
System Simulation with gem5 and SystemC
The Keystone for Full Interoperability

Christian Menard, Jeronimo Castrillon
Technische Universität Dresden

Dresden, Germany
Email: christian.menard@tu-dresden.de

jeronimo.castrillon@tu-dresden.de

Matthias Jung
Fraunhofer IESE

Kaiserslautern, Germany
Email: matthias.jung@iese.fraunhofer.de

Norbert Wehn
University of Kaiserslautern

Kaiserslautern, Germany
Email: wehn@eit.uni-kl.de

Abstract—SystemC TLM based virtual prototypes have be-
come the main tool in industry and research for concurrent
hardware and software development, as well as hardware design
space exploration. However, there exists a lack of accurate,
free, changeable and realistic SystemC models of modern CPUs.
Therefore, many researchers use the cycle accurate open source
system simulator gem5, which has been developed in parallel to
the SystemC standard. In this paper we present a coupling of
gem5 with SystemC that offers full interoperability between both
simulation frameworks, and therefore enables a huge set of pos-
sibilities for system level design space exploration. Furthermore,
we show that the coupling itself only induces a relatively small
overhead to the total execution time of the simulation.

I. INTRODUCTION

Today’s companies have to deal with complex hardware
architectures such as multi-cores, sophisticated interconnects
and memory systems. Virtual Prototypes (VPs) are widely used
to allow for early design space exploration and to decrease
the Time-to-Market (TTM), costs, and efforts by developing
software and hardware concurrently. They are high-speed,
fully functional software models of physical hardware sys-
tems that can simulate the exact behavior of real hardware.
With their help, complete Multi-Processor System-on-Chips
(MPSoCs) can be simulated with reasonable simulation speed
and visibility and controllability over the entire system. Case
studies have shown that by employing VPs it is possible to
deliver more competitive products up to six months earlier [1].

In recent years, the SystemC TLM2.0 IEEE1666 stan-
dard [2] has become the main developing tool for VPs in
industry and research. It allows to quickly simulate HW and
SW systems on different levels of abstraction in order to
estimate and optimize the performance and power for different
applications. In contrast to pin accurate models, Transaction
Level Modeling (TLM) abstracts the communication mecha-
nisms from the actual hardware. It encapsulates communica-
tion between interacting components in so-called transactions,
which are transferred by function calls.

The industry offers several SystemC based CPU core mod-
els that provide a trade-off between simulation speed and ac-
curacy. For instance, the FastModels, distributed by ARM Ldt.
or the OVP [3] models use just-in-time-compilation for code
execution and model communication using the TLM loosely-
timed coding style. However, loosely-timed models do not
reflect a realistic timing behavior and thus can mainly be used
for software development and high level explorations. Cycle

External

Slave

Bus

CPU

Slave

Transactor

Memory

(a)

External

Master

Bus

Mem.

Master

Transactor

CPU

(b)

gem5

SystemC

External

Slave

External

Master

Bus

CPU Mem.

Slave

Transactor

Master

Transactor

Interconnect

(c)

Figure 1: Possible scenarios for binding gem5 and SystemC:

accurate simulations can be performed with the commercially
available Carbon models from ARM or the Aurix [4] TLM
models from Infineon. However, these models are shipped
as binary libraries, which makes them useless for micro-
architectural research due to their inflexibility (i.e. they cannot
be modified). Furthermore, they are slow and can, therefore,
not be employed for fast design space exploration.

In contrast to industry, the academia lacks free, accurate
and realistic SystemC models of modern CPUs. The most
mature cycle accurate open source system simulator is the
gem5 framework, which is a modular platform for computer-
system architecture research [5]. It is not only widely used in
academia, but also the industry employs gem5 for research.
For instance, ARM and AMD use gem5 internally for design
space exploration and actively contribute to the open source
project. However, gem5 is not implemented in SystemC as
its development started before the IEEE ratified the official
SystemC and TLM standard in 2005 [2]. Since this time, both
frameworks, gem5 and SystemC have evolved extensively and
independent in parallel. Therefore, gem5 is incompatible to
TLM models that exist in industry and academia.

In this paper, we present for the first time a comprehen-
sive coupling between SystemC and gem5 that provides full
interoperability. Through this coupling, any SystemC module
that implements the TLM base protocol can be connected to
any gem5 module, as shown in Figure 1. To the best of our
knowledge, there exists no reference which describes syntax
and semantics of both frameworks and how both simulation
kernels can be coupled in order to enable full interoperability,



low overhead and therefore high simulation speed. Further-
more, we demonstrate the coupling for two complex MPSoC
example platforms and evaluate the simulation performance.
With our use-case, we show that only 7.6% of simulation speed
is sacrificed for the coupling. The source code of the developed
code has been committed to the official gem5 repository.

The coupling enables research and industry to enjoy the
benefits of both frameworks and allows for the reuse of legacy
models developed in the last decade. The development of and
research on SystemC based memory, interconnect, and periph-
eral models benefits from the realistic simulation of workloads
provided by gem5’s detailed and freely available CPU models.
The architectural and micro-architectural research in gem5
also benefits from the possibility to integrate modern and
accurate third-party models of various system components.
As it is not possible to simulate a system with heterogeneous
Instruction Set Architectures (ISAs) in gem5, the coupling also
provides a way to open gem5 for simulation of heterogeneous
platforms.

