
Supporting Fine-grained Dataflow Parallelism in Big Data
Systems

Sebastian Ertel
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
sebastian.ertel@tu-dresden.de

Justus Adam
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
justus.adam@tu-dresden.de

Jeronimo Castrillon
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
jeronimo.castrillon@tu-dresden.de

ABSTRACT
Big data systems scale with the number of cores in a cluster for
the parts of an application that can be executed in data parallel
fashion. It has been recently reported, however, that these systems
fail to translate hardware improvements, such as increased network
bandwidth, into a higher throughput. This is particularly the case
for applications that have inherent sequential, computationally in-
tensive phases. In this paper, we analyze the data processing cores
of state-of-the-art big data systems to find the cause for these scal-
ability problems. We identify design patterns in the code that are
suitable for pipeline and task-level parallelism, potentially increas-
ing application performance. As a proof of concept, we rewrite parts
of the Hadoop MapReduce framework in an implicit parallel lan-
guage that exploits this parallelism without adding code complexity.
Our experiments on a data analytics workload show throughput
speedups of up to 3.5x.

CCS CONCEPTS
• Information systems→ DBMS engine architectures; • Software
and its engineering→ Parallel programming languages;

ACM Reference Format:
Sebastian Ertel, Justus Adam, and Jeronimo Castrillon. 2018. Supporting
Fine-grained Dataflow Parallelism in Big Data Systems. In PMAM’18: 9th
International Workshop on Programming Models and Applications for Multi-
cores and Manycores, February 24–28, 2018, Vienna, Austria. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3178442.3178447

1 INTRODUCTION
Over the last decade big data analytics became the major source
of new insights in science and industry. Applications include the
identification of mutations in cancer genome [10] and the tracking
of other vehicles around an autonomously driving car. The big
data systems (BDS) that enable such analyses have to be able to
process massive amounts of data as fast as possible. In order to
do so, current BDS apply coarse-grained data parallelism, i.e., they
execute the same code on each core of the nodes in a cluster on a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PMAM’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5645-9/18/02. . . $15.00
https://doi.org/10.1145/3178442.3178447

data processing core
map

mapper
reducer

Local
Disk

Distributed
File

System

mapper
mapper

Distributed
File

System

Network
(Local
Disk)

data processing core
reduce

Figure 1: Data processing cores in Hadoop’s MapReduce.

different chunk of the data. As such, the application is said to scale
with the number of cores in the cluster. However, not every aspect
of a big data application exposes data parallelism. Whenever this is
the case, current big data systems fail to scale.

1.1 Scalability Issues of Big Data Systems
A typical big data analysis program assembles a set of predefined
operations and applies them to the data. Execution proceeds in
multiple phases where each phase applies a part of the program to
the data that was output by a previous one. Afterwards, the results
are redistributed among the nodes in the cluster to compute the next
phase. For example, the famous MapReduce programming model
defines exactly two phases as shown in Figure 1: a map and a reduce
phase [4]. The map phase is data parallel by definition but the data
parallelism of the reduce phase depends on the application. For
example, in data analytics queries, the join operation for two tables
can not be performed in a data parallel way (when the input data
is not partitioned). In such a case, a single node receives all results
from themap phase and becomes the throughput bottleneck. Even if
the reduce phase runs in a data parallel fashion, the load across the
reducers can only be balanced evenly bymaking assumptions on the
map output. These assumptions are hard to estimate correctly such
that the load is often spread unevenly decreasing data parallelism.

BDS have been traditionally designed to execute applications
in a massive coarse-grained data parallel way across a cluster of
machines. The assumption was that applications would process
large amounts of simply structured data, e.g., text, that is fast to
serialize and deserialize, i.e., transforming them to bytes (and its in-
verse operation on the receiver side). This setup led to the common
belief that network I/O, instead of computation, is the performance
bottleneck in these systems.

Only recently, researchers have shown that I/O is not always the
limiting factor for performance [17]. Over the last years, big data
applications have grown in complexity and use much more complex
data structures especially in the area of data analytics. At the same
time, network hardware for big data appliances improved, reaching

1

https://doi.org/10.1145/3178442.3178447
https://doi.org/10.1145/3178442.3178447

PMAM’18, February 24–28, 2018, Vienna, Austria Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

transfer rates above 40 GB/s [11]. Authors in [24] benchmarked
the current state-of-the-art BDS Apache Spark and Apache Flink
in a high bandwidth cluster setup. The results show that reduce
operations do not profit frommodern multi-core architectures since
their cores do not take advantage of fine-grained parallelism. Con-
sequently, the data throughput does not increase for faster network
devices, i.e., it does not scale with the network.

To better exploit new hardware, the design of BDS must be re-
visited. This cannot be done with local optimizations for individual
steps in the data processing core, but requires fundamental design
changes [24]. Redesign is non trivial due to the complexity of the
code bases of state-of-the-art BDS, e.g., with over 1.4 million lines
of code in Hadoop MapReduce (HMR). Approaching this task with
common parallel programming means, like threads, tasks or actors
and their respective synchronization via locks, futures or mailboxes,
inevitably increases code complexity even further. As a result, these
systems become even harder to reason about, maintain and ex-
tend. We believe that a much more concise and scalable redesign
can be achieved with new programming abstractions that enable a
compiler to prepare the code for an efficient parallel execution at
runtime. This paper represents first steps in this direction.

1.2 Contributions
In this paper, we present a rewrite for the processing core of current
big data systems to increase data throughput, effectively improving
scalability with new hardware. Our rewrite uses an implicit parallel
programming language to provide concise code that is easy to
maintain. The corresponding compiler transforms the program into
a dataflow graph that the runtime system executes in a pipeline and
task-level parallel fashion across the cores of a single cluster node.
Hence, our approach extends the coarse-grained data parallelism
in BDS with fine-grained pipeline and task-level parallelism inside
the data processing cores to resolve the throughput bottlenecks.

The contributions of this paper are as follows:

(1) We contribute an analysis of the code base of HMR, Spark and
Flink. This analysis shows that the different data processing
cores are structurally equivalent and thus suffer the same
scalability issues. Further, our study reveals design patterns
that indicate pipeline-parallelizable code.

(2) As a case study, we change the HMR data processing core
and present four different rewrites using an implicitly paral-
lel language. Our rewrites are minimally invasive and reuse
existing code. The rewritten code is concise and free of con-
currency abstractions.

