with rows or columns of
zeros, which does not affect the result of tensor contraction2.
The tensor C now consists of T1 ×T3 tiles, Ã of T1 ×T2 tiles,
and B̃ of T2 ×T3 tiles, and the tiled version of Equation (3) is

C(t1 ·n+k1)(t3 ·n+k3) =

T2−1∑
t=0

n∑
l=1

Ã(t1 ·n+k1)(t ·n+l ) · B̃(t ·n+l )(t3 ·n+k3) .

(4)

For a fixed value of t (in the outer summation), the inner
summation (over l) can now be carried out inside the SPM.
When the inner summation for fixed t has been completed,
new tiles of Ã and B̃ must be brought into the SPM. Specifi-
cally, the tiles for the next value of t , i.e. t + 1, are needed.
The tile of C stays in the SPM and accumulates the results
of the inner summations for each fixed t = 0, . . . , (T2 − 1).
The tile of C is written back to off-chip memory only after
all summations over t and l have been completed. At this
point, the evaluation of tensor contraction moves on to the
next entry in the rows or columns of tiles of C .
As we will see in Section 3.2, a sizeable portion of the

shifts in tensor contraction may be spent on resetting access
ports of DBCs to their initial positions for processing again a
row of Ã or a column of B̃ that has previously been traversed
in computing an entry ofC . While Section 3.3 discusses how
the portion of these shifts can be reduced, Section 3.4 demon-
strates how unnecessary shifts can be fully eliminated in
tiled tensor contraction. Section 3.5 explains that although
prefetching parts of the next tiles cannot further reduce the
number of shifts, it can hide latencies in the full tensor con-
traction operation. The same statement applies to preshifting,
cf. Section 3.6.

3.2 Naive Memory Layout
In a naive layout, the tensors Ã, B̃ and C are stored in RTM
in their order of access. Specifically, tensor Ã is accessed
row-wise and is stored in the RTM with each DBC storing
one row. Similarly, tensor B̃ is accessed column-wise and
is stored column-wise in DBCs. The resultant tensor C is
2This is because contraction is a linear operation.
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computed and stored row-wise. Figure 5 sketches this layout,
which is assumed to be the starting point for the tensor con-
traction operation. All access ports of all DBCs are aligned
with the first entries in rows (for Ã andC) or the first entries
in columns (for B̃).
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Figure 5. Tensor contraction with a naive memory layout

To compute the entryC00 in the resultant tensorC , the first
row of Ã (stored in DBC-0) is multiplied with the first column
of B̃ (stored in DBC-n). More explicitly, Ã00 is multiplied
with B̃00 and both DBCs are shifted once so that the access
ports point to next elements Ã01 and B̃10 respectively. Next,
Ã01 and B̃10 are multiplied and the DBCs are shifted once
again. This continues until Ã0(n−1) and B̃(n−1)0 are reached
and multiplied. The blue arrows in Figure 5 demonstrate this
process that results in the entry C00 of the tensor C , which
is marked by a blue dot. At this point in time, each of DBC-0
and DBC-n have been shifted n − 1 times, resulting in a total
number of 2(n − 1) shifts. These shifts cannot be avoided as
they are required to access the entries in the first row of Ã
and the first column of B̃. Hence, we refer to these shifts as
compulsory shifts.

The access ports of both DBC-0 and DBC-n now point to
locations n − 1. Before computing C01, DBC-0 needs to be
shifted n− 1 times in order to align its access port to location
0, i.e. to the entry Ã00. These shifts do not perform any useful
work, and we call them overhead shifts. With these overhead
shifts, the total amount of shifts increases to 2(n−1)+ (n−1).
The exact same process is repeated to compute the remaining
n − 1 elements in the first row of tensor C . After computing
the last element (C0n−1) in the first row ofC , the port position
of DBC-0 is restored to position 0. Thus, the total amount of
shifts required for computing R0 in C is