The rest of this paper is structured as follows: Section II
discusses related work. In Section III, we introduce TLM
and gem5 along with their communication protocols. The
co-simulation coupling and synchronization is explained in
Section IV. We further evaluate the performance degradation
of this coupling for two representative virtual platforms in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

In the past, there where several attempts of coupling the
gem5 and SystemC simulation kernels. Mingyan Yu et al.
discussed a fast synchronization scheme [6]. Texas Instruments
and GreenSocs proposed a coupling [7] and provided a patch
that was not accepted in the gem5 main repository. Finally,
Andrew Bardsley from ARM implemented a coupling that
became part of the gem5 main repository in June 2014.
However, while these couplings allow for co-simulation, they
don’t provide mechanisms for communication between gem5
and SystemC modules which limits their usefulness. Based on
Andrew Bardsley’s coupling, Matthias Jung presented a first
interoperable coupling in a talk in the gem5 Workshop at ISCA
2015 [8] and laid the foundation for this work. At this time
the coupling only supported scenario (a) from Figure 1.

Other approaches to simulator coupling include indi-
rect couplings by means of traces as presented in [9]
and [10]. Furthermore, simulation middelwares like SST [11]
or FERAL [12] can be used to couple gem5 with SystemC.
However, a middleware reduces the simulation performance
compared to a fully customized solution.

III. BACKGROUND

This section provides an overview of gem5 and SystemC,
with focus on the concept behind transaction modeling.

A. SystemC & TLM

SystemC is a modeling library for systems containing
hardware as well as software components. It is maintained by

Initiator

Inter-

connect

Target

Generic

Payload

Forward Path Forward Path

Backward PathBackward Path

(a) TLM

Master

Inter-

connect

Slave

Request Request

ResponseResponse

Packet

(b) gem5

Figure 2: TLM and gem5 both simulate memory accesses by
passing a reference to a transaction object between modules
using a series of function calls.

Accellera1 and was ratified as IEEE 1666 standard in 2005 [2].
Although it is possible to model components on the Register
Transfer Level (RTL), SystemC is mainly used for high–level
system modeling, which leads to shorter simulation time
compared to other Hardware Description Languages (HDLs)
like VHDL or Verilog. SystemC extends the programming
language C++ with classes and macros to provide an effective
event-driven simulation kernel. These extensions provide the
principles of parallelism and synchronization [13].

Transaction Level Modelling (TLM) is used to model the
communication between SystemC components by function
calls. The emphasis is more on the functionality of the data
transfers and less on their actual implementation. Instead of
modeling data transfers between different modules pin- and
cycle accurate, function calls referred to as transactions are
used. Whole blocks of data are transferred as a reference,
which leads to a significant simulation time speedup [14].

In TLM, modules communicate with each other through
sockets. Initiator sockets start new transactions and target
sockets respond to transactions. Initiator modules (e.g., pro-
cessors) have one or more initiator sockets and target modules
(e.g., memories) have one or more target sockets. Interconnect
modules (e.g., buses) use both socket types. TLM transactions
are encapsulated in the so-called Generic Payload which con-
tains address, command, status, and other information along
with the actual data. In order to simulate a memory access,
modules use a series of function calls and pass references to
a generic payload object as well as the timing annotations
to each other. Figure 2a shows a high-level overview of
communication between modules using TLM.

The TLM standard defines four transport interfaces:
blocking, non-blocking, debug, and direct memory interface
(DMI) [15]. The blocking interface is associated with the so-
called loosely-timed coding style. A complete transaction is
performed through a single function call modeling only the
timing points at the start and end of the transaction. The
blocking interface allows fast execution of transactions but
can only provide limited timing accuracy.

DMI is typically used for functional simulation as this
interface significantly reduces the overhead for simulating
transactions. With DMI, a target can grant an initiator direct

1www.accellera.org



access to a memory area by passing an access pointer. The
initiator can perform memory access without initiating any
transactions, which drastically increases the simulation speed.
However, DMI completely disregards the timing of intercon-
nects and memories.

The debug transport interface is similar to the blocking
transport interface in the sense that it performs a complete
transaction with one function call. However, debug accesses do
not account for timing and don not have any side-effects. This
makes the debug transport interface suitable for initialization
and debugging during simulation.

The non-blocking transport interface is associated with the
so-called approximately-timed coding style. It is used to model
a sequence of interactions between the initiator and the target
during the course of a single transaction. This provides more
accuracy in modeling the timing of memory accesses. For
simple memory-mapped bus models, the TLM standard defines
a base protocol consisting of four phases. However, the base
protocol can be extended to accurately model more complex
bus protocols (e.g. as shown in [16]).

The TLM non-blocking base protocol consists of the fol-
lowing phases: BEGIN_REQ, END_REQ, BEGIN_RESP and
END_RESP. Two functions handle the communication. On
the forward path, nb_transport_fw() transfers a generic
payload object from an initiator to a target. On the backward
path, nb_transport_bw() transfers a generic payload
object from a target to an initiator. Both functions receive a
phase and a timing annotation as additional arguments. The
return value indicates whether the function return corresponds
to a transition in the protocol. Returning TLM_ACCEPTED in-
dicates that there is no phase transition and the next transition
will be performed by a new function call. TLM_UPDATED or
TLM_COMPLETED indicate that there was a phase transition
to any following phase or to the last phase, respectively.