(3) We compare our data processing core to the original HMR
implementation using parts of the TPC-H database bench-
mark. Experimental results report throughput speedups of
up to 3.5x for compute-intensive configurations.

The rest of the paper starts with the analysis of state-of-the-art
big data systems in Section 2. Afterwards, we give a brief introduc-
tion into implicitly parallel programming with Ohua (Section 3)
and then present the HMR rewrites in Section 4. Section 5 compares
our rewritten data processing core to the original one. Finally, we
review related work in Section 6 and conclude in Section 7.

2 THE CORE OF BIG DATA PROCESSING
In this section, we study the three big data systems with a focus on
the programming style of their data processing cores. This analysis
serves to identify common code patterns across the different BDS
that lend themselves well for a pipeline and task-level parallel
execution. With this analysis we also provide concrete reasons for
the scalability issues discussed above (cf. Section 1.1) and reported
in [24]. This has only been supported by experimental observations
but not by an in-depth analysis of the code structure. The first part
of this section lists and explains the code of the data processing
cores in these BDS. Then, Section 2.2 analyzes promising code
patterns to exploit other forms of parallelism.

2.1 Data Processing: Code Study
We investigate the three most-widely-used systems in todays big
data domain, Hadoop MapReduce (HMR), Spark and Flink.

2.1.1 HadoopMapReduce. TheMapReduce programmingmodel
consists of two functions: a map function that pre-processes the
data and a reduce function that performs an aggregation [4]. The
map function is executed in a data parallel fashion on every chunk
of the input data. The results are partitioned and dispatched to
nodes that execute the reduce code. The number of reduce tasks
depends on the number of partitions defined by the application.

Figure 2a lists the data processing core of the framework in
the run method. The main concept is the abstraction of a context
through which data is retrieved and emitted. The Context class
implements an iterator-like interface that is used in the runmethod
to drive the input side, i.e., retrieve the data. In case of the Mapper,
it retrieves one key-value pair at a time and passes it to the map
function (Lines 14–17). The implementation of the Reducer looks
almost identical, expect for the fact that it receives a list of values
with each key.We omit it here for brevity and concentrate in the rest
of the paper on the Mapper keeping in mind that our rewrites apply
in the same way to the Reducer. The map function emits data via
the context, driving the output side of the processing in the task
(Lines 8–9). The context implementation uses the abstractions of
the InputFormat and OutputFormat to interface with the various
big data storage systems such as HDFS [20] and HBase [2, 5].

2.1.2 Spark. Spark [25] provides a new API which is heavily
based on Scala and much closer to the original higher-order func-
tions map, reduce and filter. In Spark, these functions, also called
transformations, are applied to Resilient DistributedDatasets (RDD),
the key abstraction in Spark. RDDs are immutable and therefore
transformations create new RDDs. Like HMR, Spark partitions the
input data and the intermediate results (if possible) to apply coarse-
grained data parallelism.

Internally, Spark distinguishes among two types of tasks: the
ShuffleMapTask and the ResultTask. All transformations are ex-
ecuted on a ShuffleMapTask, except the one performed on the
final RDD in the program. A ShuffleMapTask first performs trans-
formations and finally shuffles the result data over the network.
Lines 15–18 in Figure 2b list the corresponding implementation
code. Spark groups transformations to compose a pipeline that
executes in a single task. Each transformation applies a function
to all key-value pairs of the partition/RDD. While doing this, it

2

Supporting Fine-grained Dataflow Parallelism in Big Data Systems PMAM’18, February 24–28, 2018, Vienna, Austria

1 public class Mapper<KEYIN, VALUEIN,
2 KEYOUT, VALUEOUT> {
3 /* The default implementation
4 is the identity function. */
5 protected
6 void map(KEYIN key, VALUEIN value,
7 Context ctxt) {
8 ctxt.write((KEYOUT) key,
9 (VALUEOUT) value);
10 }
11

12 public
13 void run(Context ctxt) {
14 while (ctxt.nextKeyValue())
15 map(ctxt.getCurrentKey(),
16 ctxt.getCurrentValue(),
17 ctxt);
18 }}

(a) Hadoop

1 private[spark] class
2 ShuffleMapTask(partitionId: Int,
3 partition: Partition)
4 extends Task[MapStatus] {
5

6 override
7 def runTask(ctxt: TaskContext)
8 :MapStatus = {
9 /* Deserialization and init of
10 variables omitted for brevity. */
11 var writer: ShuffleWriter[Any, Any] =
12 manager.getWriter[Any, Any](
13 dep.shuffleHandle,
14 partitionId, ctxt)
15 writer.write(
16 rdd.iterator(partition, ctxt)
17 .asInstanceOf[
18 Iterator[_<:Product2[Any, Any]]])
19 writer.stop(success = true).get}}

(b) Spark

1 public class DataSourceTask<OT>
2 extends AbstractInvokable {
3 private
4 InputFormat<OT, InputSplit> format;
5 private Collector<OT> output;
6

7 @Override public
8 void invoke() throws Exception {
9 OT reuse =
10 serializer.createInstance();
11 while (!this.taskCanceled &&
12 !format.reachedEnd()) {
13 OT returned;
14 if((returned =
15 format.nextRecord(reuse))
16 != null)
17 output.collect(returned);
18 }}}

(c) Flink

Figure 2: The data processing cores of Hadoop MR, Spark and Flink are all based on the abstraction of a context.

uses the concept of an iterator to navigate over the whole set of
key-value pairs in a partition. Spark chains iterators where each it-
erator performs one transformation and passes the results on to the
next. The code that uses the outermost iterator instance moves one
key-value pair through the whole transformation pipeline before
acquiring the next. In the ShuffleMapTask, the writer shuffles
the results over the network. This on-demand processing of data
actually implements a lazy evaluation strategy such that actions
like take(n) do not process the whole data but only the first n
records requested. The ResultTask either sends the results back
to the program executing the Spark query or persists them in the
underlying storage system.

2.1.3 Flink. HMR and Spark were designed to perform com-
putations over data stored in a distributed storage system, called
batch processing. However, big data applications often gather and
process data continuously which is referred to as data streaming.
Therefore, Flink [1] extends Spark’s programming model with a
notion of time which in turn requires to incorporate stateful trans-
formations into the runtime system. In order to do so, Flink builds
on top of the dataflow execution model that is popular for massively
parallel processing (MPP) in distributed database systems [8]. It
derives a dataflow graph from a program where each function call
is represented as a node, referred to as operator. An operator can
be replicated for a data parallel execution if its private state and its
incoming data streams can be partitioned.