Shifts′R0 = 2n(n − 1) + n(n − 1) , (5)

with the second term in the expression on the right hand
side representing the overhead shifts.
After computing the first row of C , the access ports of

all DBCs of tensor B̃ point to location n − 1. They must be
shifted back to location 0 before the computation of the next
row of C can start. This incurs n(n − 1) overhead shifts. The

updated sum of the total number of shifts then becomes

ShiftsR0 = 2n(n − 1)︸    ︷︷    ︸
compulsory shifts

+ n(n − 1) + n(n − 1)︸                  ︷︷                  ︸
overhead shifts

. (6)

Computing each of the remaining n − 1 rows of C incurs
the same amount of shifts, leading to the total number of
shifts required for contracting the n × n tensors Ã, B̃,

Total shifts′ = n · ( 2n(n − 1)︸    ︷︷    ︸
compulsory shifts

+ 2n(n − 1)︸    ︷︷    ︸
overhead shifts

) . (7)

For writing the entries of C , which result from the com-
putations, n(n − 1) compulsory shifts are needed. The same
amount of overhead shifts is required to reset the port posi-
tion to location 0 in all DBCs for tensor C . Adding these to
Equation (7) and expanding yields

Total shifts (naive) = 2n3 − n2 − n︸         ︷︷         ︸
compulsory shifts

+ 2n3 − n2 − n︸         ︷︷         ︸
overhead shifts

(8)

From Equation (8) it is clear that half of the total number
of shifts are overhead shifts. Thus, avoiding the overhead
shifts can improve the memory system’s performance by as
much as 2×.

3.3 Optimized Layout
The large proportion of overhead shifts in the naive layout of
tensors in the RTM occur due to the uni-directional accesses
of the tensors’ entries: rows of Ã are always accessed from
left-to-right and columns of B̃ from top-to-bottom. In this
section we eventually fully eliminate the overhead shifts by
laying out tensors in the RTM so that bi-directional accesses
become possible.

First, instead of always accessing R0 of Ã from left to right
to compute a new entry in the first row of C , we can access
R0 in a back and forth manner, and thus completely avoid
the overhead shifts for R0. Specifically, after computing C00,
the access port of DBC-0 is not reset to location 0. Instead,
C01 is computed by accessing the elements of R0 (in Ã) in
the reverse order. For this to produce the correct result, the
columnC1 of B̃ must be stored in reverse order in DBC-(n+1),
as depicted in Figure 6. Note that this way of computing C01
relies on the associativity of addition3.
The same procedure works for the computations of all

elements of C , provided the columns of B̃ are stored in DBC-
n to DBC-(2n-1) with alternating directions. Since the rows of
Ã are now accessed in a back and forth manner, no overhead
shifts are incurred for accessing Ã. However, the DBCs that
store the columns of B̃ must be fully reset after computing
each row of C , leading to a total of n(n − 1) overhead shifts
per row of C . The numbers of compulsory and overhead
3For floating-point numbers, associativity of addition is typically also as-
sumed when aggressive compiler optimizations are enabled with fast-math
compiler flags.

9



LCTES ’19, June 23, 2019, Phoenix, AZ, USA Asif Ali Khan, Norman A. Rink, Fazal Hameed, and Jeronimo Castrillon

C (Bank-2)

n

D
B

C
:2n

D
B

C
:2n+

1
D

B
C

:3n-1

R0

R1

Rn-1

C00 C01

n

R0

R1

Rn-1

D
B

C
:0

D
B

C
:1

D
B

C
:n-1

A00 A01 A0n-1

A10 A1n-1

An-1n-1

B (Bank-1)

C0 C1 Cn-1
DBC:n DBC:n+1 DBC:2n-1

B00

B10

Bn-10 Bn-11

A00 A01 A0n-1

compulsory shifts

B00 B10 Bn-10

compulsory shifts

overhead shifts

Ã (Bank-0)

B01

B11

Bn-11

~

Figure 6. Tensor contraction with partially optimized mem-
ory layout (note the layout of C1 in B̃ and the access order
of R0 in Ã)

shifts required for accesses to C are the same as in the naive
layout. Thus, the total number of shifts for the alternating
layout of columns of B̃ is

Total shifts (partial-opt) = 2n3 − n2 − n︸         ︷︷         ︸
compulsory shifts