Figure 3 depicts the sequence of function calls required
for a complete transaction in the TLM non-blocking base
protocol. Note that between each function call the modules
may advance in simulation time to model delays. The ini-
tiator starts a transaction by calling nb_transport_fw()
passing the BEGIN_REQ phase. The target acknowledges the
request by calling nb_transport_bw() and advancing to
the END_REQ phase. The initiator must not send another
BEGIN_REQ signal until it receives an END_REQ signal for
the previous request. This is referred to as the request exclusion
rule and allows the target module to put back pressure on the
initiator. The exclusion rule can be used to model busy buses
or slow target modules.

After the target module acknowledged the request, it
sends a response. The target module starts a response by
calling nb_transport_bw() passing the BEGIN_RESP
phase. The initiator acknowledges the response by calling
nb_transport_fw() and passing the END_RESP phase.
The target module must not send another response until the
initiator acknowledged a previous response. This is referred to
as the response exclusion rule and allows the initiator module
to put back pressure on the target module.

Initiator Target

nb_transport_fw(

..., BEGIN_REQ, ...)

TLM_ACCEPTED

nb_transport_bw(

..., END_REQ, ...)

TLM_ACCEPTED

nb_transport_bw(

..., BEGIN_RESP, ...)

TLM_ACCEPTED

nb_transport_fw(

..., END_RESP, ...)

TLM_ACCEPTED

Figure 3: Sequence diagram illustrating the non-blocking base
protocol of TLM.

B. The gem5 Simulator
In contrast to SystemC, which is a generic standard, gem5 is

a complete simulation framework that provides specific models
for a variety of system components and means for easy con-
figuration [5]. gem5 includes CPU models in various levels of
detail and complexity (atomic, pipelined, out-of-order), caches,
buses, peripheral devices, and DRAM controllers [17]. Each
CPU model supports multiple ISAs including Alpha, x86,
ARM, and RISCV. The CPU models can be integrated with
two different memory backends. While the Classic memory
model provides a fast and easy way to configure the memory
system, the Ruby model focuses on the simulation of cache
coherent memory systems. Furthermore, gem5 features the re-
play of Elastic Traces [18], which not only enables a faster full
system simulation but also maintains a reasonable accuracy.
Overall, these exciting features makes gem5 a powerful tool
for analyzing and evaluating system-level architectures as well
as CPU micro-architectures. In this paper, we use the classic
memory backend of gem5 which we describe in the following.

In gem5, all objects that communicate via the memory sys-
tem are called memory objects. Memory objects communicate
with each other through ports. Ports are always used in pairs
consisting of a master port and a slave port. The master port
sends requests and receives responses. The slave port receives
requests and sends responses. Typically, a master module (e.g.
a CPU) has one or more master ports and a salve module
(e.g. a Memory) has one or more slave ports. Interconnect
components (e.g. bus, cache, bridge) have both port types.

A connection between memory objects is established by
binding master and slave ports to each other. Each connection
binds exactly one master port to exactly one slave port. Packets
encapsulate transfers between memory objects. They contain
the actual payload data of memory accesses, as well as meta
data including address, size, command and status. Memory
objects communicate, by exchanging references to packets in
a series of function calls. Figure 2b depicts an overview of the
communication of memory objects in gem5. The similarities of
the communication mechanisms in gem5 and TLM are evident
from Figures 2a and 2b.

Ports support three different access types: timing, atomic,
and functional. Atomic and functional accesses are syn-
chronous. To send an atomic or functional request, the master
module calls sendAtomic() or sendFunctional() on



Master Slave

sendTimingReq()

true
sendTimingResp()

true

(a) Normal operation

Master Slave

sendTimingReq()

false
sendReqRetry()

sendTimingReq()

true
sendTimingResp()

false
sendRespRetry()

sendTimingResp()

true

(b) Retry mechanism

Figure 4: Series of function calls required to simulate one
timing memory access in gem5. In case one module is busy
(returns false), the retry mechanism is used.

one of its master ports. The response is provided immediately
when the function returns. Atomic accesses are employed for
simulations (e.g. fast forwarding) for which accurate timing
is not a requirement. Functional accesses are mostly used for
initialization, debugging, and to load binaries to memories.
Atomic accesses directly correspond to blocking transactions
in TLM. Similarly, functional accesses correspond to debug
transactions.

Timing accesses provide a model for realistic timings of real
memory systems. They use an asynchronous protocol where
responses are not instantaneous. Figure 4 shows a possible se-
quence diagram for a timing access in gem5. The master mod-
ule sends a timing request by calling sendTimingReq()
on one of its master ports. The corresponding slave port
may accept or reject the packet. The boolean return value
of sendTimingReq() indicates the accept/reject status of
a request. If a packet is rejected, the master module must
not send any further packets using this port. When the slave
port is ready to receive a request, it calls sendRetryReq()
to notify the master port. The master port can then resend
the request by repeating the call to sendTimingReq().
However, the request may be rejected again. Once the slave
module accepts the request, it may forward the request to
another module (e.g., if it is a bus) or process the request (e.g.,
if it is a memory). On the response path, a similar protocol is
used. The slave module calls sendTimingResp() and the
master port may accept or reject the response. After a rejection,
the master port calls sendRetryResp() to indicate that it
is ready to receive a response.