Similar to Spark, Flink groups pipelines of operators working on
the same data partition together into a chain of operators and exe-
cutes them in a single task. Flink uses a push-based model to drive
the pipeline while Spark builds on a pull-based approach. Therefore,
the first operator in the pipeline retrieves the data and drives the
rest of the pipeline. We list the code for the DataSourceTask in
Figure 2c. Like HMR, it uses an InputFormat abstraction to load
data from distributed storage and pushes every element into a chain
of collectors, i.e., operators (Lines 11–17). Each collector applies

a reduction function to the pushed element and stores the result
into its private state. A collector emits its private state to the next
collector in the chain only when all values were processed and
close was called by the previous collector.

2.2 Analysis
We now analyze these three implementations in terms of execution
models, design patterns and their applicability to pipeline and task-
level parallelism.

2.2.1 Dataflow Inside. All three systems are dataflow systems.
They all build a directed acyclic graph (DAG) to represent the com-
putation. The state of the nodes in the DAG is partitioned and
replicas are created for each partition to introduce data parallelism.
HMR implements a very coarse-grained system that allows to write
a DAG with only the two nodes, map and reduce, that are executed
in a massively parallel way. Higher-level systems and languages
such as Hive (SQL) [22], Pig (Pig Latin) [6, 16] and IBM’s SystemML
(R) [7] derive more fine-granular DAGs and use HMR as a foun-
dation to execute them. Spark has such a program analyzer that
automatically converts the program into a DAG built-in. This al-
lows Spark to inspect the dependencies and derive data pipelines
for RDDs which are then run in a data parallel fashion across the
RDD partitions. HMR with Hive or Pig, Spark and Flink analyze the
DAG, use certain metrics to fuse nodes and map them onto tasks
which are then executed in a single JVM process [9]. Hence, the
dataflow execution model can be seen as the de-facto standard for
big data processing engines.

However, the dataflow processing model has not been used to ex-
ecute the data processing pipeline inside a task. Instead, parallelism
is exploited very sparsely. HMR uses a dedicated thread on the
output-side of the mapper in order to buffer and combine records
before writing them to local disk. Furthermore, the reducer uses
multiple threads to retrieve the map outputs for its partition over
the network in parallel. The rest of the processing is performed

3

PMAM’18, February 24–28, 2018, Vienna, Austria Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

computation

serializedeserialize
compressdecompress

write I/Oread I/O
map, reduce,
query graph

context context

Figure 3: The data processing core of all three BDSs.

sequentially. While HMR executes each task on a new JVM process,
Spark and Flink use a single JVM per cluster node to run tasks in
parallel which speeds up task startup times significantly. However,
for reduce tasks which are not executable in a data parallel fashion,
even Spark and Flink do not benefit from a multi-core machine.

2.2.2 Design Patterns and Parallelism. Interestingly, although
only reductions are purely sequential, a lot more code is executed
sequentially. This is due to the composition of the data processing
pipeline shown in Figure 3 which always consists of at least the
following steps: retrieval of the data from I/O (disk or network),
deserialization, computation, serialization and writing the data to
I/O (disk or network). Decompression and compression can be
dynamically added via configuration parameters. Furthermore, in
HMR (Hive, SystemML), Spark and Flink, the computational part,
i.e., the actual operations applied to the data, often encompasses
more than a single function. To enable this dynamic composition of
the processing core, the code uses the iterator and observer design
patterns. The iterator allows chaining transformations in Spark
while the observer pipelines operators in Flink. Furthermore, all
three BDS integrate the various file formats to access the vast land-
scape of big data storage systems. For this, they all rely on the
InputFormat and OutputFormat abstractions that were defined in
earlier HMR versions. The InputFormat defines an iterator while
the OutputFormat uses an observer, i.e., data is pulled from and
pushed to I/O. The iterator and observer design patterns are du-
als [15] and we use them as an indicator in the code to derive
parallelism. Both enforce encapsulation of state inside the con-
crete class. Hence, in between these two sequentially executing
duals there exists a pipeline parallel execution which is semanti-
cally equivalent. Furthermore, we found that the (de-)compression
and (de-)serialization steps can be executed in a task-level parallel
fashion for a key and its value(s).

In the rest of the paper, we investigate how an implicitly parallel
language would influence the code structure and scalability of such
a data processing core. Although, we port only HMR to Ohua, this
section made the case that Spark and Flink would benefit from the
same rewrites.

3 IMPLICIT PARALLEL PROGRAMMING IN
OHUA

This section introduces the main concepts of Ohua’s language and
runtime system using the simplest HMR rewrite as an example.

3.1 Algorithms and Stateful Functions
The Ohua programming model makes the following fundamental
observation: An application is defined in terms of an algorithm
that comprises smaller independent and self-contained functional
building blocks. For example, in the HMR system, one algorithm
defines the data processing for a mapper and another for the reducer.

The associated functional building blocks include the functions to
deserialize and decompress a single record in the data set. In Ohua,
these functions may access their private state throughout the whole
computation and are therefore called stateful functions.

We list the most coarse-grained algorithm implementation for
the mapper in Figure 4a. We define the algorithm inside a Clo-
jure function called coarse, because Ohua is an embedded domain
specific language in Clojure1. We invoke this algorithm inside the
run method of our new Mapper (see Figure 2a). The algorithm
uses a higher-order map function (smap) to define a computation
(Lines 8–12) that is applied to each of the records (Lines 5 and
13) in the data chunk to be processed by this Mapper. Note that
we define this computation in terms of another algorithm named
compute-and-output, i.e., algorithmsmay call other algorithms. In
the following, we refer to this language as the algorithm language.