+ n3 − n︸︷︷︸
overhead shifts

,

(9)
which one arrives at by subtracting the n2(n − 1) overhead
shifts for resetting the rows of Ã from the right hand side of
Equation (8).
The vast majority of overhead shifts in the previously

discussed alternating column layout of B̃ occurs when the
computation of one row of C has been completed and one
advances to the next row. At this point, all access ports for
the DBCs that store columns of B̃ point to the last entry in
each column. To compute the next row of C , the next row
of Ã, say R1, must be multiplied into the columns of B̃. The
access port for DBC-1 points to the first entry in R1 of Ã,
which necessitates that the access ports for the columns of B̃
(DBC-n to DBC-(2n-1)) be reset to point at the first entry of
the columns. However, this resetting of DBC-n to DBC-(2n-
1) can be avoided, if the next row of Ã is stored in reverse
order. Then, multiplication of R1 into a column of B̃ can
be carried out in a backwards fashion. This alternating row
layout for Ã is depicted in Figure 7, in combination with the
alternating column layout of B̃. The total number of shifts
is now comprised of the compulsory shifts and only those
n(n−1) overhead shifts that are needed to reset the DBCs for
the rows of C after the full contraction operation has been
completed, i.e.

Total shifts (opt) = 2n3 − n2 − n︸         ︷︷         ︸
compulsory shifts

+ n2 − n︸︷︷︸
overhead shifts

. (10)

Note in particular that no overhead shifts are required to
reset the DBCs for Ã, B̃ after completing the full tensor con-
traction. Since the rows of Ã and the columns of B̃ are tra-
versed in a back and forth manner, the access ports for their
DBCs point back to the first entries in the rows of Ã and
columns of B̃, respectively, exactly when the computation of

compulsory shifts compulsory shifts

Bn-11B01

B11

Bn-11

C (Bank-2)B (Bank-1)Ã (Bank-0) ~

Figure 7. Tensor contraction with the optimized memory
layout (note the layout of R1 in Ã and the access order of
columns in B̃)

the last entry inC has been completed. This reasoning relies
on n being even. In practice, n is actually a power of two, for
efficient utilization of address bits.

By comparing Equation (10) with the corresponding equa-
tion for the naive layout, i.e. Equation (8), we see that the
alternating row and column layout asymptotically cuts the
total number of shifts necessary to implement tensor con-
traction in half.

3.4 Contraction of Large Tensors
Wenowuse the optimized layout from the previous section to
optimize the number of shifts needed for contracting large
tensors that must be processed in the SPM tile by tile, as
explained in Section 3.1. Equation (3) says that each pair of
tiles from Ã and B̃ is contracted exactly as discussed in the
previous sections, where it was assumed that Ã and B̃ fit
entirely into the SPM. Equation (3) also says that each tile of
C is computed by accumulating the results of contracting a
row of tiles of Ã with a column of tiles of B̃. This is depicted
by Figure 8, where T1,T2,T3 are the respective numbers of
tiles in each dimension, as in Section 3.1.

A C

T2

B

T3

T
2 T
1

T3

T
1

Figure 8. Tile-wise tensor contractions (tile-size: n × n)

Based on Equation (10), the overall number of shifts needed
to contract all tiles of Ã with all tiles of B̃ is

Shifts′tiled = T1T2T3 ·
{
(2n3 − n2 − n) + (n2 − n)

}
. (11)

This accounts for resetting the access ports of the DBCs that
hold a tile of C after the contraction of each pair of tiles of
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Ã, B̃. What is not yet accounted for are the number of shifts
needed to bring new tiles into the SPM.

To copy a new tile of Ã or B̃ into the SPM, n(n−1) compul-
sory shifts are required. The same number of shifts is needed
to reset the access ports for the newly copied tile. The compu-
tation of each new tile ofC must start with a zero-initialized
tile. This initialization requires again n(n − 1) compulsory
shifts and n(n − 1) overhead shifts. After the computation
of a tile of C has completed, the tile must be copied back to
off-chip memory, incurring once again n(n − 1) compulsory
shifts and n(n − 1) overhead shifts. Bearing in mind that the
tensor C consists of T1T3 tiles, adding all of these shifts to
Equation (11) yields