Timing accesses in gem5 are similar to non-blocking trans-
actions in TLM in the sense that they split a single memory
access in request/response phases and use forward/backward
paths for communication. However, gem5 and TLM employ
a different mechanism for enforcing back pressur. While
TLM defines exclusion rules, gem5 uses the retry mechanism
described above. Table I summarizes the correspondence of
gem5 access types to TLM transport interfaces. As depicted
in the table, gem5 does not have any equivalent access type
to DMI.

Table I: gem5 access types and their corresponding transport
interfaces in TLM

gem5 Access Type TLM Transport Interface

Atomic Blocking
Timing Non-Blocking

Functional Debug
— DMI

Table II: Comparison of the fields used to encapsulate transfers
in gem5 and transactions in TLM

gem5 Packet TLM Generic Payload

flags -
cmd command
data data_ptr
addr address
size data_length
--- byte_enable_ptr
--- streaming_width

IV. COMBINING GEM5 AND TLM
Since June 2014, gem5 supports co-simulation in a SystemC

environment. The coupling is achieved by hooking the event
loop of gem5 to the SystemC kernel. A special SystemC mod-
ule hosts the gem5 simulation. It is responsible for assembling
and initializing all gem5 modules according to a configuration
file and implements a process that the SystemC kernel invokes
for each gem5 event.

This simple coupling is limited in its usefulness as it does
not allow for communication between gem5 and SystemC
modules. To overcome this limitation, we present a mechanism
that translates gem5 memory accesses to TLM transactions
and TLM transactions back to gem5 memory accesses. Our
transactors allow to connect arbitrary gem5 and SystemC
modules creating a wide range of possibilities for research
on system architectures.

In the following, we describe our slave transactor that
translates gem5 memory accesses to TLM transactions as well
as our master transactor that translates TLM transactions to
gem5 memory accesses. We also discuss a special mechanism
that ensures correct translation when both transactors are used.
Finally, we describe how our transactor mechanisms can be
used to connect gem5 and SystemC modules.

A. Slave Transactor
The slave transactor translates memory accesses in gem5 to

TLM transactions. For each access, the transactor first converts
the corresponding gem5 packet to a TLM generic payload
object. The transactor acquires a generic payload object and
initializes it according to the information provided by the
packet. Table II lists the relevant fields of the gem5 packet and
its equivalent fields in the TLM generic payload object. The
cmd, data, addr, and size fields of the packet are directly
converted to their equivalent in the generic payload. Since the
flags are gem5-specific, they are only checked but not con-
verted. The byte_enable_ptr and streaming_width
fields are simply initialized to their default values, as gem5
does not support features that are equivalent to the byte-enable
and streaming features of TLM. In order to remember the



Master Transactor

Target

sendTimingReq()

true BEGIN_REQ

TLM_ACCEPTED
END_REQ

TLM_ACCEPTED
BEGIN_RESP

TLM_ACCEPTEDsendTimingResp()

true END_RESP

TLM_ACCEPTED

(a) gem5 to TLM (w/o back pressure)
Initiator Transactor Slave

BEGIN_REQ

TLM_ACCEPTED sendTimingReq()

trueEND_REQ

TLM_ACCEPTED sendTimingResp()

trueBEGIN_RESP

TLM_ACCEPTED
END_RESP

TLM_ACCEPTED

(b) TLM to gem5 (w/o back pressure)

Master Transactor

Target

sendTimingReq()

true BEGIN_REQ

TLM_ACCEPTEDsendTimingReq()

false END_REQ

TLM_ACCEPTEDsendRetryReq()

sendTimingReq()

true BEGIN_REQ

TLM_ACCEPTED
END_REQ

TLM_ACCEPTED
BEGIN_RESP

TLM_ACCEPTEDsendTimingResp()

true END_RESP

TLM_ACCEPTED
BEGIN_RESP

TLM_ACCEPTEDsendTimingResp()

false
sendRetryResp()

sendTimingResp()

true END_RESP

TLM_ACCEPTED

(c) gem5 to TLM (with back pressure)

Initiator Transactor Slave

BEGIN_REQ

TLM_ACCEPTED sendTimingReq()

trueEND_REQ

TLM_ACCEPTED
BEGIN_REQ

TLM_ACCEPTED sendTimingReq()

false
sendRetryReq()

sendTimingReq()

trueEND_REQ

TLM_ACCEPTED sendTimingResp()

trueBEGIN_RESP

TLM_ACCEPTED sendTimingResp()

falseEND_RESP

TLM_ACCEPTED sendRetryResp()

sendTimingResp()

trueBEGIN_RESP

TLM_ACCEPTED
END_RESP

TLM_ACCEPTED

(d) TLM to gem5 (with back pressure)

Figure 5: Sequence charts illustrating the mechanism for transacting between the gem5 domain and the SystemC domain.

original packet, the transactor attaches a reference to the packet
to the generic payload using its extension mechanism [15].