The overall algorithm uses the application-defined Mapper and
HMR’s Context abstraction. The iterator that is defined at Line 5
uses the Mapper$Context to retrieve one record at a time. The
hmr-map function (Line 8) emits the list of key-value pairs pro-
duced for a single map invocation on the user-supplied Mapper. The
output function (Line 10) passes one key-value pair at a time to
the Mapper$Context and executes the output side of the pipeline.
As an example of a functional building block for this algorithm,
we list the implementation of the output function in Figure 4b. It
is implemented as a Java class and identified as stateful function
via the @defsfn annotation2. A call to output in a Java program
differs from one in an Ohua algorithm:

Java Ohua
o.output(k, v, writer); (output k v writer)

The Java call needs an instance o of class Output which defines the
state that is accessible inside the function. At runtime, the instance
encapsulates this (private) state while the surrounding Java program
needs to create and maintain it. In Ohua this instance is implicit, i.e.,
it is created and managed by the runtime system. For each function
call Ohua creates such an instance once and reuses it throughout
the entire computation. When the function performs side-effects
against a field of the class in one call then these changes are visible
to the succeeding calls. An example for such a state is the dictionary
used in many compression algorithms. Note that the tried to keep
our rewrite as minimal as possible without requiring edits to the
HMR code base. As such, the class Output does not extend from
Context but delegates to a context instance it receives from the
surrounding program. This instance counts towards the state of
output, including all transitive references such as for instance to
the compression dictionary.

We define the Ohua language (constructs relevant to this paper)
in Figure 5. The syntax is in line with that of Clojure. The language
features variables, abstractions and applications for algorithms
and lexical scoping of variables. The central contribution is the
application of potentially stateful functions defined on the JVM
in either Java, Scala or Clojure to variables. Program evaluation
is entirely data driven just as known from any other functional

1 Clojure primer: Function abstraction such as (defn fun [arg 1 arg2] code) is
equivalent to public Object fun(Object arg1, Object arg2){ /*code*/ } in
Java. Function application such as (fun 4 5) is equivalent to fun(4, 5).
2Ohua additionally supports stateful function implementations in Scala and Clojure.

4

Supporting Fine-grained Dataflow Parallelism in Big Data Systems PMAM’18, February 24–28, 2018, Vienna, Austria

1 (defn coarse
2 [^org.apache.hadoop.mapreduce.Mapper$Context reader
3 ^org.apache.hadoop.mapreduce.Mapper mapper
4 ^org.apache.hadoop.mapreduce.Mapper$Context writer]
5 (let [records-on-disk (new InputIterator reader)]
6 (ohua
7 (smap
8 (algo compute-and-output [[line content]]
9 (let [kv-pairs (hmr-map line content mapper)]
10 (smap
11 (algo output-side [[k v]] (output k v writer))
12 kv-pairs)))
13 records-on-disk))))

(a) Coarse-grained algorithm for the data processing inHMR’smapper.

1 public class Output {
2 @defsfn public
3 void output(Object key, Object value, Context ctxt) {
4 ctxt.write(key, value); }}

(b) Stateful function output.

destructsmap

collectsmap destruct

hmr-map

collect

[line content]

kv-pairs [k v]

output

output-side

compute-and-output

(c) The dataflow graph that Ohua derives.

Figure 4: The data processing core of HMR implemented in Ohua. Figure 4a lists the code of the algorithm defined in the
Mapper implementation of Figure 2a. The algorithm code is concise, i.e., free of clutter and concurrency constructs, and reuses
the original implementation. For example, the stateful function output is written in Java (see Figure 4b) emits the key and its
value via HMR’s context abstraction. From the algorithm code, Ohua derives the dataflow graph in Figure 4c.

Terms:
t ::= x variable
| (algo [x] t) abstraction
| (t t) application

| (let [x t] t) lexical scope
(variable binding)

| (f x1 . . . xn)
apply JVM function f

to x1 . . . xn with n ≥ 0
| (if t t t) conditionals

| (seq t t)
sequential evaluation order

(side-effect dependency)

Values:
v ::= o ∈ VJVM JVM value
| (algo [x] t) abstraction
| [v1 . . .vn] list of n values

Predefined Functions:
(smap (algo [x] t) [v1 . . .vn]) apply abstraction to list

Figure 5: Definition of Ohua’s algorithm language.

language. To control the evaluation otherwise, the developer can
either use conditionals or the higher-order function seq. With seq,
the developer can express dependencies on I/O side-effects such as
for example writing to disk or network communication. In the next
section, we show that HMR relies a lot on such dependencies when
reporting the mapper’s progress, e.g., the bytes written to HDFS. A
value is either an object o from the domain VJVM, i.e., JVM objects
emitted by stateful functions, an algorithm abstraction or a list of
values. We also predefine the function smap, Ohua’s variant of the
well-known higher-order function map.

3.2 Dataflow-based Runtime System
Despite incorporating state, Ohua can derive a parallel execution.
To this end, the compiler first transforms the program expression
into a form that binds each result of a stateful function call to a

variable and then lowers this expression into a dataflow graph. On
the left-hand side of Figure 6, we define the terms of our dataflow
representation. The basic constructs of our dataflow representation
are nodes, edges and ports. A node retrieves data via its input
ports, performs a computation (step) and emit the result via its
output ports. The data travels through the graph via edges where
an edge originates at one output port and terminates at an input
port. An output port may have multiple outgoing edges to pass the
value to more than a single node while an input port always only
connects a single incoming edge. We classify nodes according to
their correspondence of retrieved and emitted data. A 1−1 node
retrieves at most one data item from any of its input ports to produce
one data item to be emitted via its output ports. A 1−N node emits
n data items to its output port before it retrieves the next data
item among its input ports. A N −1 node retrieves n data items
from any of its input ports before it produces a single output data
item. Predefined 1−1 dataflow nodes include not, the negation of a
boolean value, true, the mapping of any value to a boolean true
value, ctrl, the conversion of a boolean value into a control signal
and sel, a selection. A selection node receives a choice on its lower
input port that specifies from which of its input ports to forward
the next data item. We also define nodes to work with list values.
The len−[] node has a 1−1 correspondence. The 1−N node []{
takes a list and emits the values one at a time, i.e., it streams the
values. In order to perform the inverse N −1 operation, the{ []
requires n, the number of elements in the result list, to be available
on its upper input port. Finally, the node [{ streams the values
from a list that is unbounded. An unbounded list resembles the idea
of an iterator, i.e., a list where it is possible to walk over the values
but where the actual size is only known once the last value was
accessed. This is especially important when we retrieve data via I/O
such as the records from the chunk file. As such, [{ additionally
outputs the length of the list.

With these constructs defined, we translate the terms of our
language from Figure 5 into dataflow on the right-hand side of
Figure 6. Note that a stateful function call maps to a node with an
edge to itself that transfers the state from one invocation to the other.