Total shiftstiled =

T1T2T3 · (2n3 − n2 − n)
+T1T2T3 · 2n(n − 1)
+T1T3 · 2n(n − 1)

 compulsory
shifts

+T1T2T3 · (n
2 − n)

+T1T2T3 · 2n(n − 1)
+T1T3 · 2n(n − 1)

 overhead
shifts

Although the number of overhead shifts only grows quadrat-
ically with n, for a fixed n they can still accumulate to a
noticeable number. We eliminate them by judiciously laying
out tiles that are newly brought into the SPM. Instead of
restoring the positions of access ports to location 0 before
and after loading/writing each tile, the rows and columns of
tiles are loaded and processed in a back and forth manner,
completely analogous to our discussion in Section 3.3. This
completely removes the shifting overhead caused by tiling.
Furthermore, the initialization of a tile of C with zeros can
take place at the same time as the writing back to off-chip
memory of the previously computed tile. Thus, the final total
number of shifts required for tiled tensor contraction in the
RTM-based SPM is

Total shifts (opt)tiled = T1T2T3 · {2n
3 + n2 − 3n}

+T1T3 · {n
2 − n} . (12)

3.5 Hiding Tile-Switch Latency with Prefetching
For large tensors, as soon as the result of contracting the
current tiles of Ã and B̃ has been computed, these tiles need
to be replaced, requiring 2n2 off-chip reads. In addition, after
everyT2 tiles, the contents of the resultant tile ofC must also
be written back to the off-chip memory, incurring another
n2 off-chip writes. For the access latencies, let us assume that
the off-chip access latency, including the data transfer, is toff
and both the off-chip memory and the SPM are read/write
symmetric. The tile-switch latency then becomes

Tile-switch latency = β +

{
2n2 × toff , every tile ,
3n2 × toff , after every T2 tiles ,

(13)
where β represents the transfer initiation cost.

Since the off-chip latency toff is significantly higher than
the access latency of the SPM (cf. Tables 1, 2), the tile-switch
latency contributes significantly to the total latency and can
thus pose a serious performance problem.
To reduce the impact of the off-chip latency on the em-

bedded system’s performance, we can use compiler-guided
prefetching to overlap the off-chip access latency with the
computation latency. Specifically, as soon as the computation
of the first row in the resultant tile has been completed, the
first row of Ã can already be replaced with the elements of
the new tile. This replacement can happen while the process-
ing unit operates on the next row of Ã. Thus, the load latency
of Ã can be completely overlapped with the computation
latency. Since every element in the resultant tensor requires
n scalar multiplications and n − 1 additions, computation of
the entire row of the resultant tile provides sufficient time
for accessing n elements from the off-chip memory (accessed
in burst-mode).
When the computation of the last row of the resultant

tensor C starts, the first n − 2 rows in the next tile of Ã have
already been loaded into the SPM. The compiler can then
start prefetching the (n − 1)-th row of Ã and the columns
of the next tile of B̃. One new column of B̃ can be loaded
into the SPM after the computation of each entry in the last
row of C . After computing the last entry in the resultant tile
of C , the processing unit can immediately start multiplying
the first row in the next tile of Ã with the first column in
the next tile of B̃, without incurring any latency. At this
point, the compiler requests prefetching the last row of Ã and
last column of B̃ for the new tiles. This way, the significant
tile-switch latency is fully hidden by overlapping it with
computations. Note that the amount of off-chip accesses
remains unchanged.

3.6 Overlapping Shift and Compute Latency with
Preshifting

In Section 3.3 we described an optimized memory layout and
access order that incurs zero overhead shifts. In Section 3.5
we introduced prefetching to completely hide the tile-switch
latency (for off-chip memory accesses) by overlapping the
loading of tiles with the computation process. In this section
we explain how preshifting optimizes the access latency of
the on-chip RTM-based SPM.
Typically, SRAM-based SPMs have a fixed access latency

of one cycle. Since RTMs are sequential in nature, even with
the best memory layout, the DBCs in RTM-based SPM must
be shifted once before the next entry can be accessed. This
shifting typically takes one cycle, and another cycle is needed
to read out the next entry. Hence, the access latency of the
RTM-based SPM is 2 cycles.