Transacting atomic and functional accesses from gem5 to
TLM is almost trivial. A functional access simply results
in a corresponding call to the debug transport interface of
the transactor’s master socket. Similarly, an atomic access
leads to a call to the blocking interface. However, in order
to correctly model the timings, we need to convert the TLM
timing annotation (referenced to time object) to the gem5
annotation (return value denotes number of ticks).

Timing accesses, however, are more difficult to translate.
The transactor needs to correctly implement both, the gem5
timing protocol and the TLM base protocol. Most notably, the
transactor needs to enforce back pressure in both directions.

Figure 5a illustrates the normal operation of the master
transactor without any back pressure. In the figure, calls to
the non-blocking transport interface are shortened and only
denoted by the phase argument. When the master module
sends a request by calling sendTimingReq(), the trans-
actor acknowledges this request by returning true. It then
calls nb_transport_fw() passing BEGIN_REQ to initiate
a new transaction and to forward the request to the SystemC
target module. The transactor then needs to wait for the target
module to advance to the END_REQ phase.

During the BEGIN_REQ phase, the transactor rejects all
further requests that it may receive from the master module. In
other words, each call to sendTimingReq() of the master
module will return false. This ensures that the transactor
complies to the request exclusion rule of TLM and that
the back pressure is forwarded to the gem5 domain. If the
transactor rejects a request, it will notify the master module by
calling sendRetryReq() when the target module advances
in the TLM base protocol to the END_REQ phase. This
mechanism is illustrated in Figure 5c.

On the backward path, the target module initiates a re-
sponse by calling nb_transport_bw() and passing the
BEGIN_RESP phase. To handle the response, the transactor
first retrieves the original packet that it attached to the generic

payload object at the beginning of the transaction. Then it
transforms the packet to a response and sends the response
to the master module by calling sendTimingResp(). If
the master module returns true (Figure 5a), the transactor
completes the transaction by calling nb_transport_fw()
and passing END_RESP. Otherwise, the transactor needs to
wait for notification to retry (Figure 5c). The transactor only
completes the TLM transaction, when the master module
accepts the response. This ensures that the back pressure is
forwarded to the target module, as the response exclusion rule
ensures that the target module does not send another response.

B. Master Transactor
The master transactor translates TLM transactions to gem5

memory accesses. For each transactions, it first converts
the corresponding generic payload to a gem5 packet. The
transactor allocates a new packet and initializes the com-
mon fields according to Table II. The flags field is
set to a default value and the byte_enable_ptr and
streaming_width fields of the generic payload are ig-
nored. However, if an initiator module uses these features,
the transactor generates an error.

The transactor attaches a reference to the original generic
payload object to the newly created packet. In gem5, this is
achieved by pushing a sender state object to a stack of states
that is maintained by the packet. The state can be retrieved
later through a pop operation in order to restore the original
generic payload.

Debug and blocking transactions are implemented in accor-
dance to the previous section. A call to the debug transport
interface of TLM will lead to a call to sendFunctional()
in gem5 and a call to the blocking transport interface will lead
to a call to sendAtomic(). Thereby, the transactor ensures
that the timing annotation for blocking accesses is converted
correctly.

Figure 5b depicts the conversion of the non-blocking trans-
port interface to timing accesses in gem5 without back pres-
sure. When the initiator module initiates a new transaction, the
transactor calls sendTimingReq() to send the translated



packet to the slave module. If the slave module accepts the
request (returns true), the transactor immediately advances
to the END_REQ phase. Otherwise, the transactor waits for
notification to retry by the slave module. Only after the slave
module accepts the request, the transactor advances to the
END_REQ phase. This ensures compliance to the request
exclusion rule and forwards the back pressure to the TLM
domain. This retry mechanism is shown in Figure 5d.

The slave module starts a response by calling
sendTimingResp(). If the transactor is not processing a
previous response, it accepts the response and returns true
(Figure 5b). Then, the transactor retrieves the original generic
payload object form the sender state stack of the packet and
sends this generic payload to the initiator module by calling
nb_transport_bw() and passing BEGIN_RESP. Once
the initiator module acknowledges the response by sending
END_RESP, the transaction is complete. While the transactor
is waiting for the END_RESP signal, it rejects all other
responses send by the slave module (Figure 5d). Once the
transactor receives END_RESP, it notifies the slave module
by calling sendRetryResp(). This mechanism forwards
the back pressure on the return path from the TLM domain
to the gem5 domain.

C. Combining both Directions

The transactor mechanisms described above translate gem5
timing accesses to TLM non-blocking transactions and vice
versa. On the forward path, the transactors attach the original
transaction object (packet or generic payload) to the newly
created, translated transaction object. This allows the trans-
actors to restore the original object on the backward path in
order to create the correct response. This mechanism works
well if requests are only send in one direction as depicted in
Figures 1a and 1b.

A system where requests may be send from the gem5
domain to the SystemC domain and vice versa needs special
consideration. For example, the system shown in Figure 1c
connects a subsystem consisting of a CPU and a scratchpad
memory in the gem5 domain to an interconnect component
in the SystemC domain. If we assume that multiple of these
gem5 subsystems are connected to the SystemC interconnect,
a memory request that originates in the gem5 domain may be
translated to a TLM transaction and then be forwarded back to
the gem5 domain. For instance, this happens if a CPU accesses
data in the scratchpad memory of another CPU.