5

PMAM’18, February 24–28, 2018, Vienna, Austria Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

This is the common representation for state in dataflow models. We
translate control flow into dataflow using ctrl node. In case of seq,
the ctrl node always receive a positive input and sends a control
signal that enables the downstream subgraph to proceed with the
computation. In case of conditionals, the downstream subgraph to
enable depends on the result of the subgraph for the condition. The
translation of smap computations over bounded and unbounded
lists is a straightfoward use of the according list-handling nodes. For
brevity reasons, we omit the translation of access to variables in the
lexical scope from within an expression passed to if or smap and
refer the interested reader to [23]. To keep the visual presentation
of the algorithms in their dataflow representation concise and clear,
we omit state edges and translation details such as len−[] nodes.
For clarity reasons, we refer to []{ and [{ as smap and to{ []
as collect. For example, Figure 4c depicts the dataflow graph
for the algorithm listed in Figure 4a. It contains the three coarse
steps from Figure 3 that our analysis found: the first smap node
retrieves the data via the context, the hmr-map function performs
the computation and output uses again the context to emit the
results. Note that streams inside the dataflow graph represent an
opportunity for pipeline parallelism and independent nodes for
task-level parallelism. A scheduler finally uses a thread pool to
execute the graph.

4 REWRITING HMR’S MAPPER IN OHUA
This section presents the algorithms that we extracted from the
original Hadoop MapReduce code and re-implemented in Ohua. We
already listed a coarse-grained version for the map task in Figure 4a.
In the following, we rewrite the steps before and after the hmr-map
function call which include decompression, deserialization and
their inverse operations. In HMR these steps are encapsulated in
the InputFormat and OutputFormat classes that are instantiated
in the Context of the map task. We focused our rewrite on the
implementation for the SequenceFile3 format which ships with
HMR and is widely used. Figure 7a lists the algorithm for the map
task. It applies the data-ingress algorithm to the raw bytes of a
single key and its associated value as retrieved from disk (Lines 14–
15). Note that this actually defines a computation for all key-value
pairs retrieved via the network, i.e., data residing on remote disks,
instead of from an in-memory data structure. The retrieved line
and content objects are then input to the function call that runs
the application-defined mapper (Line 16). The produced key-value
pairs are finally input to the data-egress algorithm that handles
one pair at a time (Lines 17–20). We define the data-ingress al-
gorithm in Figure 7b. It decompresses the value bytes and returns
the deserialized key and value. The data-egress algorithm in Fig-
ure 7c applies the inverse functions. It first serializes the objects in
Lines 5 and 6 and then compresses the bytes at Line 7 before they
are written to disk (Line 8). The rest of the stateful function calls
concern HMR’s status reporting and statistics, i.e., their execution
order depends on their side-effects to the distributed file system.
We use seq to encode these dependencies into the program.

We believe the Ohua code for the map task is concise. It only
requires a few lines and omits implementation details. Instead, it
allows the BDS developer to immediately understand the algorithms

3https://wiki.apache.org/hadoop/SequenceFile

of the data processing core. Additionally, our rewrites use almost all
of the existing code, i.e., we solely changed the composition of the
data processing steps. Ohua’s algorithm language allows to bind
abstractions to variables. This establishes similar compositional
flexibility that the iterator and the observer design patterns provide.
We use it to define 4 programs with the following composition:

Coarse (C) uses the coarse-grained Context abstraction for
the input and output side as shown in the algorithm of Fig-
ure 4a.

Coarse-Input-Fine-Output (CIFO) uses the Context for the
input side and the fine-grained algorithm of Figure 7c for
the output side.

Fine-Input-Coarse-Output (FICO) uses the fine-grained al-
gorithm of Figure 7b for the input side and the Context for
the output side.

Fine (F) uses the fine-grained algorithms for the input and
output side.

Since Ohua inlines algorithm calls, this composition does not sac-
rifice parallelism. Figure 8 shows the dataflow graph for the Fine
rewrite. It contains nodes for language constructs such as seq and
destruct for destructuring tuples, arrays and lists4. The graph con-
tains nested uses of smap and thus enough potential for a pipeline
parallel execution. Additionally, deserialization, decompression and
its inverse functions on the output side are independent for a key
and its value and therefore can benefit from task-level parallelism.

5 EVALUATION
In this section, we evaluate the increase in throughput that can
be achieved with our Ohua-based HMR rewrites. We first describe
the setup for our experiments and then give breakdowns of the
execution times of the individual stateful function calls of the pro-
gram. Only these breakdowns allow to fully understand the speedup
that can be achieved with Ohua’s dataflow execution. Afterwards,
we verify that Ohua achieves the maximal speedup possible for
throughput and analyze the overheads of the Ohua-based execution.

5.1 Experimental Setup
In order to evaluate the data processing core of the HMR map task,
we executed a single HMR map task on a 12- core (24 hardware
threads) Intel NUMA machine at 2.6 GHz with 2 CPU sockets and
128 GB of RAM. All experiments used a JVM (JDK 1.8) with G1
enabled, 10 GB initial and 30 GB maximal heap size. A study of
our new data processing core on the overall throughput of a job
executed across multiple machines is future. This is due to that
fact that normal benchmarks such as WordCount and Sort do not
apply because of their simple data formats and their low-profile
reduce phases. We studied the internals of Hive and found that
the query execution engine does not use HMR’s InputFormat and
OutputFormat interfaces for data (de-)serialization. Hive develop-
ers moved these aspects into the computational part of HMR’s data
processing core in order to use the same code base for executing
queries on HMR, Spark and Tez5. As such, we focus our evalua-
tion on the data processing core directly. Instead of the Hadoop

4The actual graph also contains constructs such as scope for scoped variable usage
and size to get the number of items a collect must gather for a single result.
5https://tez.apache.org/

6

Supporting Fine-grained Dataflow Parallelism in Big Data Systems PMAM’18, February 24–28, 2018, Vienna, Austria

Dataflow Elements:

d ::= 1-1 node
| edge
| port
| 1-N node

| N-1 node

Dataflow Nodes:

| not negation

| true map to true value

| ctrl data to control signal

| sel selection

Predefined Value Functions:

| len-[] length of list

| []~> list to stream

| ~>[] stream to list

| [~> unbounded list to stream

Terms:
x 7→ variable

t 7→ term

(let [x t] t) 7→
x lexical scope

(f x) 7→ fx apply stateless
function f to x

(g x) 7→ gx state apply stateful
function g to x

Control Flow:

(if t t t) 7→ sel
ctrl

ctrlnot
conditionals

(seq t t) 7→ ctrltrue sequential
evaluation

Predefined Functions:

(smap (algo [x] t)
[v1 . . .vn])

7→ []~> ~>[]
[v1…vn]

len-[]
bounded list

(smap (algo [x] t)
[v1 . . .])