Fortunately, in the case of tensor contractions, the access
pattern is known and the compiler can accurately determine
the next memory location to be accessed. We take advantage
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Figure 9. Overlapping DBCs shift latency with computation
(DBC X and Y store the elements of Ã and B̃ respectively)

of this and completely hide the shift latency by preshift-
ing, an operation that aligns the access ports of the active
DBCs with the memory locations to be accessed next. For
instance, when the processing unit is busy multiplying Ã00
with B̃00, both DBCs storing the current row and column are
preshifted to point to the next entries, i.e. Ã01 and B̃10. The
next memory request made by the program will ask for these
entries, and the ports will already be aligned to positions of
Ã01 and B̃10 in their respective DBCs. This effectively hides
the shift overhead and halves the SPM access latency, as
illustrated in Figure 9. Note that this does not interfere with
the prefetching operation which affects different DBCs.

3.7 Code Generation for Tensor Contractions
The memory layout and access order that we have identified
to reduce the number of shifts in tensor contractions can
be automatically generated by a compiler. This includes the
appropriate handling of tiling, and even the prefetching and
preshifting operations. The major complication in getting a
compiler to automatically generate efficient code for tensor
contractions is the detection of contractions in the program
source code. For programs written in a general-purpose lan-
guage, this is a non-trivial task: the way in which loop nests
and multi-dimensional tensor accesses are structured may
obscure the true nature of a tensor operation.

Previous work has suggested methods for detecting matrix
multiplication and, more recently, tensor contraction in pro-
grams written in general-purpose programming languages.
For the Fortran programming language, this is described
in [35]. A suggestion for detecting tensor contractions in
general-purpose languages has been made in [14], relying
on polyhedral methods for the analysis of loop nests [12].
To the best of our knowledge, no assessment exists of how
effective the described detection techniques are in detecting
contractions in real application domains such as signal and
media processing, computer vision, and machine learning.

Domain-specific languages (DSL), on the other hand, offer
an alternative approach that makes the nature of domain-
specific operations, such as tensor contraction, obvious to
the compiler or, more generally, to any code analysis. This
is achieved by making tensor contraction a primitive oper-
ation of the language, as is the case in virtually all DSLs
that are in wide-spread use in the area of machine learn-
ing [1, 6, 45]. In the form of MATLAB/Simulink, DSLs are
also commonly used in the signal-processing domain. Note
that the method for detecting matrix multiplication in [35] is
also applicable to MATLAB programs. New DSLs for signal
processing [46, 48] have recently been developed, in particu-
lar also for embedded applications [30].
In the area of scientific computing, DSLs for tensor oper-

ations have been in use for some time, e.g. [5]. Continued
interest and recent new developments in this area show
that DSLs for tensors are a practically relevant approach to
increasing programmer productivity and application perfor-
mance [26, 47].

4 Evaluation
This section describes our experimental setup. Based on this,
we compare the performance and energy consumption of
the optimized RTM-based SPM with that of the naive and
the SRAM-based SPM.

4.1 Experimental Setup
The architectural simulations are carried out in the racetrack
memory simulator RTSim [24]. The configuration details for
SRAM- and RTM-based SPM are listed in Table 1. Given that
access sequences are independent of data, we synthetically
generate memory traces for the naive and optimized layouts
and fed them to RTSim for the architectural evaluation.

Table 1. Configuration details for SRAM and RTM

Technology 32 nm
SPM size 48 KiB

Number of banks 3
Word/bus size 32 bits (4 B)

Transfer inititation cost (β) 30 ns
Off-chip latency 60 ns

Off-chip bus latency 2 ns
Number of RTM ports per track 1

Number of tracks per DBC in RTM 32
Number of domains per track in RTM 64

The latency, energy and area numbers for iso-capacity
SRAM and RTM are extracted from Destiny [38] and are
provided in Table 2. These values include the latency incurred
and the energy consumed by the row/column decoders, sense
amplifiers, multiplexers, write drivers, shift drivers (only for
RTM).
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For evaluation, we compare the following configurations:
• RTM-naive: The naive RTM-based SPM, cf. Section 3.2.
• RTM-opt: The optimized RTM-based SPM, cf. Section 3.3.
• RTM-opt-preshift (RTM-opt-ps): RTM-optwith preshift-
ing.