Using the mechanism described above, the slave transac-
tor would create a new generic payload object, initialize it
according to the gem5 packet and attach the original packet
as a TLM extension. The interconnect handles the transaction
and may forward it to a master transactor, which translates
the transaction back to the gem5 domain. For this, the master
transactor creates a new gem5 packet, initializes it according
to the generic payload, and attaches the generic payload as a
gem5 sender state.

The above mentioned naive approach is not appropriate due
to the following two reasons. First, the conversion from a

generic payload to a new packet incurs unnecessary overhead.
Instead, the master transactor could directly use the original
packet from the generic payload extension. Second, the slave
module may have certain assumptions on packets that arrive at
the module. For instance, it could expect that a certain sender
state object is attached to the packet. However, the slave and
master transactors do not translate the sender state. However,
simply restoring the original packet would solve this issue.

The transactors implement a so-called pipe-through mode to
resolve the issue discussed above. When the master transactor
receives a generic payload, it first checks if the gem5 packet
extension is present. If so, the transaction originated in the
gem5 domain and was translated by a slave transactor. Oth-
erwise, the transaction was initiated in the SystemC domain.
In the latter case, the master transactor converts the packet
as described in Section IV-B. In the former case, however,
the transactor uses the original packet that is attached to the
generic payload. It also sets a pipe-through flag in the generic
payload extension in order to inform the slave transactor on
the backward path.

Similarly, the slave transactor needs to check if a response
is originated in the gem5 domain. To implement this function-
ality, the slave transactor checks the pipe-through flag that is
written by the master transactor. If the flag is not set, the slave
transactor operates normally as described in Section IV-B. This
includes modifications to the original packet to mark it as an
error-free response. If the flag is set, this indicates that the
packet was already transformed into a response by the slave
module that answered the original request. In this scenario,
the slave transactor simply forwards the packet without any
modifications back to the gem5 domain.

The pipe-through mode is only implemented for memory
accesses that originate in the gem5 domain. A similar mecha-
nism is required for TLM transactions that are transacted to the
gem5 domain and then back to the SystemC domain. However,
this scenario is probably not a useful scenario for a coupling
of gem5 and SystemC as normally gem5 would be used for
simulating CPUs. Therefore, this scenario is not considered in
our implementation.

D. Usage

The source code of our SystemC and gem5 coupling
can be found in the util/tlm directory of the gem5
repository2. The coupling is managed mainly by five
classes. SCMasterPort and SCSlavePort are imple-
mentations of the external port interfaces that gem5 pro-
vides for external couplings. In our implementation, these
two classes manage the translation between TLM transac-
tions and gem5 timing accesses. Gem5MasterTransactor
and Gem5SlaveTransactor are SystemC modules that
represent the coupling in the SystemC domain. They are
bound to one SCMasterPort or SCSlavePort and pro-
vide a TLM target socket or initiator socket, respectively.
This allows for easy connection to other SystemC modules.

2https://gem5.googlesource.com/public/gem5



TargetTraffic

Generator

(a) SystemC only

TargetSlave

Transactor

External

Slave

External

Master

Master

Transactor

Traffic

Generator

(b) Transaction to gem5 and back

Figure 6: Setup for measuring the overhead of the transaction
mechanism.

Gem5SimControl is the central SystemC module that man-
ages the coupling and encapsulates the gem5 components in
the SystemC environment.

In order to use gem5 components within a SystemC simu-
lation, the user needs to instantiate the Gem5SimControl
class and provide a gem5 configuration file. The control
module assembles the gem5 component according to this
configuration and manages the simulation of all components it
encloses. This includes all the external master and slave ports
that are supposed to communicate with SystemC components.
For each external master or slave port that is specified in
the gem5 configuration, the user also needs to instantiate
a corresponding master or slave transactor module in the
SystemC domain. The external ports and transactor modules
are associated with each other through their name. Based
on the name, the Gem5SimControl module automatically
binds external ports and transactor modules to each other.

V. EVALUATION

In the following we present three experiments with different
gem5 and TLM coupling scenarios.

A. Pure Runtime Overhead
To estimate the runtime overhead for transaction to and

from gem5, we used a simple benchmark consisting of two
SystemC modules. The Traffic Generator is an initiator module
that randomly generates new transactions. The Target module
provides a simplistic, functional memory model. Both modules
can be found in the example use-cases that are part of the gem5
source code. Figure 6 shows the setup for our measurement.

In a first measurement, we connected the modules directly
in SystemC without any transactors (Figure 6a). We modified
the Traffic Generator so that it measures the host CPU time
required to complete each transaction. On an Intel i7-4790
host CPU, we measured an average of 818 ns/transaction for
a total of 1.5 million transactions.

In a second measurement, we added transactors that trans-
late the transactions to the gem5 domain and back to the
SystemC domain (Figure 6b). The gem5 domain does not
implement any functional behavior. It forwards all memory
accesses from the external master directly to the external
slave. In contrast to direct communication in the previous
measurement, each transaction now needs to be translated to
the gem5 domain, forwarded within the gem5 domain, and
translated back to the SystemC domain. Using this setup we
measured an average of 3µs/transaction. This is about 3.7⇥
slower than the direct TLM to TLM communication.