7→ [~> ~>[]
[v1…] unbounded list

Figure 6: Definition of the dataflow representation (on the left-hand side) and the translation from the language terms to the
dataflow representation (on the right-hand side).

Distributed File System, we implemented our own Network File
System (NFS) on Hadoop’s file system abstraction to enforce data
retrieval over the network. It retrieves a file chunk from local disk
and transfers it over the network. This also happens during normal
processing when the map task can not be executed on the node that
hosts the input data chunk and hence enables complete code reuse
on the input side. The requested file chunk for our experiments
stores 1.4 GB of data. In order to achieve high bandwidth the NFS
data provider transfers the file without copy overhead (sendfile)
from the disk to the network while the map task executes on the
same machine. To nevertheless study a portion of a real data analyt-
ics query, we retrieve and process randomly generated data for the
PART table as defined in Figure 9 from the TPC-H benchmark [3].
Table records are stored in the widely used JSON format. We study
the impact of Snappy and LZO compression in combination with
either the default identity function in the mapper or a map function
that applies a filter in a WHERE clause of an SQL query. For the latter
we provide two versions: The first checks the conditions given in
TPC-H query 19. The second implements a blacklist filter that tries
to locate certain words in the P_COMMENT column.

5.2 Runtime Analysis
It has been observed that it is hard to analyze in detail the perfor-
mance of current BDS, mainly due to a lack of support for instru-
mentation [17]. This lack of analysis support could explain why,
for so many years, researchers stuck to the common believe that
big data applications are network-bound. The modular structure

of Ohua’s dataflow graph makes such an instrumentation straight
forward. We use it in the following to perform an in-depth anal-
ysis for the Fine rewrite. It allows us to understand the execution
pattern of the data processing core and to analyze Ohua’s runtime
overheads. Afterwards, we study the throughput of our rewrites
and the impact of maintaining state.

5.2.1 Execution Pattern Analysis. Figure 10 shows the total exe-
cution time of the stateful functions for the Fine rewrite. The stateful
functions that facilitate constructs of the algorithm language are
depicted on the left of each plot and prefixed with “ohua”6. The rest
of the functions execute HMR functionality. The execution time
of each function is broken down into the time spent in the Ohua
operator framework code and the time spent in the actual state-
ful function. With this analysis, we can differentiate three aspects:
1) the overhead that comes with the algorithm language, 2) the
runtime overhead of Ohua’s operator framework and 3) the actual
execution of the HMR functionality. The breakdown shows that
most time is spent in (de)-serializing the value from and into JSON.
Execution times vary slightly across the four configurations due to
the fact that these functions create a lot of objects. Note that the
execution time includes garbage collection. The more work other
functions perform, the more likely it is that they are also inter-
rupted by a garbage collection. Furthermore, the breakdown shows
that Snappy requires much less CPU cycles than LZO, but LZO pro-
vides better compression rates. As a result, the configuration with

6Ohua implements language constructs as stateful functions as well.

7

PMAM’18, February 24–28, 2018, Vienna, Austria Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

1 (defn map-task
2 [; decomposed input context
3 ^SequenceFile$Reader reader ^Deserializer key-deserializer
4 ^Deserializer val-deserializer
5 ^Mapper mapper ; app-supplied map implementation
6 ; decomposed output context
7 ^Serializer key-serializer ^Serializer val-serializer
8 ^Progressable reporter ^List stats
9 ^FSDataOutputStream out ^Counter map-out-records
10 ^Counter file-out-bytes ^CompressionCodec codec]
11 (let [records (new NetworkDataIterator reader)]
12 (ohua
13 (smap
14 (algo map-task-algo [[key-buf value-buf]]
15 (let [[line content] (data-ingress key-buf value-buf
16 key-deserializer val-deserializer)
17 kv-pairs (hmr-map line content mapper)]
18 (smap
19 (algo kv-algo [kv-pair]
20 (data-egress kv-pair reporter stats
21 key-serializer val-serializer codec
22 out map-out-records file-out-bytes))
23 kv-pairs)))
24 records))

(a) Algorithm for the map task.

1 (defalgo data-ingress [serialized-key serialized-val
2 key-deserializer val-deserializer]
3 (let [key-in (deserialize serialized-key
4 key-deserializer)
5 val-in (deserialize (decompress serialized-val)
6 val-deserializer)]
7 (array key-in val-in)))

(b) Algorithm for the data ingestion.
1 (defalgo data-egress [kv-pair reporter stats key-serializer
2 val-serializer codec out
3 map-out-records file-out-bytes]
4 (let [[k v] kv-pair
5 bytes-before (seq (report-progress reporter)
6 (fs-stats-out stats))
7 key-ser (seq bytes-before
8 (serialize k key-serializer))
9 val-ser (seq bytes-before
10 (serialize v val-serializer))
11 val-compressed (compress val-ser codec)
12 bytes-after (seq (write key-ser val-compressed out)
13 (fs-stats-out stats))]
14 (update-counters bytes-after bytes-before
15 map-out-records file-out-bytes)))

(c) Algorithm for the data emission.

Figure 7: The modular rewrite for the HMR data processing core of the map task allows to construct four different scenarios.
It facilitates to exchange the coarse-grained implementations of the data-ingress (see Figure 4) and data-egress algorithms
for the fine-grained ones (see Figure 7b and 7c).

destructsmap collectsmap

destruct

hmr-map collect
[line content]

deserialize

decompress deserialize

key-buf

val-buf

data-ingress

report-
progress

fs-stats-
out

serialize

serializeseq seq compress
write seq fs-stats-

out
update-
counters

seq

map-task-algo

k

v

data-egress

Figure 8: The dataflow graph for the Fine rewrite expresses the inherent task-level parallelism in the decompres-
sion/deserialization of key and values. The same accounts for the inverse operations in the data-egress algorithm. The overall
program uses two nested smap applications which directly translate into pipeline parallelism at runtime.

CREATE TABLE PART (P_PARTKEY SERIAL PRIMARY KEY,
P_NAME VARCHAR(55), P_MFGR CHAR(25),
P_BRAND CHAR(10), P_TYPE VARCHAR(25),
P_SIZE INTEGER, P_CONTAINER CHAR(10),
P_RETAILPRICE DECIMAL, P_COMMENT VARCHAR(23));

Figure 9: TPC-H table for parts.