• SRAM: Conventional SRAM-based SPM.
We apply prefetching on top of all configurations to hide the
latency of off-chip accesses as explained in Section 3.5.

Table 2. SRAM and RTM values for a 48 KiB SPM

Memory type SRAM RTM

Leakage power [mW] 160.9 25.3
Write energy [pJ] 38.6 35.4
Read energy [pJ] 58.7 22.5
Shift energy [pJ] 0 18.9
Read latency [ns] 1.24 1.01
Write latency [ns] 1.17 1.38
Shift latency [ns] 0 1.11

Area [mm2] 0.84 0.24

4.2 Performance and Energy Evaluation
The main performance and energy consumption results of
our evaluation are summarized in Figure 11 and Figure 12
respectively. As depicted, our RTM-opt-preshift improves
the average performance by 1.57×, 79% and 24% compared
to RTM-naive, RTM-opt and SRAM respectively. Likewise,
the energy improvement translates to 23%, 8.2% and 74%
respectively.
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Figure 10. Number of shifts in the optimized layout for
different tensor sizes (normalized against naive)

4.2.1 Comparing RTM-naive and RTM-opt
Figure 10 compares the number of shifts incurred by the
naive and the optimized layouts. As highlighted, the opti-
mized layout (Section 3.3) approximately cuts the number
of shifts in half. Although for smaller tensors, the reduction
in shifts is less than 50% and the impact of overhead shifts
incurred by tensorC is more evident (cf. Equation (10)); how-
ever, this becomes insignificant as the tensors’ size increases
beyond 128.

As a result, the optimized layout reduces the average run-
time by 77% and the overall energy consumption by 15%

compared to the naive layout. The energy reduction is deliv-
ered by simultaneous improvement in both shift and leakage
energy (cf. Figure 12). The shift energy gain (cf. Figure 13)
comes from reducing the number of shifts while the reduc-
tion in leakage energy is due to shorter runtime.

4.2.2 Impact of Preshifting
Although RTM-opt is more efficient in terms of performance
and energy consumption compared to RTM-naive, it still
suffers from shift-read serialization latency as depicted in
Figure 9(a). To completely eliminate this serialization latency,
the preshift optimization (Section 3.6) entirely overlaps the
shift and the read latency (cf. Figure 9b). This improves the
average runtime and energy consumption by 79.8% and 8.2%
respectively compared to the RTM-opt configuration. The
decrease in the energy consumption comes from the reduced
leakage energy which stems from the reduction in runtime.

4.2.3 Comparison with SRAM
The performance comparison with SRAM shows that naively
replacing RTM by SRAM for tensor contraction does not pro-
vide any benefits in terms of performance, at least for the
same capacity. Employing RTM-naive, we witness an av-
erage 1.33× runtime degradation compared to SRAM. This
runtime degradation is caused by the increased shift cost
(cf. Figure 10) and the shift-read serialization latency (cf. Fig-
ure 9a). Although RTM-opt reduces the shift cost, its average
runtime is still 56% worse compared to SRAM. Our com-
bined optimizations (i.e. RTM-opt-preshift), employing the
optimized RTM layout and preshifting, reduce the average
runtime by 24% compared to SRAM.
Figure 11 shows that the runtime advantage of our com-

bined optimizations is more pronounced in larger tensors.
For smaller tensors, the initial tile load latency almost com-
pletely offsets the runtime improvement in SPM accesses. In
contrast, the impact of initial tile load latency is impercep-
tible in larger tensors where the average runtime is domi-
nanted by the SPM accesses.

The energy results in Figure 12 clearly indicate that each
variant of RTM greatly outperforms SRAM in terms of en-
ergy consumption. As highlighted, the SRAM leakage en-
ergy is the major contributor (i.e. 79%) to the overall energy
consumption. The SRAM energy degradation is due to signif-
icantly higher leakage power consumed in the larger SRAM
cells compared to RTM cells. Another interesting observa-
tion is that the contribution of the dynamic energy in smaller
tensors is not very prominent. Since smaller tensors produce
fewer SPM accesses and the relative runtime for smaller ten-
sors is larg, the contribution of dynamic energy to the total
energy consumption is small.