R R R R

R R R R

R R R R

R R R R

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE Acc Mem

(a) 4⇥ 4 mesh NoC architecture

External

Slave

External

Master

DTU

Bus

CPU Mem.

Slave

Transactor

Master

Transactor

(b) Processing Element (PE)

Figure 7: MPSoC platform used for evaluating the coupling
between gem5 and SystemC. While the tiles are gem5 sub
systems, the NoC is modelled in SystemC.

It is not trivial to measure where exactly in the chain of
transactors which portion of the host CPU time is spent.
Therefore, we estimate the worst case overhead for one
transaction based on our measurement. Since we consider
the worst case, we can neglect the overhead for forwarding
memory accesses in the gem5 domain and assume that all time
is spent for transacting the accesses. Further, we assume master
and slave transactor induce about the same overhead. Based
on these assumptions, we conclude that converting between
timing accesses and TLM transactions increases the host CPU
time required for handling one transaction at most by factor 2.

When we simulate the setup from Figure 6, most of the
host CPU time is spent on modeling the communication. Since
the initiator and target modules are very simplistic, the time
required for simulating their behavior is negligible. In a more
realistic scenario, a larger fraction of the host CPU time would
be spend on simulating behavior. Furthermore, not every
binding between two modules requires transaction. Normally
there are groups of modules in gem5 and SystemC that are di-
rectly connected and form sub-systems. Only communication
between these subsystems requires transaction. Therefore, the
actual runtime overhead for entire MPSoC simulations will be
much lower than factor 2.

B. Case-Study: MPSoC Simulation

In order to illustrate the usage of the SystemC coupling and
to analyze the runtime overhead in a realistic scenario, this
section discusses the simulation of an MPSoC architecture.

Modern MPSoC architectures typically use a Network-
on-Chip (NoC) for on-chip communication. However, the
classic memory backend of gem5 does not provide a model
for Network-on-Chip (NoC) architectures. Therefore, we use
gem5 to simulate all tiles of the MPSoC architecture and use
our coupling to connect the tiles to a custom SystemC NoC
model in Synopsys Platform Architect.

On this virtual platform, we run the M3 operating sys-
tem [19]. M3 OS is a micro-kernel based operating system
for heterogeneous many-core architectures. The M3 approach
hides heterogeneity behind a common hardware interface and
provides isolation on the NoC-level. For this, each tile requires



a special hardware module called Data Transfer Unit (DTU).
An implementation of the DTU is available for gem53.

The system employs a 4 by 4 NoC in mesh topology and
has a total of 16 tiles. 14 tiles are processing elements, one tile
is an accelerator, and one tile provides the memory interface.
Each of the tiles is simulated in the gem5 domain and uses a
similar setup as shown in Figure 1c. However, the local bus is
not directly connected to the NoC. Instead, the DTU acts as
a bridge between local bus and global interconnect. Figure 7
visualizes the complete system.

One of the processing elements hosts the kernel. The
remaining 13 processing elements run a benchmark that per-
forms a series of system calls which creates traffic on the NoC.
The simulation further includes the initialization of the system
which also creates NoC traffic as the kernel loads binaries from
the main memory to the processing elements.

We analyzed the simulation using the callgrind tool [20]
of the valgrind instrumentation framework [21]. This analysis
shows, as expected from the discussions in Section V-A, that
7.58% of the total host CPU time are spent on the components
managing the coupling of gem5 and SystemC. More than half
of this overhead (4.1% of total simulation time) is spent on
managing and synchronizing the gem5 event queue. 3.48%
of the total simulation time is spent for transacting TLM
transaction and gem5 memory accesses.

This case-study illustrates how the coupling of gem5 and
SystemC widens the range of platforms that can be explored.
It also shows that the coupling itself only induces a relatively
small overhead to the total execution time of the simulation.

C. Case-Study: External DRAM Simulator

Furthermore, we studied the coupling of gem5 with an
advanced DRAM TLM model called DRAMSys [22]. DRAM-
Sys is a design space exploration framework, which features
functional, power and thermal modeling, as well as a sophisti-
cated retention error model. Simulating a Linux boot using the
DRAMSys model as main memory results in a slowdown of
1.9⇥ compared to the simulation with gem5’s internal DRAM
model [17]. This slowdown is not only due to the coupling but
rather due to the higher level of details and debug capabilities
of the DRAMSys tool. This simulation setup allows detailed
explorations, e.g. the power reliability trade-off in the context
of Approximate DRAM on specific applications [23].

VI. CONCLUSION

In this work, we presented for the first time a coupling
and a detailed description of gem5 and SystemC TLM. Both
frameworks, SystemC and gem5 play an important role for in-
dustry and academia. Therefore, the coupling opens a huge set
of possibilities for system level design space exploration. We
have shown that the coupling itself only induces a relatively
small overhead to the total execution time of the simulation
in realistic MPSoC and DRAM use-cases.