LZO provides a higher potential to speedup the pipeline parallel
execution than the one with Snappy because more processing can
be performed in parallel. This potential further increases when the
mapper performs actual work such as evaluating the conditions of
TPC-H query 19 or our blacklist filter.

5.2.2 Throughput. Figure 11 depicts the throughput speedup
for our four rewrites across each of the configurations. In all four
configurations the Fine rewrite achieves the highest speedup with
3.5× for the LZO + Blacklist Filter configuration. Naturally, no
configuration reaches the maximum theoretical speedup due to the
overhead of the Ohua framework and the load profile of the different
functions (cf. Figure 10). This is particularly notable in the case of
Snappy + Identity, with a speedup below a maximum of around
2×7. In this configuration the overhead of the Ohua framework has
7Intuitively, the maximum speedup is calculated by determining the most appropriate
pipeline, i.e., number of stages and stage balancing (load in Figure 10). For Snappy
+ Identity, with clearly two dominant functions of comparable load (deserialize-2,
serialize-1), a two stage configuration would deliver around 2× speedup.

8

Supporting Fine-grained Dataflow Parallelism in Big Data Systems PMAM’18, February 24–28, 2018, Vienna, Austria

Snappy + Identity LZO + TPC−H Query19 LZO + Blacklist Filter

oh
ua

/se
q−

1

oh
ua

/se
q−

2

oh
ua

/se
q−

3

oh
ua

/se
q−

4

oh
ua

/se
q−

5

oh
ua

/si
ze

oh
ua

/d
es

tru
ct−

1

oh
ua

/d
es

tru
ct−

2

oh
ua

/sc
op

e

oh
ua

/sm
ap

loa
d−

nd
fs

de
co

m
pr

es
s

de
se

ria
liz

e−
1

de
se

ria
liz

e−
2

hm
r−

m
ap

se
ria

liz
e−

1

se
ria

liz
e−

2

co
m

pr
es

s

fs−
sta

ts−
ou

t−
1
writ

e

re
po

rt−
pr

og
re

ss

fs−
sta

ts−
ou

t−
2

up
da

te
−c

ou
nt

er
s

oh
ua

/se
q−

1

oh
ua

/se
q−

2

oh
ua

/se
q−

3

oh
ua

/se
q−

4

oh
ua

/se
q−

5

oh
ua

/si
ze

oh
ua

/d
es

tru
ct−

1

oh
ua

/d
es

tru
ct−

2

oh
ua

/sc
op

e

oh
ua

/sm
ap

loa
d−

nd
fs

de
co

m
pr

es
s

de
se

ria
liz

e−
1

de
se

ria
liz

e−
2

hm
r−

m
ap

se
ria

liz
e−

1

se
ria

liz
e−

2

co
m

pr
es

s

fs−
sta

ts−
ou

t−
1
writ

e

re
po

rt−
pr

og
re

ss

fs−
sta

ts−
ou

t−
2

up
da

te
−c

ou
nt

er
s

oh
ua

/se
q−

1

oh
ua

/se
q−

2

oh
ua

/se
q−

3

oh
ua

/se
q−

4

oh
ua

/se
q−

5

oh
ua

/si
ze

oh
ua

/d
es

tru
ct−

1

oh
ua

/d
es

tru
ct−

2

oh
ua

/sc
op

e

oh
ua

/sm
ap

loa
d−

nd
fs

de
co

m
pr

es
s

de
se

ria
liz

e−
1

de
se

ria
liz

e−
2

hm
r−

m
ap

se
ria

liz
e−

1

se
ria

liz
e−

2

co
m

pr
es

s

fs−
sta

ts−
ou

t−
1
writ

e

re
po

rt−
pr

og
re

ss

fs−
sta

ts−
ou

t−
2

up
da

te
−c

ou
nt

er
s

0

20000

40000

60000

ex
ec

 ti
m

e
[m

s]
framework function

Figure 10: Execution breakdowns for executions of the Fine rewrite.

Snappy + Identity LZO + Identity LZO + TPC−H Query19 LZO + Blacklist Filter

2 4 6 2 4 6 2 4 6 2 4 6

1

2

3

Threads

T
hr

ou
gh

pu
t −

 S
pe

ed
up

C CIFO F FICO

Figure 11: Speedups in throughput of the rewrites in the four configurations.

a higher impact on the throughput. The overall function execution
is less than in other workloads while the overheads are the same in
all configurations. The resulting performance penalty is roughly
0.4×, leading to maximum achievable speedup of 1.6×. In the other
configurations this penalty is negligible with speedups around 0.1×
below the maximum.

5.2.3 Cost. The COST metric refers to the number of additional
cores that are necessary in order to achieve the same performance
as the original implementation [14]. Figure 12 shows the COST
results for the four configurations and compares a stateless imple-
mentation (as suggested by the internal HMR API) to a stateful one.
Note that the original (coarse) parts are stateful. The graphs pro-
vide an important argument in favor for stateful computations and
thus Ohua’s programming model. The two functions with state are
decompress and compress which both use a dictionary to speed
up the discovery of words in the bytes. Removing this state can
degrade the performance by as much as an order of magnitude, as
in the case of our last two compute-heavy configurations.

6 RELATEDWORK
We could not find any work that tries to make current big data
systems scale with new hardware by introducing parallelism into
their data processing cores. To the best of our knowledge there is
no existing approach to do so using an implicitly parallel language.
For example, Weld [18] applies compiler optimizations such as loop

tiling and vectorization to speed up data analytics across different
frameworks. It requires to re-implement main functions and opera-
tors to make themWeld-aware. Weld works on the application level
rather than the data processing core of BDS. Crail [21] leverages
RDMA and storage tiering to speed up the I/O functions (load-ndfs
and write in the HMR data processing core). This works for sort-
ing data but fails to scale as soon as additional analytics take place
which require complex data types, their associated serialization,
compression and perform additional operations on the data. Re-
searchers also made the case of a single global cluster-wide address
space to further speed up serialization and deserialization [12]. The
Apache Spark project Tuncsten tries to remove garbage collection
penalties via their own off-heap memory management similar to
Flink [1]. However, all these approaches optimize only isolated
parts of the data processing core, i.e., they shrink one bar in the
execution breakdown graphs of Figure 10 just for another to be-
come the bottleneck. They speed up individual parts instead of
making the data processing core scale via an impacting structural
change as researchers concluded [24]. In this paper, we do exactly
this. We re-implemented the algorithms of the data processing core
using an implicitly parallel language that can automatically exploit
pipeline and task-level parallelism to scale the computation without
increasing code complexity. Note that there exist frameworks such
as Phoenix [19] or Metis [13] that scale analytics applications for
in-memory data on multi- and many-core architectures. Although

9

PMAM’18, February 24–28, 2018, Vienna, Austria Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

Snappy + Identity LZO + Identity LZO + TPC−H Query19 LZO + Blacklist Filter

C CIFO F FICO C CIFO F FICO C CIFO F FICO C CIFO F FICO

0

5

10

Implementation Granularity

C
O

S
T

stateless stateful

Figure 12: COST of the four rewrites when implemented with or without state.