To underscore the importance of the dynamic energy con-
sumption, we separate it from the leakage energy in Figure 13.
As can be observed, the total dynamic energy of RTM (naive)
can get worse compared to SRAM if the shifting overhead
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Figure 13. Dynamic energy breakdown

is not handled properly. However, with the combined opti-
mizations in place where each SPM access requires at most
one shift, the dynamic energy consumption of RTM reduces
by 30.6% compared to SRAM.

The dynamic read energy of SRAM (58.7 pJ) is higher than
the combined read plus single shift energy required in RTM
(22.5 + 18.9 = 41.4 pJ) for the optimized layout (cf. Table 2).
Although the combined write plus single shift energy in RTM
(35.4 + 18.9 = 54.3 pJ) is higher compared to SRAM (38.6 pJ)
dynamic write energy. However, the RTM write energy does

not have a significant impact on the dynamic energy con-
sumption because the tensors contractions are dominated
by reads. The number of reads in tensors contractions is
approximately 2n times higher than the number of writes.
As a result, the contribution of the write energy becomes
less prominent when the tensor size gets larger, as can be
seen in Figure 13.
Finally, since an SRAM cell is significantly larger than

an RTM cell, the overall area used by SRAM is 71% larger
compared to the iso-capacity RTM, cf. Table 2.
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5 Related Work
This section reviews the relevant literature on tensor and
matrix processing, the recent developments in RTM and the
state of the art in the utilization of SPM in embedded systems.

5.1 Matrix and Tensor Processing
Matrix multiplication (MM), its applications and optimized
implementations have been widely studied for a long time.
In numerical linear algebra, MM is a key operation and a
major bottleneck in a large class of matrix problems such as
the least-square and the eigenvalue problems. By clever algo-
rithm design, the computational complexity of multiplying
two n × n-matrices can be reduced from O(n3) to less than
O(n2.376) [11, 55]. MM has been implemented on almost all
novel and parallel compute platforms [15, 29, 41, 64].
Various linear algebra libraries exist that efficiently im-

plement MM. For instance, the standard basic linear alge-
bra subprograms (BLAS) library offers efficient and portable
implementations of common operations on matrices and
vectors [31]. The automatically tuned linear algebra software
(ATLAS) library auto-detects the underlying architecture
and automatically optimize algorithms for it [10, 60]. Other
work [15, 16] focuses on the partitioning of matrices that
best suits the memory hierarchy. For embedded platforms,
efficient implementations of MM have been presented on
ARMv7 [13], DSP [40] and FPGA [28]. All these implementa-
tions are optimized for conventional random access memo-
ries. The challenges that are introduced by the sequential but
energy- and area-efficient RTMs have not been addressed.
The present work even goes one step further: instead of

addressing MM in RTMs, we have studied the more general
operation of tensor contraction. On conventional platforms,
i.e. with traditional random access memory, implementing
tensor contraction efficiently has been approached in ways
similar to ours [25, 49]. Alternative approaches that avoid
transpositions [34] or are based on polyhedral compilation
methods [14] have also been explored. It has also recently
been demonstrated that, instead of relying on polyhedral
methods for the analysis and transformation of loops, meta-
programming techniques can be used at least as effectively in
optimizing tensor kernels [51], including parallelization for
multi-core platforms. Frameworks that attempt to optimize
tensor-based computations by auto-tuning, analogous to
ATLAS for computations involving low-dimensional linear
algebra, also exist and can target diverse and heterogeneous
architectures [8, 54].

5.2 Racetrack Memory
RTMs, being a promising alternative to existing conventional
and non-conventional memory technologies, have been ex-
plored all across the memory hierarchy with different opti-
mization objectives. For instance, the RTM-based GPU regis-
ter file has been reported to be both energy as well as area

efficient compared to the traditional SRAM-based register
file [33, 58]. On lower cache levels, RTM reduced the energy
consumption by 69% compared to an iso-capacity SRAM.
When evaluated at last level in the cache hierarchy, RTM
reportedly outperformed SRAM and STT-RAM by improving
the area, energy and performance efficiency by 6.4x, 1.4x and
25% respectively [50, 56].