3https://github.com/TUD-OS/gem5-dtu

ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) within the Cluster of Excellence “Cen-
ter for Advancing Electronics Dresden” (cfaed), the DFG
grant no. WE2442/10-1, the EU grant no. 732631 and the
Fraunhofer High Performance Center for Simulation- and
Software-based Innovation. Furthermore we thank Synopsys
for their support and Kira Kraft for her helpful and valuable
suggestions.

REFERENCES
[1] Tom De Schutter. Better Software. Faster!: Best Practices in Virtual

Prototyping. Synopsys Press, USA, 2014.
[2] IEEE Standard for Standard SystemC Language Reference Manual.

IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), Jan 2012.
[3] Imperas Software Limited. Open Virtual Platforms - the source of Fast

Processor Models & Platforms, 2017.
[4] Infineon. Aurix Family. http://www.infineon.com/cms/de/product/

microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/
channel.html?channel=db3a30433727a44301372b2eefbb48d9, 2016.

[5] Nathan Binkert, et al. The gem5 simulator. SIGARCH Comput. Archit.
News, 39(2):1–7, August 2011.

[6] Mingyan Yu, et al. A Fast Timing-Accurate MPSoC HW/SW Co-
Simulation Platform based on a Novel Synchronization Scheme. In
Proceedings of the International MultiConfernce of Engineers and
Computer Scientists, 2010.

[7] Alexandre Romana. SystemC Integration. In gem5 User Workshop,
International Symposium on Microarchitecture (MICRO), Vancouver,
BC, USA., December 2012.

[8] Matthias Jung et al. Coupling gem5 with SystemC TLM 2.0 Virtual
Platforms. In gem5 User Workshop, International Symposium on
Computer Architecture (ISCA), Portland, OR, USA., June 2015.

[9] Matthias Jung, et al. Virtual Platforms for Fast Memory Subsystem
Exploration Using gem5 and TLM2.0. In Ninth International Summer
School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems (ACACES13), volume 9, pages
153–156. Academia Press, Ghent, Belgium, 2013.

[10] Radhika Jagtap, et al. Exploring System Performance using Elastic
Traces: Fast, Accurate and Portable. In IEEE International Conference
on Embedded Computer Systems Architectures Modeling and Simula-
tion (SAMOS), July, 2016, Samos Island, Greece, 2016.

[11] A. F. Rodrigues, et al. The Structural Simulation Toolkit. SIGMETRICS
Perform. Eval. Rev., 38(4):37–42, March 2011.

[12] T. Kuhn, et al. FERAL - Framework for simulator coupling on
requirements and architecture level. In 2013 Eleventh ACM/IEEE
International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2013), pages 11–22, Oct 2013.

[13] Thorsten Grötker, et al. System Design with SystemC. 2002.
[14] John Aynsley. TLM-2.0 in Action: An Example-based Approach to

Transaction-level Modeling and the New World of Model Interoperabil-
ity. 2009.

[15] John Aynsley. OSCI TLM-2.0 Language Reference Manual. Open
SystemC Initiative, JA32 edition, jul. 2009.

[16] Matthias Jung, et al. TLM modelling of 3D stacked wide I/O DRAM
subsystems: a virtual platform for memory controller design space
exploration. In Proceedings of the 2013 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, RAPIDO ’13, pages
5:1–5:6, New York, NY, USA, 2013. ACM.

[17] A. Hansson, et al. Simulating DRAM controllers for future system archi-
tecture exploration. In ISPASS 2014 - IEEE International Symposium on
Performance Analysis of Systems and Software, pages 201–210, 2014.

[18] Radhika Jagtap, et al. Exploring system performance using elastic
traces: Fast, accurate and portable. In Walid A. Najjar et al., editors, In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation, SAMOS 2016, Agios Konstantinos, Samos
Island, Greece, July 17-21, 2016, pages 96–105. IEEE, 2016.

[19] Nils Asmussen, et al. M3: A Hardware/Operating-System Co-Design to
Tame Heterogeneous Manycores. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 189–203, New
York, NY, USA, 2016. ACM.

[20] Josef Weidendorfer, et al. A Tool Suite for Simulation Based Analysis
of Memory Access Behavior. In Marian Bubak, et al., editors, Com-
putational Science - ICCS 2004, 4th International Conference, Kraków,
Poland, June 6-9, 2004, Proceedings, Part III, volume 3038 of Lecture
Notes in Computer Science, pages 440–447. Springer, 2004.

[21] Nicholas Nethercote et al. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. SIGPLAN Not., 42(6):89–100, 2007.

[22] Matthias Jung, et al. DRAMSys: A flexible DRAM Subsystem Design
Space Exploration Framework. IPSJ Transactions on System LSI Design
Methodology (T-SLDM), August 2015.

[23] Matthias Jung, et al. Efficient Reliability Management in SoCs - An
Approximate DRAM Perspective. In 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), 2016.

http://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9

	Introduction
	Related Work
	Background
	SystemC & TLM
	The gem5 Simulator

	Combining gem5 and TLM
	Slave Transactor
	Master Transactor
	Combining both Directions
	Usage

	Evaluation
	Pure Runtime Overhead
	Case-Study: MPSoC Simulation
	Case-Study: External DRAM Simulator

	Conclusion
	References