Ohua can be used for that as well, this is not the topic of this paper.
In this paper, we give a redesign of the data processing cores of the
most-widely-used big data systems in the field today.

7 CONCLUSION AND FUTURE DIRECTIONS
The data processing core of current big data systems do not scale
with improved network performance. An analysis of HadoopMapRe-
duce, Spark and Flink found that the implementations use either
the iterator or the observer design pattern. Both provide the op-
portunity for a semantically equivalent pipeline parallel execution.
We replaced these patterns in Hadoop MapReduce using Ohua, an
implicitly parallel language. The resulting Ohua program heavily
reuses the existing code, while being more concise. Furthermore,
our evaluation shows that our rewrites provide speedups of up
to 3.5x exploiting pipeline as well as task-level parallelism. In the
future, we want to integrate a compiler-based approach that finds
stateful functions that are applicable to a data parallel execution.
This would enable us to make the data processing cores fully scal-
able independent of the size of the data processing pipeline.

ACKNOWLEDGMENTS
The authors thank Andrés Goens for valuable discussions and the
anonymous reviewers for their helpful comments. This work is
supported by the German Research Foundation (DFG) within the
Cluster of Excellence “Center for Advancing Electronics Dresden
(CfAED)” and the Collaborative Research Center “Highly Adaptive
Energy-efficient Computing (HAEC)”.

REFERENCES
[1] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38 (2015).

[2] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data (OSDI ’06). USENIX
Association, Berkeley, CA, USA.

[3] Transaction Processing Performance Council. 2008. TPC-H benchmark specifica-
tion. Published at http://www. tcp. org/hspec. html 21 (2008), 592–603.

[4] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters (OSDI’04). USENIX Association, Berkeley, CA, USA.

[5] The Apache Software Foundation. 2017. Apache HBase. https://hbase.apache.org/.
(2017). Accessed: 2017-03-22.

[6] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.
Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. 2009. Building a High-level Dataflow System on Top of
Map-Reduce: The Pig Experience. Proc. VLDB Endow. 2, 2 (Aug. 2009).

[7] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. 2011. SystemML: Declarative Machine Learning on MapReduce
(ICDE ’11). IEEE Computer Society, Washington, DC, USA.

[8] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query Processing
System (SIGMOD ’90). ACM, New York, NY, USA.

[9] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4
(March 2014).

[10] Peng Jiang and X Shirley Liu. 2015. Big data mining yields novel insights on
cancer. Nat Genet 47, 2 (02 2015), 103–104. http://dx.doi.org/10.1038/ng.3205

[11] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance for Big Data Analytics
(ISCA ’15). ACM, New York, NY, USA.

[12] Alexey Khrabrov and Eyal De Lara. 2016. Accelerating Complex Data Transfer
for Cluster Computing (HotCloud’16). USENIX Association, Berkeley, CA, USA.

[13] Yandong Mao, Robert Morris, and M. Frans Kaashoek. 2010. Optimizing MapRe-
duce for Multicore Architectures. Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Tech. Rep (2010).

[14] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! But at
What Cost? (HOTOS’15). USENIX Association, Berkeley, CA, USA.

[15] Erik Meijer. 2010. Subject/Observer is Dual to Iterator. (2010). http://www.cs.
stanford.edu/pldi10/fit.html 2010 Conference on Programming Language Design
and Implementation (PLDI), Fun Ideas and Thoughts Session.

[16] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. 2008. Pig Latin: A Not-so-foreign Language for Data Processing
(SIGMOD ’08). ACM, New York, NY, USA.

[17] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks
(NSDI’15). USENIX Association, Berkeley, CA, USA.

[18] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. 2017. Weld: A common runtime for high performance data analytics. In
Conference on Innovative Data Systems Research (CIDR).

[19] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor
Systems (HPCA ’07). IEEE Computer Society, Washington, DC, USA.

[20] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA.

[21] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Nikolas Ioannou, and Ioannis Koltsidas. 2017. Crail: A High-Performance I/O
Architecture for Distributed Data Processing. IEEE Data Eng. Bull. 40, 1 (2017).

[22] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: A
Warehousing Solution over a Map-reduce Framework. Proc. VLDB Endow. 2, 2
(Aug. 2009).

[23] Richard Townsend, Martha A. Kim, and Stephen A. Edwards. 2017. From Func-
tional Programs to Pipelined Dataflow Circuits (CC 2017). ACM, New York, USA.

[24] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Ioannis Koltsidas, and Nikolas Ioannou. 2016. On the [Ir]Relevance of Network
Performance for Data Processing (HotCloud’16). USENIX Association, Berkeley,
CA, USA.

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing (NSDI’12). USENIX Association, Berkeley, CA, USA.

10

https://hbase.apache.org/
http://dx.doi.org/10.1038/ng.3205
http://www.cs.stanford.edu/pldi10/fit.html
http://www.cs.stanford.edu/pldi10/fit.html

	Abstract
	1 Introduction
	1.1 Scalability Issues of Big Data Systems
	1.2 Contributions

	2 The Core of Big Data Processing
	2.1 Data Processing: Code Study
	2.2 Analysis

	3 Implicit Parallel Programming in Ohua
	3.1 Algorithms and Stateful Functions
	3.2 Dataflow-based Runtime System

	4 Rewriting HMR's Mapper in Ohua
	5 Evaluation
	5.1 Experimental Setup
	5.2 Runtime Analysis

	6 Related Work
	7 Conclusion and Future Directions
	Acknowledgments
	References