Despite being energy and area efficient, RTMs can severely
degrade the memory system’s performance and energy foot-
print if the shifting operation is not handled properly. Shift-
ing consumes more than 50% of the RTM energy [63] and
can increase the access latency by up-to 26×, in the worst
case, compared to the SRAM [56]. Even in our small-size
RTM-based SPM, we observed an average 1.33× performance
degradation in the naive layout compared to the SRAM.

Tomitigate the impact of the shifting overhead, isolated ef-
forts have been made and hardware/software solutions have
been proposed. At the architectural front, researchers have
proposed techniques such as pre-shifting, data-swapping and
re-ordering of the memory requests to minimize the number
of shifts [3, 33, 50, 56, 57]. However, these solutions are in-
feasible in the embedded domain as they require additional
hardware that costs area, latency and energy. Similarly, the
software techniques presented in [9, 23, 32] are not ideal fits
to optimize tensors applications. To the best of our knowl-
edge, this is the first work that explores tensors’ layout in
RTMs for the contraction operation.

5.3 Scratch-Pad Memory
On-chip SPMs have long been used in embedded systems [4,
20]. Due to their excellent storage structure, they have also
been employed in the accelerators designed for convolutional
and deep neural networks [7]. Compared to caches, SPMs
are faster, consume less power and are under the full control
of the programmer/compiler [22]. Historically, SRAMs have
remained the lone choice of realizing SPMs because of their
low access latency. However, with the emergence of NVMs
such as STT-RAM [17, 27] and PCM [61], researchers have
proposed NVM-based SPMs because they consume less static
power and offer higher storage capacity [59]. Nevertheless,
these emerging NVMs suffer from higher access latency and
endurance issues. To combine the latency benefit of SRAM
with the energy benefit of NVMs, NVM-SRAM hybrid SPMs
have also been proposed [18].

Tomake effective utilization of the SPMs and improve their
performance, various techniques have been proposed. For
instance, the data allocation algorithms presented in [4, 42]
judiciously partition the program variables into the on-chip
SPM and the off-chip DRAM at compile-time. However, the
data allocation is static, i.e., does not change during program
execution. The algorithms presented in [53] make dynamic
allocation of both stack and global data in the SPM. While
all these data allocation techniques were aimed at improving
data locality, none of them consider energy and I/O overhead.
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To minimize the data transfer between the off-chip DRAM
and the on-chip SPM, Kandemir et al. [22] first proposed
techniques that analyze the application, perform loop and
layout transformations and dynamically partition the SPM
space in a way that reduces the number of off-chip accesses.
To improve the life-time of hybrid SPMs, Hu et al. [18] pro-
posed dynamic data-allocation algorithm that allocates read
intensive program objects to the PCM-based SPM and write
intensive objects to SRAM. The RTM-based SPMs do not suf-
fer from any of the limitations mentioned above. However,
they incur the unique shift operations which, if not handled
properly, can severely degrade their performance (cf. 5.2).
The proposed layout effectively diminishes the amount and
impact of RTM shifts in tensor contractions.

6 Conclusions
In this paper, we present techniques to find optimal tensor
layouts in RTM-based SPMs for the tensor contraction op-
eration. We explain the rationale that led to the derivation
of the optimized layout. We show that the proposed layout
reduces the number of RTM shifts to the absolute minimum.
To enable contractions of large tensors, we divide them into
smaller tiles and employ prefetching to hide the tile-switch
latency. Moreover, we put tile switching to good use by alter-
nating the tiles’ layout, which further diminishes the number
of shifts. Finally, to improve the access latency of the on-chip
SPM, we employ preshifting that suppresses the shift-read
serialization and enables single-cycle SPM access. Our exper-
imental evaluation demonstrates that the proposed layout,
paired with suitable architecture support, improves the RTM-
based SPM’s performance by 24%, energy consumption by
74% and area by 71% compared to the SRAM-based SPM. The
demonstrated benefits substantiate that RTM is a promis-
ing alternative to SRAM, particularly in embedded devices
that process large tensorial data structures and thus enable
inference and similar applications.
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